Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (10): 2603-2612.doi: 10.3724/SP.J.1006.2023.21082
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Next Articles
ZHANG Lan-Yue1(), LUO Jiang-Tao2(), FAN Chao-Lan1, LI Ya-Zhou1, JIANG Bo1, CHEN Xue1, CHEN Xue-Jiao1, YUAN Zhong-Wei1, NING Shun-Zong1, ZHANG Lian-Quan3, LIU Deng-Cai3(), HAO Ming1()
[1] |
Chen P, Qi L, Zhou B, Zhang Z, Liu D. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet, 1995, 91: 1125-1128.
doi: 10.1007/BF00223930 pmid: 24170007 |
[2] |
Zhang R, Sun B, Chen J, Cao A, Xing L, Feng Y, Lan C, Chen P. Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat. Theor Appl Genet, 2016, 129: 1975-1984.
doi: 10.1007/s00122-016-2753-8 |
[3] |
Zhang R, Fan Y, Kong L, Wang Z, Wu J, Xing L, Cao A, Feng Y. Pm62, an adult-plant powdery mildew resistance gene introgressed from Dasypyrum villosum chromosome arm 2VL into wheat. Theor Appl Genet, 2018, 131: 2613-2620.
doi: 10.1007/s00122-018-3176-5 |
[4] |
Zhang R, Xiong C, Mu H, Yao R, Meng X, Kong L, Xing L, Wu J, Feng Y, Cao A. Pm67, a new powdery mildew resistance gene transferred from Dasypyrum villosum chromosome 1V to common wheat (Triticum aestivum L.). Crop J, 2021, 9: 882-888.
doi: 10.1016/j.cj.2020.09.012 |
[5] |
江峥, 王琪琳, 吴建辉, 薛文波, 曾庆东, 黄丽丽, 康振生, 韩德俊. 基于基因特异性标记分析Pm21在中国冬小麦品种(系)中的分布. 中国农业科学, 2014, 47: 2078-2087.
doi: 10.3864/j.issn.0578-1752.2014.11.002 |
Jiang Z, Wang Q L, Wu J H, Xue W B, Zeng Q D, Huang L L, Kang Z S, Han D J. Distribution of powdery mildew resistance gene Pm21 in Chinese winter wheat cultivars and breeding lines based on gene-specific marker. Sci Agric Sin, 2014, 47: 2078-2087. (in Chinese with English abstract) | |
[6] | 高煜, 程斌, 丁延庆, 曹宁, 高旭, 张立异. 西南地区小麦种质资源白粉病抗性的全基因组关联分析. 麦类作物学报, 2021, 41: 164-173. |
Gao Y, Cheng B, Ding Y Q, Cao N, Gao X, Zhang L Y. Genome- wide association study of powdery mildew resistance of wheat germplasm in Southwest China. J Triticeae Crops, 2021, 41: 164-173. (in Chinese with English abstract) | |
[7] |
Cao A, Xing L, Wang X, Yang X, Wang W, Sun Y, Qian C, Ni J, Chen Y, Liu D, Wang X, Chen P. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA, 2011, 108: 7727-7732.
doi: 10.1073/pnas.1016981108 |
[8] |
Huang X, Zhu M, Zhuang L, Zhang S, Wang J, Chen X, Wang D, Chen J, Bao Y, Guo J, Zhang J, Feng Y, Chu C, Du P, Qi Z, Wang H, Chen P. Structural chromosome rearrangements and polymorphisms identified in Chinese wheat cultivars by high-resolution multiplex oligonucleotide FISH. Theor Appl Genet, 2018, 131: 1967-1986.
doi: 10.1007/s00122-018-3126-2 pmid: 29947816 |
[9] |
Wu N, Lei Y, Pei D, Wu H, Liu X, Fang J, Guo J, Wang C, Guo J, Zhang J, Liu A, Wen M, Qi Z, Yang X, Bie T, Chu C, Zhou B, Chen P. Predominant wheat-alien chromosome translocations in newly developed wheat of China. Mol Breed, 2021, 41: 30.
doi: 10.1007/s11032-021-01206-3 |
[10] |
Hu Z, Luo J, Wan L, Luo J, Li Y, Fu S, Liu D, Hao M, Tang Z. Chromosomes polymorphisms of Sichuan wheat cultivars displayed by ND-FISH landmarks. Cereal Res Commun, 2022, 50: 253-262.
doi: 10.1007/s42976-021-00173-x |
[11] |
Zhao C, Lyu X, Li Y, Li F, Geng M, Mi Y, Ni Z, Wang X, Xie C, Sun Q. Haynaldia villosa NAM-V1 is linked with the powdery mildew resistance gene Pm21 and contributes to increasing grain protein content in wheat. BMC Genet, 2016, 17: 82.
doi: 10.1186/s12863-016-0391-4 |
[12] | 李桂萍, 陈佩度, 张瑞奇, 王春梅, 曹爱忠, 张守忠. 小麦-簇毛麦6VS/6AL易位染色体在不同小麦背景中的遗传稳定性及其在配子中的传递. 麦类作物学报, 2007, 27: 183-187. |
Li G P, Chen P D, Zhang R Q, Wang C M, Cao A Z, Zhang S Z. Transmission of the 6VS/6AL chromosome through gametes and its genetic stability in different genetic background. J Triticeae Crops, 2007, 27: 183-187. (in Chinese with English abstract) | |
[13] | 马秋香. 普通小麦-簇毛麦6VS·6AL易位系与辉县红的RIL群体及其部分农艺性状的遗传分析. 南京农业大学硕士学位论文,江苏南京, 2007. pp 43-48. |
Ma Q X. Genetic Analysis of a New Wheat Recombinant Inbred Lines Population Derived from wheat-Haynaldia villosa 6VS·6AL Translocation and Huixian Hong and Some Agronomic Traits. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2007. pp 43-48. (in Chinese with English abstract) | |
[14] |
李桂萍, 陈佩度, 张守忠, 赵和. 小麦-簇毛麦6VS/6AL易位染色体对小麦农艺性状的影响. 植物遗传资源学报, 2011, 12: 744-749.
doi: 10.13430/j.cnki.jpgr.2011.05.013 |
Li G P, Chen P D, Zhang S Z, Zhao H. Effects of the 6VS/6AL translocation chromosome on agronomic characteristics of wheat. J Plant Genet Resour, 2011, 12: 744-749. (in Chinese with English abstract) | |
[15] |
Zhao R, Jiang Z, Chen T, Wang L, Ji Y, Hu Z, He H, Bie T. Comparative analysis of genetic effects of wheat-Dasypyrum villosum translocations T6V#2S·6AL and T6V#4S·6DL. Plant Breed, 2019, 138: 503-512.
doi: 10.1111/pbr.v138.5 |
[16] | Sears E R. Transfer of alien genetic material to wheat. In: Evans L, Peacock W J, eds. Wheat Science: Today and Tomorrow. Cambridge: Cambridge University Press, 1981. pp 75-89. |
[17] |
Lukaszewski A J, Cowger C. Re-engineering of Pm21 transfer from Haynaldia villosa to bread wheat by induced homoeologous recombination. Crop Sci, 2017, 57: 2590-2594.
doi: 10.2135/cropsci2017.03.0192 |
[18] |
Zhang S, Fan C, Luo J, Huang L, Xie D, Li Y, Chen Z, Jiang B, Ning S, Yuan Z, Huang L, Zhang L, Liu D, Hao M. KASP markers to detect sub-chromosomal arm translocations between 6VS of Haynaldia villosa and 6AS of wheat. Euphytica, 2021, 217: 10.
doi: 10.1007/s10681-020-02744-1 |
[19] |
Gyawali Y, Zhang W, Chao S, Xu S, Cai X. Delimitation of wheat ph1b deletion and development of ph1b-specific DNA markers. Theor Appl Genet, 2019, 132: 195-204.
doi: 10.1007/s00122-018-3207-2 pmid: 30343385 |
[20] |
Xing L, Hu P, Liu J, Witek K, Zhou S, Xu J, Zhou W, Gao L, Huang Z, Zhang R, Wang X, Chen P, Wang H, Jones J D G, Karafiatova M, Vrana J, Bartos J, Dolezel J, Tian Y, Wu Y, Cao A. Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol Plant, 2018, 11: 874-878.
doi: 10.1016/j.molp.2018.02.013 |
[21] |
Ye X, Li J, Cheng Y, Yao F, Long L, Wang Y, Wu Y, Li J, Wang J, Jiang Q, Kang H, Li W, Qi P, Lan X, Ma J, Liu Y, Jiang Y, Wei Y, Chen X, Liu C, Zheng Y, Chen G. Genome-wide association study reveals new loci for yield-related traits in Sichuan wheat germplasm under stripe rust stress. BMC Genomics, 2019, 20: 640.
doi: 10.1186/s12864-019-6005-6 pmid: 31395029 |
[22] | 范超兰. 小麦ph基因对部分同源染色体重组的影响. 四川农业大学博士学位论文, 四川成都, 2022. pp 29-33. |
Fan C L. The Effects of Wheat ph Genes on Homoeologous Chromosome Recombination. PhD Dissertation of Sichuan Agricultural University, Chengdu, Sichuan, China, 2022. pp 29-33. (in Chinese with English abstract) | |
[23] |
Zhao L, Ning S, Yu J, Hao M, Zhang L, Yuan Z, Zheng Y, Liu D. Cytological identification of an Aegilops variabilis chromosome carrying stripe rust resistance in wheat. Breed Sci, 2016, 66: 522-529.
doi: 10.1270/jsbbs.16011 |
[24] |
International Wheat Genome Sequencing Consortium IWGSC. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361: eaar7191.
doi: 10.1126/science.aar7191 |
[25] |
He H, Zhu S, Zhao R, Jiang Z, Ji Y, Ji J, Qiu D, Li H, Bie T. Pm21, encoding a typical CC-NBS-LRR protein, confers broad- spectrum resistance to wheat powdery mildew disease. Mol Plant, 2018, 11: 879-882.
doi: 10.1016/j.molp.2018.03.004 |
[26] |
Riley R, Chapman V. Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature, 1958, 182: 713-715.
doi: 10.1038/182713a0 |
[27] |
Martín A C, Borrill P, Higgins J, Alabdullah A, Ramírez-González R H, Swarbreck D, Uauy C, Shaw P, Moore G. Genome- wide transcription during early wheat meiosis is independent of synapsis, ploidy level, and the Ph1locus. Front Plant Sci, 2018, 9: 1791.
doi: 10.3389/fpls.2018.01791 |
[28] |
Fan C, Hao M, Jia Z, Neri C, Chen X, Chen W, Liu D, Lukaszewski A J. Some characteristics of crossing over in induced recombination between chromosomes of wheat and rye. Plant J, 2021, 105: 1665-1676.
doi: 10.1111/tpj.v105.6 |
[29] |
Li Y, Li Q, Lan J, Tang H, Qi P, Ma J, Wang J, Chen G, Pu Z, Li W, Li Z, Harwood W, Lan X, Deng M, Wei Y, Zheng Y, Jiang Q. Transfer of the ph1b gene of ‘Chinese Spring' into a common wheat cultivar with excellent traits. Cereal Res Commun, 2020, 48: 283-291.
doi: 10.1007/s42976-020-00048-7 |
[30] | Türkösi E, Ivanizs L, Farkas A, Gaál E, Kruppa K, Kovács P, Szakács É, Szőke-Pázsi K, Said M, Cápal P, Griffiths S, Doležel J, Molnár I. Transfer of the ph1b deletion chromosome 5B from Chinese Spring wheat into a winter wheat line and induction of chromosome rearrangements in wheat-Aegilops biuncialis hybrids. Front Plant Sci, 2022 13: 875676. |
[31] |
Hao M, Zhang L, Zhao L, Dai S, Li A, Yang W, Xie D, Li Q, Ning S, Yan Z, Wu B, Lan X, Yuan Z, Huang L, Wang J, Zheng K, Chen W, Yu M, Chen X, Chen M, Wei Y, Zhang H, Kishii M, Hawkesford M J, Mao L, Zheng Y, Liu D. A breeding strategy targeting the secondary gene pool of bread wheat: introgression from a synthetic hexaploid wheat. Theor Appl Genet, 2019, 132: 2285-2294.
doi: 10.1007/s00122-019-03354-9 pmid: 31049633 |
[32] |
李庆成, 黄磊, 李亚洲, 范超兰, 谢蝶, 赵来宾, 张舒洁, 陈雪姣, 甯顺腙, 袁中伟, 张连全, 刘登才, 郝明. 6RS/6AL易位染色体的遗传稳定性及其在配子中的传递. 作物学报, 2020, 46: 513-519.
doi: 10.3724/SP.J.1006.2020.91051 |
Li Q C, Huang L, Li Y Z, Fan C L, Xie D, Zhao L B, Zhang S J, Chen X J, Ning S Z, Yuan Z W, Zhang L Q, Liu D C, Hao M. Genetic stability of 6RS/6AL translocation chromosome and its transmission through gametes. Acta Agron Sin, 2020, 46: 513-519. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.91051 |
[1] | ZHANG Li-Hua, ZHANG Jing-Ting, DONG Zhi-Qiang, HOU Wan-Bin, ZHAI Li-Chao, YAO Yan-Rong, LYU Li-Hua, ZHAO Yi-An, JIA Xiu-Ling. Effect of water management on yield and its components of winter wheat in different precipitation years [J]. Acta Agronomica Sinica, 2023, 49(9): 2539-2551. |
[2] | ZHANG Diao-Liang, YANG Zhao, HU Fa-Long, YIN Wen, CHAI Qiang, FAN Zhi-Long. Effects of multiple cropping green manure on grain quality and yield of wheat with different irrigation levels [J]. Acta Agronomica Sinica, 2023, 49(9): 2572-2581. |
[3] | SU Zai-Xing, HUANG Zhong-Qin, GAO Run-Fei, ZHU Xue-Cheng, WANG Bo, CHANG Yong, LI Xiao-Shan, DING Zhen-Qian, YI Yuan. Identification of wheat dwarf mutant Xu1801 and analysis of its dwarfing effect [J]. Acta Agronomica Sinica, 2023, 49(8): 2133-2143. |
[4] | YANG Xiao-Hui, WANG Bi-Sheng, SUN Xiao-Lu, HOU Jin-Jin, XU Meng-Jie, WANG Zhi-Jun, FANG Quan-Xiao. Modeling the response of winter wheat to deficit drip irrigation for optimizing irrigation schedule [J]. Acta Agronomica Sinica, 2023, 49(8): 2196-2209. |
[5] | LI Yu-Xing, MA Liang-Liang, ZHANG Yue, QIN Bo-Ya, ZHANG Wen-Jing, MA Shang-Yu, HUANG Zheng-Lai, FAN Yong-Hui. Effects of exogenous trehalose on physiological characteristics and yield of wheat flag leaves under high temperature stress at grain filling stage [J]. Acta Agronomica Sinica, 2023, 49(8): 2210-2224. |
[6] | LIU Qiong, YANG Hong-Kun, CHEN Yan-Qi, WU Dong-Ming, HUANG Xiu-Lan, FAN Gao-Qiong. Effect of nitrogen application rate on grain quality, wine quality and volatile flavor compounds of waxy and no-waxy wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2240-2258. |
[7] | LIN Fen-Fang, CHEN Xing-Yu, ZHOU Wei-Xun, WANG Qian, ZHANG Dong-Yan. Hyperspectral remote sensing detection of Fusarium head blight in wheat based on the stacked sparse auto-encoder algorithm [J]. Acta Agronomica Sinica, 2023, 49(8): 2275-2287. |
[8] | LIU Shi-Jie, YANG Xi-Wen, MA Geng, FENG Hao-Xiang, HAN Zhi-Dong, HAN Xiao-Jie, ZHANG Xiao-Yan, HE De-Xian, MA Dong-Yun, XIE Ying-Xin, WANG Li-Fang, WANG Chen-Yang. Effects of water and nitrogen application on root characteristics and nitrogen utilization in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2296-2307. |
[9] | ZHANG Zhen, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen, WANG Xi-Zhi. Effects of different soil water content on water consumption by wheat and analysis of senescence characteristics of root and flag leaf [J]. Acta Agronomica Sinica, 2023, 49(7): 1895-1905. |
[10] | ZHANG Lu-Lu, ZHANG Xue-Mei, MU Wen-Yan, HUANG Ning, GUO Zi-Kang, LUO Yi-Nuo, WEI Lei, SUN Li-Qian, WANG Xing-Shu, SHI Mei, WANG Zhao-Hui. Grain Mn concentration of wheat in main wheat production regions of China: Effects of cultivars and soil factors [J]. Acta Agronomica Sinica, 2023, 49(7): 1906-1918. |
[11] | DONG Zhi-Qiang, LYU Li-Hua, YAO Yan-Rong, ZHANG Jing-Ting, ZHANG Li-Hua, YAO Hai-Po, SHEN Hai-Ping, JIA Xiu-Ling. Yield and quality of strong gluten wheat Shiluan 02-1 under water and nitrogen interaction [J]. Acta Agronomica Sinica, 2023, 49(7): 1942-1953. |
[12] | LI Ling-Yu, ZHOU Qi-Rui, LI Yang, ZHANG An-Min, WANG Bei-Bei, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai, ZHANG Wen-Jing. Transcriptome analysis of exogenous 6-BA in regulating young spike development of wheat after low temperature at booting stage [J]. Acta Agronomica Sinica, 2023, 49(7): 1808-1817. |
[13] | FENG Lian-Jie, YU Zhen-Wen, ZHANG Yong-Li, SHI Yu. Effects of irrigation on tiller occurrence, photo-assimilates production and distribution in different stem and tillers and spike formation in wheat [J]. Acta Agronomica Sinica, 2023, 49(6): 1653-1667. |
[14] | WANG Hao, SUN Ni-Na, WANG Chu, XIAO Lu-Ning, XIAO Bei, LI Dong, LIU Jie, QIN Ran, WU Yong-Zhen, SUN Han, ZHAO Chun-Hua, LI Lin-Zhi, CUI Fa, LIU Wei. Genetic basis analysis of high-yielding in Yannong wheat varieties [J]. Acta Agronomica Sinica, 2023, 49(6): 1584-1600. |
[15] | GAO Xin, GUO Lei, SHAN Bao-Xue, XIAO Yan-Jun, LIU Xiu-Kun, LI Hao-Sheng, LIU Jian-Jun, ZHAO Zhen-Dong, CAO Xin-You. Types and ratios of starch granules in grains and their roles in the formation and improvement of wheat quality properties [J]. Acta Agronomica Sinica, 2023, 49(6): 1447-1454. |
|