Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (11): 2913-2922.doi: 10.3724/SP.J.1006.2023.33002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic analysis and molecular identification of a multiple allele mutant of ZmMs7 gene in maize

CAO Xiao-Xiong1,2(), LIU Yi-Fan1,2, ZHOU Yu-Qiang2, WANG Jing2, WU Yu-Jin2, WANG Hong-Wu2, LI Kun2, LIU Xiao-Gang2, HUANG Chang-Ling2, LIU Zhi-Fang2, GUO Jin-Jie1,*(), HU Xiao-Jiao2,*()   

  1. 1College of Agronomy, Hebei Sub-center of National Maize Improvement Center of China / State Key Laboratory of North China Crop Improvement and Regulation / Hebei Agricultural University, Baoding 071001, Hebei, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Engineering Research Center of Crop Molecular Breeding, Beijing 100081, China
  • Received:2023-01-05 Accepted:2023-04-17 Online:2023-11-12 Published:2023-05-05
  • Supported by:
    National Key Research and Development Program of China(2022YFD1200802);Agricultural Science and Technology Innovation Program(CAAS-ZDRW202004);National Engineering Research Center of Crop Molecular Breeding, and the Science and Technology Innovation Team of Maize Modern Seed Industry in Hebei(21326319D)

Abstract:

We identified a maize male sterile mutant in the natural population, designated as ms20s1. The mutant had complete male sterility and lacked pollen grains in the withered anthers. Cytological analysis showed that, compared with the wild type, the ms20s1 mutant exhibited shrinkage locule, swollen tapetum cells, and aborted microspore at S11 stage, indicating that the ms20s1 mutant had abnormal tapetal programmed cell death and complete pollen abortion. Genetic analysis revealed that the male sterility trait was controlled by a single recessive nuclear gene. To clone the target gene, we constructed the F2 populations by crossing ms20s1 with different inbred lines and analyzed the population genotype using genotyping by target sequencing (GBTS) technology. The gene was initially mapped to the 124.95-128.47 Mb region on chromosome 7, and the interval was narrowed down to 0.68 Mb after fine mapping. Bioinformatics analysis indicated that there was one known gene ZmMs7 in this region. The ZmMs7 gene encoded a PHD-finger transcription factor that played an important role in tapetum development and pollen wall formation. Allelism test demonstrated that ms20s1 was an allelic mutant of ZmMs7 gene. Gene sequencing results showed that the ms20s1 mutant had multiple sequence variants in the exon region, which were different from the reported mutants ms7-6007 and ms7gl, confirming ms20s1 was a new allelic mutant of ZmMs7. The discovery and identification of the ms20s1 mutant provide a new material for exploring the molecular mechanism and breeding application of maize genic male sterility.

Key words: maize, male sterility, ms20s1, gene mapping, allelic mutant

Table 1

PCR primers used in this study"

引物名称
Primer name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
用途
Usage
InD124 GCACTGAAGGCTTATTTCGTCG TTTTTGGTCGTTGCTGCTGAT 基因定位
Gene mapping
InD125 AGCAGGAACGAAAAGGCACT GCAAAACAGGACACGCATCA
InD127 CCCTGCTATGACGACTTTTTTTCT ACTCTTGGTTGTCCACCGTGC
InD128 CCCGCTCATTGCTCTGTTG CCAAGCGAGCAGGCACAT
InD130 GCTCTTGATTTGCGAGGTGGT GCTGTGAGTGTGATGCGTGTG
20q CTTGGACACCAAGCACTTCGTC CAGGGTGACCGTCTCGTACG 基因表达分析
Gene expression
Tubulin GTGTCCTGTCCACCCACTCTCT GGAACTCGTTCACATCAACGTTC
Ms7-P1 CAGAACAGAGCAGAGGAACCAT GGATAACCAAACGAAACACGAGCC 基因克隆
Gene cloning
Ms7-P2 GGAGAAACCGTCCAAAGGC AAACCTTCGTGGTAATCTTTGAC
Ms7-P3 GTCTTGGACACCAAGCACTTCGT TGCCATGGCGGCTATAGGAGTT 基因克隆/CAPS鉴定
Gene cloning/CAPS

Fig. 1

Comparison of phenotypes between wild type and ms20s1 mutant A: the comparison of plant morphology between wild type and ms20s1 mutant at anthesis stage, bar: 20 cm; B: the comparison on tassel traits between the WT and ms20s1 mutant at anthesis stage, bar: 20 cm; C, D: the comparison of the anther morphology between the WT (C) and ms20s1 mutant (D), bar: 1 mm; E, F: pollen grains of WT (E) and ms20s1 mutant (F) stained with I2-KI, bar: 200 μm."

Table 2

Comparison of important agronomic traits between WT and ms20s1"

农艺性状
Agronomic trait
野生型
WT
突变体
ms20s1
株高Plant height (cm) 188.13±3.88 178.83±3.53*
穗位高Ear height (cm) 77.20±6.04 76.50±4.89
雄穗主轴长Total tassel length (cm) 41.01±2.29 38.48±2.21*
雄穗分枝数Tassel branch number 16.00±1.73 19.00±2.00*
穗上1叶长Leaf length-1 (cm) 88.33±3.94 90.65±3.27
穗上2叶长Leaf length-2 (cm) 82.26±3.03 84.32±4.25
穗上3叶长Leaf length-3 (cm) 75.17±3.20 74.75±3.80
穗上1叶宽Leaf width-1 (cm) 8.03±0.41 7.70±0.43
穗上2叶宽 Leaf width-2 (cm) 7.61±0.43 7.43±0.35
穗上3叶宽 Leaf width-3 (cm) 7.22±0.41 6.93±0.47
穗上1叶夹角Leaf angle-1 (°) 30.74±1.54 30.18±1.37
穗上2叶夹角Leaf angle-2 (°) 31.19±1.47 31.27±1.52
穗上3叶夹角Leaf angle-3 (°) 32.13±2.63 32.98±3.43

Fig. 2

Transverse section analyses of anther (from stage 8a to stage 11) in WT and ms20s1 mutant E: epidermis; En: endothecium; ML: middle layer; Ta: tapetum; Msp: microspore; CMsp: collapsed microspore; Dy: dyad; Tds: tetrads. Bar: 50 μm."

Table 3

Chi-square test for phenotypic segregation in F2 population"

群体
Population
总株数
Total number of plants
可育植株
Number of fertile plants
不育植株
Number of male sterile plants
期望比
Expected rate
χ2
F2 (ms20s1×B73) 379 285 94 3:1 0.0009
F2 (ms20s1×Mo17) 181 139 42 3:1 0.2228
F2 (ms20s1×C7-2) 990 769 221 3:1 3.6418

Fig. 3

Distribution of SNP-index on whole genome"

Fig. 4

Fine mapping of ms20s1 mutant and structure schematic diagram of ZmMs7 gene A: fine mapping of ms20s1 mutant. Marker: marker names; N: F2 recessive population used in mapping; recombinant: the number of recombinants; B: the structure schematic diagram of ZmMs7 gene. The grey box represents the 5° un-translated region. The black boxes represent the exons and the horizontal lines represent introns."

Fig. 5

Allelism test of ms7-6007 heterozygotes and ms20s1 mutants A: plants from left to right are the tassels of the ms20s1 mutant, the fertile hybrid plant, the sterile hybrid plant, and the ms7-6007 mutant, respectively, bar: 10 cm; B: plants from left to right are the anthers of the ms20s1 mutant, the fertile hybrid plant, the sterile hybrid plant, and the ms7-6007 mutant, respectively, bar: 1 mm; C: plants from left to right are the I2-KI staining of pollen grains of the ms20s1 mutant, the fertile hybrid plant, the sterile hybrid plant, and the ms7-6007 mutant, respectively, bar: 100 μm."

Table 4

Allelism test of ms20s1 with ms7-6007"

父母本基因型
Parental genotype
表型统计Phenotypic statistics 总株数
Number of the total plants
χ2(1:1)
可育植株Fertile plants 不育植株Sterile plants
ms20s1×+/ms7-6007 96 100 196 0.0459
ms7-6007×+/ms20s1 151 145 296 0.0844

Fig. 6

Genotype identification A: PCR products of the CAPS markers; B: SnaB I digestion product. AA, Aa, and aa represent homozygous wild type, heterozygous wild type, and homozygous mutant, respectively."

Fig. 7

Relative expression level of ZmMs7 genes in different tissues"

[1] Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science, 2010, 327: 818-822.
doi: 10.1126/science.1183700 pmid: 20150489
[2] Wan X Y, Wu S W, Li Z W, Dong Z Y, An X L, Ma B, Tian Y H, Li J P. Maize genic male-sterility genes and their applications in hybrid breeding: progress and perspectives. Mol Plant, 2019, 12: 321-342.
doi: S1674-2052(19)30020-6 pmid: 30690174
[3] Chen L, Liu Y G. Male sterility and fertility restoration in crops. Annu Rev Plant Biol, 2014, 65: 579-606.
doi: 10.1146/annurev-arplant-050213-040119 pmid: 24313845
[4] Williams M E. Genetic engineering for pollination control. Trends Biotechnol, 1995, 13: 344-349.
doi: 10.1016/S0167-7799(00)88979-9
[5] Wu Y Z, Fox T W, Trimnell M R, Wang L J, Xu R J, Cigan A M, Huffman G A, Garnaat C W, Hershey H, Albertsen M C. Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops. Plant Biotechnol J, 2016, 14: 1046-1054.
doi: 10.1111/pbi.12477 pmid: 26442654
[6] Zhang D B, Luo X, Zhu L. Cytological analysis and genetic control of rice anther development. J Genet Genomics, 2011, 38: 379-390.
doi: 10.1016/j.jgg.2011.08.001 pmid: 21930097
[7] Zhang D B, Wilson Z A. Stamen specification and anther development in rice. Chin Sci Bull, 2009, 54: 2342-2353.
doi: 10.1007/s11434-009-0348-3
[8] Scott R J, Spielman M, Dickinson H G. Stamen structure and function. Plant Cell, 2004, 16: S46-S60.
doi: 10.1105/tpc.017012
[9] Wang D, Skibbe D S, Walbot V. Maize csmd1 exhibits pre-meiotic somatic and post-meiotic microspore and somatic defects but sustains anther growth. Sex Plant Reprod, 2011, 24: 297-306.
doi: 10.1007/s00497-011-0167-y
[10] Stieglitz H, Stern H. Regulation of beta-1,3-glucanase activity in developing anthers of Lilium. Dev Biol, 1973, 34: 169-173.
pmid: 4787601
[11] Ariizumi T, Toriyama K. Genetic regulation of sporopollenin synthesis and pollen exine development. Annu Rev Plant Biol, 2011, 62: 437-460.
doi: 10.1146/annurev-arplant-042809-112312 pmid: 21275644
[12] Hernandez-Pinzon I, Ross J H E, Barnes K A, Damant A P, Murphy D J. Composition and role of tapetal lipid bodies in the biogenesis of the pollen coat of Brassica napus. Planta, 1999, 208: 588-598.
doi: 10.1007/s004250050597
[13] Bih F Y, Wu S S, Ratnayake C, Walling L L, Nothnagel E A, Huang A H C. The predominant protein on the surface of maize pollen is an endoxylanase synthesized by a tapetum mRNA with a long 5' leader. J Biol Chem, 1999, 274: 22884-22894.
doi: 10.1074/jbc.274.32.22884 pmid: 10428875
[14] Liu L, Fan X D. Tapetum: regulation and role in sporopollenin biosynthesis in Arabidopsis. Plant Mol Biol, 2013, 83: 165-175.
doi: 10.1007/s11103-013-0085-5
[15] Phan H A, Iacuone S, Li S F, Parish R W. The MYB80 Transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana. Plant Cell, 2011, 23: 2209-2224.
doi: 10.1105/tpc.110.082651
[16] Cui Y, Zhao Q, Xie H T, Wong W S, Wang X F, Gao C J, Ding Y, Tan Y Q, Ueda T, Zhang Y, Jiang L W. MONENSIN SENSITIVITY1 (MON1)/CALCIUM CAFFEINE ZINC SENSITIVITY1 (CCZ1)-mediated rab7 activation regulates tapetal programmed cell death and pollen development. Plant Physiol, 2017, 173: 206-218.
doi: 10.1104/pp.16.00988 pmid: 27799422
[17] Aya K, Ueguchi-Tanaka M, Kondo M, Hamada K, Yano K, Nishimura M, Matsuoka M. Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell, 2009, 21: 1453-1472.
doi: 10.1105/tpc.108.062935
[18] Skibbe D S, Wang X J, Borsuk L A, Ashlock D A, Nettleton D, Schnable P S. Floret-specific differences in gene expression and support for the hypothesis that tapetal degeneration of Zea mays L.occurs via programmed cell death. J Genet Genomics, 2008, 35: 603-616.
doi: 10.1016/S1673-8527(08)60081-8 pmid: 18937917
[19] Zhao D Z, Wang G F, Speal B, Ma H. The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev, 2002, 16: 2021-2031.
doi: 10.1101/gad.997902
[20] Fu Z Z, Yu J, Cheng X W, Zong X, Xu J, Chen M J, Li Z Y, Zhang D B, Liang W Q. The rice basic helix-loop-helix transcription factor TDR INTERACTING PROTEIN2 is a central switch in early anther development. Plant Cell, 2014, 26: 1512-1524.
doi: 10.1105/tpc.114.123745
[21] Moon J, Skibbe D, Timofejeva L, Wang C J R, Kelliher T, Kremling K, Walbot V, Cande W Z. Regulation of cell divisions and differentiation by MALE STERILITY32 is required for anther development in maize. Plant J, 2013, 76: 592-602.
doi: 10.1111/tpj.2013.76.issue-4
[22] Guo Z F, Wang H W, Tao J J, Ren Y H, Xu C, Wu K S, Zou C, Zhang J N, Xu Y B. Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Mol Breed, 2019, 39: 37.
doi: 10.1007/s11032-019-0940-4
[23] Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol, 2012, 30: 174-178.
doi: 10.1038/nbt.2095 pmid: 22267009
[24] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[25] Han Y J, Hu M J, Ma X X, Yan G, Wang C Y, Jiang S Q, Lai J S, Zhang M. Exploring key developmental phases and phase- specific genes across the entirety of anther development in maize. J Integr Plant Biol, 2022, 64: 1394-1410.
doi: 10.1111/jipb.v64.7
[26] An X L, Ba B, Duan M J, Dong Z Y, Liu R G, Yuan D Y, Hou Q C, Wu S W, Zhang D F, Liu D C, Yu D, Zhang Y W, Xie K, Zhu T T, Li Z W, Zhang S M, Tian Y H, Liu C, Li J P, Yuan L P, Wan X Y. Molecular regulation of ZmMs7 required for maize male fertility and development of a dominant male-sterility system in multiple species. Proc Natl Acad Sci USA, 2020, 117: 23499-23509.
doi: 10.1073/pnas.2010255117
[27] Zhang D F, Wu S W, An X L, Xie K, Dong Z Y, Zhou Y, Xu L W, Fang W, Liu S S, Liu S S, Zhu T T, Li J P, Rao L Q, Zhao J R, Wan X Y. Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the ZmMs7 gene encoding a PHD-finger transcription factor. Plant Biotechnol J, 2018, 16: 459-471.
doi: 10.1111/pbi.2018.16.issue-2
[28] Halbach T, Scheer N, Werr W. Transcriptional activation by the PHD finger is inhibited through an adjacent leucine zipper that binds 14-3-3 proteins. Nucleic Acids Res, 2000, 28: 3542-3550.
doi: 10.1093/nar/28.18.3542 pmid: 10982874
[29] Yang C, Vizcay-Barrena G, Conner K, Wilson Z A. MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell, 2007, 19: 3530-3548.
doi: 10.1105/tpc.107.054981 pmid: 18032629
[30] Ito T, Shinozaki K. The MALE STERILITY1 gene of Arabidopsis, encoding a nuclear protein with a PHD-finger motif, is expressed in tapetal cells and is required for pollen maturation. Plant Cell Physiol, 2002, 43: 1285-1292.
doi: 10.1093/pcp/pcf154
[31] Gomez J F, Wilson Z A. A barley PHD finger transcription factor that confers male sterility by affecting tapetal development. Plant Biotechnol J, 2014, 12: 765-777.
doi: 10.1111/pbi.12181 pmid: 24684666
[32] Morton C M, Lawson D L, Bedinger P. Morphological study of the maize male sterile mutant ms7. Maydica, 1989, 34: 239-245.
[33] Li H, Yuan Z, Vizcay-Barrena G, Yang C Y, Liang W Q, Zong J, Wilson Z A, Zhang D B. PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiol, 2011, 156: 615-630.
doi: 10.1104/pp.111.175760
[34] Yan X J, Ma L, Pang H Y, Wang P, Liu L, Cheng Y X, Cheng J K, Guo Y, Li Q Z. METHIONINE SYNTHASE1 is involved in chromatin silencing by maintaining DNA and histone methylation. Plant Physiol, 2019, 181: 249-261.
doi: 10.1104/pp.19.00528 pmid: 31331996
[1] AI Rong, ZHANG Chun, YUE Man-Fang, ZOU Hua-Wen, WU Zhong-Yi. Response of maize transcriptional factor ZmEREB211 to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2433-2445.
[2] HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343.
[3] YANG Wen-Yu, WU Cheng-Xiu, XIAO Ying-Jie, YAN Jian-Bing. ALGWAS: two-stage Adaptive Lasso-based genome-wide association study [J]. Acta Agronomica Sinica, 2023, 49(9): 2321-2330.
[4] TANG Jie, LONG Tuan, WU Chun-Yu, LI Xin-Peng, ZENG Xiang, WU Yong-Zhong, HUANG Pei-Jin. Identification of OsGMS2 and construction of seed production system for genic male sterile line in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2025-2038.
[5] BAI Yan, GAO Ting-Ting, LU Shi, ZHENG Shu-Bo, LU Ming. A retrospective analysis of the historical evolution and developing trend of maize mega varieties in China from 1982 to 2020 [J]. Acta Agronomica Sinica, 2023, 49(8): 2064-2076.
[6] WANG Xing-Rong, ZHANG Yan-Jun, TU Qi-Qi, GONG Dian-Ming, QIU Fa-Zhan. Identification and gene localization of a novel maize nuclear male sterility mutant ms6 [J]. Acta Agronomica Sinica, 2023, 49(8): 2077-2087.
[7] WANG Juan, XU Xiang-Bo, ZHANG Mao-Lin, LIU Tie-Shan, XU Qian, DONG Rui, LIU Chun-Xiao, GUAN Hai-Ying, LIU Qiang, WANG Li-Ming, HE Chun-Mei. Characterization and genetic analysis of a new allelic mutant of Miniature1 gene in maize [J]. Acta Agronomica Sinica, 2023, 49(8): 2088-2096.
[8] WEI Jin-Gui, GUO Yao, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply [J]. Acta Agronomica Sinica, 2023, 49(7): 1919-1929.
[9] LI Rong, MIAN You-Ming, HOU Xian-Qing, LI Pei-Fu, WANG Xi-Na. Effects of nitrogen application on decomposition and nutrient release of returning straw, soil fertility, and maize yield [J]. Acta Agronomica Sinica, 2023, 49(7): 2012-2022.
[10] MEI Xiu-Peng, ZHAO Zi-Kun, JIA Xin-Yao, BAI Yang, LI Mei, GAN Yu-Ling, YANG Qiu-Yue, CAI Yi-Lin. Heat-inducible transcription factor ZmNF-YC13 regulates heat stress response genes to improve heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(7): 1747-1757.
[11] CHANG Li-Juan, LIANG Jing-Gang, SONG Jun, LIU Wen-Juan, FU Cheng-Ping, DAI Xiao-Hang, WANG Dong, WEI Chao, XIONG Mei. Event-specific PCR detection method of transgenic maize ND207 and its standardization [J]. Acta Agronomica Sinica, 2023, 49(7): 1818-1828.
[12] LIN Xiao-Xin, HUANG Ming-Jiang, WEI Yi, ZHU Hong-Hui, WANG Zi-Yi, LI Zhong-Cheng, ZHUANG Hui, LI Yan-Xi, LI Yun-Feng, CHEN Rui. Identification and gene mapping of long grain and degenerated palea (lgdp) in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1699-1707.
[13] ZHANG Zhen-Bo, JIA Chun-Lan, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of combined application of nitrogen and phosphorus on yield and leaf senescence physiological characteristics in summer maize [J]. Acta Agronomica Sinica, 2023, 49(6): 1616-1629.
[14] LI Lu-Lu, MING Bo, GAO Shang, XIE Rui-Zhi, WANG Ke-Ru, HOU Peng, XUE Jun, LI Shao-Kun. Characteristic difference in grain in-field drydown between maize cultivars with various maturation [J]. Acta Agronomica Sinica, 2023, 49(6): 1643-1652.
[15] WANG Yu-Long, YU Ai-Zhong, LYU Han-Qiang, LYU Yi-Tong, SU Xiang-Xiang, WANG Peng-Fei, CHAI Jian. Effects of green manure replanting and returning after wheat on following year’s maize root traits and water use efficiency in oasis irrigation area [J]. Acta Agronomica Sinica, 2023, 49(5): 1350-1362.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .