Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (12): 2962-2970.doi: 10.3724/SP.J.1006.2024.42021

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Overexpression of OsPIN2 increases tiller angle by reducing shoot gravitropic response in rice

WU Jia-Jun(), TU Ran-Ran, ZHANG Qiu-Li, ZOU Qin-Wen, SUN Zhi-Hao, WANG Hong, HE Guang-Hua()   

  1. Rice Research Institute, Southwest University / Academy of Agricultural Sciences, Southwest University / Key Laboratory of Crop Molecular Improvement, Chongqing 400715, China
  • Received:2024-04-22 Accepted:2024-08-15 Online:2024-12-12 Published:2024-08-29
  • Contact: *E-mail: heghswu@163.com
  • Supported by:
    National Natural Science Foundation of Chongqing, China(cstc2021jcyj-cxttX0004);Chongqing Modern Agricultural Industry Technology System Rice Innovation Team of Chongqing, China(CQMAITS202301)

Abstract:

Shoot gravitropism is closely related to the formation of the tiller angle, and understanding its regulatory mechanism is crucial for rationally designing tiller angles to improve crop plant architecture. In the rice auxin efflux carrier gene OsPIN2 overexpression lines, two lines with significantly increased tiller angles, OE-OsPIN2-1 and OE-OsPIN2-2, were identified. Scanning electron microscopy revealed that the near-ground and far-ground parts of the tiller bases in OE-OsPIN2-1/2 grew nearly symmetrically. Shoot gravitropism assays indicated that the shoot gravitropic responses of OE-OsPIN2-1/2 seedlings were reduced, and the asymmetric expression of the auxin marker gene OsIAA20 and WUSCHEL RELATED HOMEOBOX6/11 (WOX6/11) was weakened upon gravistimulation. This suggests that overexpression of OsPIN2 attenuates the asymmetric distribution of auxin following gravistimulation. Furthermore, the expressions of positive regulators involved in the gravitropic response at the tiller base in OE-OsPIN2-1/2 lines were downregulated, while the expressions of negative regulators were upregulated. This further indicates that overexpression of OsPIN2 leads to a reduced shoot gravitropic response. This study elucidates the mechanism by which OsPIN2 controls rice tiller angle by regulating shoot gravitropism, providing a theoretical basis for in-depth studies of shoot gravitropic responses.

Key words: rice, OsPIN2, tiller angle, shoot gravitropism

Table 1

Primers used in this study"

名称 Name 上游引物 Upstream primer (5′-3′) 下游引物 Downstream primer (5′-3′)
OsPIN2-OE GCAGGATCCCCGGGTACCATGATCACCGGACGCGAC AATGTTTGAACGGAGCTCCTATATCCCAAGAAGCACATAGTAG
OsPIN2-qPCR CAACACCTACTCCAGCCTC TGGACCAGTCAAGAACCTC
UBQ-qPCR GCTCCGTGGCGGTATCAT CGGCAGTTGACAGCCCTAG
OsIAA20-qPCR TGGCGGATATGTGAAGGTGAA TATGAGCCGAGGATGGACAAG
WOX6-qPCR TCCAATAGACTTGCGAGCCAT GCATTAGGATTCCATAGTCGTT
WOX11-qPCR CGGTGTTCATCAACGGAGTG TCTGGAGAGAATGGAGGAGGAT
CRCT-qPCR TTCTGGGTGCCTCAACTCA AACGCTGTCTCAAAGTCCAATC
FucT-qPCR GGAGTCTGCTGTGCTTGCTA ACTGGTATAATGCCTGTCGTTGTG
AGPL1-qPCR TTGATTCCACATGGCAGAGAAC GTTGCTGCTGCTACTTCACT
OsHOX1-qPCR AGCACAACACCCTCAATC GTTCTGGAACCACACCTC
OsHOX28-qPCR CATTGACCACCCTCACAA CATTGACCACCCTCACAA
LPA1-qPCR GCGTATGTATGTAAAGCAAG GAAACGACCTACGAAACTAC
LA1-qPCR GAGATGAACGGCAACAAG TTCCAGCACCAAGTAGTC
LA2-qPCR GAACCAGCAGCCTGTAAGA AGCCATCCTCTCCTTCATTG
LA3-qPCR GGCGTCGCGCCAGCCTCA CTTCGGCGGAGTATCACG
TAC1-qPCR AGATGGCTCTAAAGGTGTTCAA TCTTCCATGGCCTTGTTCTC
TAC4-qPCR AAGGTCGCAAACAAGCAG AACTGCCAGGAGCAGAGAG
HSFA2D-qPCR CAGCAGGCACTTGGCACC TTCTTGTCACGCTTTAGCCTGT
OsARF12-qPCR GTTGGGAGGTCGTTGGACATAA AAGCACATCATTCTCCCTGTCG
OsARF17-qPCR TTTACAAATCGGGAACCTATGG TTTATGCAGGAGACGCTATTCA
OsARF25-qPCR TGACATCTCCAGATTCAGCAGC CGTCTCCACCACGAACCAA

Fig. 1

Phenotypic analysis of WT and OE-OsPIN2-1/2 lines A: comparison of WT and OE-OsPIN2-1/2 plants at tillering stage, with scale bars of 20 cm; B: expression analysis of OsPIN2 in WT and OE-OsPIN2-1/2 tiller bases (n = 3); C: comparison of tiller angle of WT and OE-OsPIN2-1/2 lines, with scale bars of 4 cm; D: measurements of tiller angle of WT and OE-OsPIN2-1/2 lines (n = 10). Data are shown as means ± SD, two-tailed Student’s t-test, **: P < 0.01."

Fig. 2

Analysis of tiller base of WT and OE-OsPIN2-1/2 plants A-C: comparison of tiller base between WT and OE-OsPIN2-1/2 lines at heading stage, with scale bars of 1 cm; D-F: scanning electron microscopy of NG cells of tiller base in WT and OE-OsPIN2-1/2 lines, with scale bars of 50 μm; G-I: scanning electron microscopy of FG cells of tiller base in WT and OE-OsPIN2-1/2 lines, with scale bars of 50 μm; J-K: measurements of cell length (J) and width (K) in NG and FG cells of tiller base in WT and OE-OsPIN2-1/2 lines (n = 20); L: cell number per unit area in NG and FG cells of tiller base in wild type and OE-OsPIN2-1/2 (n = 3). NG represents near-ground part, FG represents far-ground part. Means ± SD, two-tailed Student’s t-test, **: P < 0.01."

Fig. 3

Shoot gravitropism assay of WT and OE-OsPIN2-1/2 seedlings A: comparison of WT and OE-OsPIN2-1/2 seedlings at 0 h, 12 h, 24 h, 36 h, and 48 h after gravitropic stimulation; B: measurements of shoot curvature of wild type and OE-OsPIN2-1/2 seedlings at 0 h, 12 h, 24 h, 36 h, and 48 h after gravitropic stimulation (n = 5). Data are shown as means ± SD. Multiple comparisons were performed using Duncan’s test, and different letters (lowercase letters a and b in B) indicate significant differences at the 0.05 level."

Fig. 4

Expression analysis of OsIAA20 and WOX6/11 before and after gravity treatment, and of tiller angle-related genes in the tiller base A: a schematic diagram depicting the lower site (LS) and upper site (US) of the shoot base in seedlings after gravity treatment; ‘g’ represents gravity, and arrows indicate the direction of gravity; B: analysis of the transcription levels of the auxin marker gene OsIAA20 and WUSCHEL-Related HOMEOBOX 6/11 (WOX6/11) in the lower and upper sites of the shoot base of WT and OE-OsPIN2-1/2 seedlings at 0 h and 6 h after gravity treatment; C: analysis of the expression levels of tiller angle-related genes in the tiller base of WT and OE-OsPIN2-1/2 at the tillering stage; D: network planning of shoot gravitropism regulating rice tiller angle; the red upward arrows indicate upregulation of the gene expression, while the red downward arrows indicate downregulation of the gene expression. Means ± SD (n = 3), two-tailed Student’s t-test, **: P < 0.01."

[1] Wang B, Smith S M, Li J Y. Genetic regulation of shoot architecture. Annu Rev Plant Biol, 2018, 69: 437-468.
doi: 10.1146/annurev-arplant-042817-040422 pmid: 29553800
[2] Wang Y H, Li J Y. Molecular basis of plant architecture. Annu Rev Plant Biol, 2008, 59: 253-279.
doi: 10.1146/annurev.arplant.59.032607.092902 pmid: 18444901
[3] Guo W, Chen L, Herrera-Estrella L, Cao D, Tran L S P. Altering plant architecture to improve performance and resistance. Trends Plant Sci, 2020, 25: 1154-1170.
doi: 10.1016/j.tplants.2020.05.009 pmid: 32595089
[4] 许娜, 徐铨, 徐正进, 陈温福. 水稻株型生理生态与遗传基础研究进展. 作物学报, 2023, 49: 1735-1746.
doi: 10.3724/SP.J.1006.2023.22050
Xu N, Xu Q, Xu Z J, Chen W F. Research progress on physiological ecology and genetic basis of rice plant architecture. Acta Agron Sin, 2023, 49: 1735-1746 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.22050
[5] 方立魁, 桑贤春, 何光华. 水稻分蘖角度遗传机制的研究进展. 分子植物育种, 2008, 6: 935-940.
Fang L K, Sang X C, He G H. Development of mechanism genetics of tiller angle in rice. Mol Plant Breed, 2008, 6: 935-940 (in Chinese with English abstract).
[6] Morita M T, Tasaka M. Gravity sensing and signaling. Curr Opin Plant Biol, 2004, 7: 712-718.
pmid: 15491921
[7] 武迪, 黄林周, 高谨, 王永红. 植物重力反应的分子调控机制. 遗传, 2016, 38: 589-602.
Wu D, Huang L Z, Gao J, Wang Y H. The molecular mechanism of plant gravitropism. Hereditas, 2016, 38: 589-602 (in Chinese with English abstract).
[8] Wang J, Huang J, Bao J L, Li X Z, Zhu L, Jin J. Rice domestication-associated transcription factor PROSTRATE GROWTH 1 controls plant and panicle architecture by regulating the expression of LAZY1 and OsGIGANTEA, respectively. Mol Plant, 2023, 16: 1413-1426.
doi: 10.1016/j.molp.2023.08.011 pmid: 37621089
[9] Li P J, Wang Y H, Qian Q, Fu Z M, Wang M, Zeng D L, Li B H, Wang X J, Li J Y. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res, 2007, 17: 402-410.
[10] Yoshihara T, Iino M. Identification of the gravitropism-related rice gene LAZY1and elucidation of LAZY1-dependent and -independent gravity signaling pathways. Plant Cell Physiol, 2007, 48: 678-688.
doi: 10.1093/pcp/pcm042 pmid: 17412736
[11] Huang L Z, Wang W G, Zhang N, Cai Y Y, Liang Y, Meng X B, Yuan Y D, Li J Y, Wu D X, Wang Y H. LAZY2 controls rice tiller angle through regulating starch biosynthesis in gravity-sensing cells. New Phytol, 2021, 231: 1073-1087.
doi: 10.1111/nph.17426 pmid: 34042184
[12] Pan X W, Li Y C, Zhang H W, Liu W Q, Dong Z, Liu L C, Liu S X, Sheng X N, Min J, Huang R F, Li X X. The chloroplast-localized protein LTA1 regulates tiller angle and yield of rice. Crop J, 2022, 10: 952-961.
doi: 10.1016/j.cj.2021.10.005
[13] Cai Y Y, Huang L Z, Song Y Q, Yuan Y D, Xu S, Wang X P, Liang Y, Zhou J, Liu G F, Li J Y, Wang W G, Wang Y H. LAZY3 interacts with LAZY2 to regulate tiller angle by modulating shoot gravity perception in rice. Plant Biotechnol J, 2023, 21: 1217-1228.
doi: 10.1111/pbi.14031 pmid: 36789453
[14] Wang H, Tu R R, Ruan Z Y, Chen C, Peng Z Q, Zhou X P, Sun L P, Hong Y B, Chen D B, Liu Q N, Wu W X, Zhan X D, Shen X H, Zhou Z P, Cao L Y, Zhang Y X, Cheng S H. Photoperiod and gravistimulation-associated Tiller Angle Control 1 modulates dynamic changes in rice plant architecture. Theor Appl Genet, 2023, 136: 160.
doi: 10.1007/s00122-023-04404-z pmid: 37347301
[15] Li H, Sun H Y, Jiang J H, Sun X Y, Tan L B, Sun C Q. TAC4controls tiller angle by regulating the endogenous auxin content and distribution in rice. Plant Biotechnol J, 2021, 19: 64-73.
[16] Wu X R, Tang D, Li M, Wang K J, Cheng Z K. Loose Plant Architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice. Plant Physiol, 2013, 161: 317-329.
doi: 10.1104/pp.112.208496 pmid: 23124325
[17] Li Z, Liang Y, Yuan Y, Wang L, Meng X, Xiong G, Zhou J, Cai Y, Han N, Hua L, Liu G, Li J, Wang Y. OsBRXL4 regulates shoot gravitropism and rice tiller angle through affecting LAZY1 nuclear localization. Mol Plant, 2019, 12: 1143-1156.
doi: S1674-2052(19)30200-X pmid: 31200078
[18] Li Y, Li J L, Chen Z H, Wei Y, Qi Y H, Wu C Y. OsmiR167a-targeted auxin response factors modulate tiller angle via fine-tuning auxin distribution in rice. Plant Biotechnol J, 2020, 18: 2015-2026.
[19] Zhang N, Yu H, Yu H, Cai Y Y, Huang L Z, Xu C, Xiong G S, Meng X B, Wang J Y, Chen H F, Liu G F, Jing Y H, Yuan Y D, Liang Y, Li S, Smith S M, Li J Y, Wang Y H. A core regulatory pathway controlling rice tiller angle mediated by the LAZY1dependent asymmetric distribution of auxin. Plant Cell, 2018, 30: 1461-1475.
[20] Hu Y, Li S L, Fan X W, Song S, Zhou X, Weng X Y, Xiao J H, Li X H, Xiong L Z, You A Q, Xing Y Z. OsHOX1 and OsHOX28 redundantly shape rice tiller angle by reducing HSFA2D expression and auxin content. Plant Physiol, 2020, 184: 1424-1437.
[21] Ding C H, Lin X H, Zuo Y, Yu Z L, Baerson S R, Pan Z Q, Zeng R S, Song Y Y. Transcription factor OsbZIP49 controls tiller angle and plant architecture through the induction of indole-3-acetic acid-amido synthetases in rice. Plant J, 2021, 108: 1346-1364.
[22] Baster P, Robert S, Kleine-Vehn J, Vanneste S, Kania U, Grunewald W, De Rybel B, Beeckman T, Friml J.SCF(TIR1/AFB)- auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism. EMBO J, 2013, 32: 260-274.
doi: 10.1038/emboj.2012.310 pmid: 23211744
[23] Rakusová H, Gallego-Bartolomé J, Vanstraelen M, Robert H S, Alabadí D, Blázquez M A, Benková E, Friml J.Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. Plant J, 2011, 67: 817-826.
[24] Li Y, Zhu J S, Wu L L, Shao Y L, Wu Y R, Mao C Z. Functional divergence of PIN1 paralogous genes in rice. Plant Cell Physiol, 2019, 60: 2720-2732.
[25] Inahashi H, Shelley I J, Yamauchi T, Nishiuchi S, Takahashi-Nosaka M, Matsunami M, Ogawa A, Noda Y, Inukai Y. OsPIN2, which encodes a member of the auxin efflux carrier proteins, is involved in root elongation growth and lateral root formation patterns via the regulation of auxin distribution in rice. Physiol Plant, 2018, 164: 216-225.
doi: 10.1111/ppl.12707 pmid: 29446441
[26] Wang L L, Guo M X, Li Y, Ruan W Y, Mo X R, Wu Z C, Sturrock C J, Yu H, Lu C G, Peng J R, Mao C Z. LARGE ROOT ANGLE1, encoding OsPIN2, is involved in root system architecture in rice. J Exp Bot, 2018, 69: 385-397.
doi: 10.1093/jxb/erx427 pmid: 29294052
[27] Chen Y N, Fan X R, Song W J, Zhang Y L, Xu G H. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnol J, 2012, 10: 139-149.
[28] Wang H, Tu R R, Sun L P, Wang D F, Ruan Z Y, Zhang Y, Peng Z Q, Zhou X P, Fu J L, Liu Q N, Wu W X, Zhan X D, Shen X H, Zhang Y X, Cao L Y, Cheng S H. Tiller Angle Control 1 is essential for the dynamic changes in plant architecture in rice. Int J Mol Sci, 2022, 23: 4997.
[29] Zou Q W, Tu R R, Wu J J, Huang T T, Sun Z H, Ruan Z Y, Cao H Y, Yang S H, Shen X, He G H, Wang H. A polygalacturonase gene OsPG1 modulates water homeostasis in rice. Crop J, 2024, 12: 79-91.
[30] Wang W G, Gao H B, Liang Y, Li J Y, Wang Y H. Molecular basis underlying rice tiller angle: Current progress and future perspectives. Mol Plant, 2022, 15: 125-137.
[31] Morita M T. Directional gravity sensing in gravitropism. Annu Rev Plant Biol, 2010, 61: 705-720.
doi: 10.1146/annurev.arplant.043008.092042 pmid: 19152486
[32] Morita R, Sugino M, Hatanaka T, Misoo S, Fukayama H. CO2-responsive CONSTANS, CONSTANS-like, and time of chlorophyll a/b binding protein Expression1 protein is a positive regulator of starch synthesis in vegetative organs of rice. Plant Physiol, 2015, 167: 1321-1331.
doi: 10.1104/pp.15.00021
[33] Okamura M, Hirose T, Hashida Y, Yamagishi T, Ohsugi R, Aoki N. Starch reduction in rice stems due to a lack of OsAGPL1 or OsAPL3 decreases grain yield under low irradiance during ripening and modifies plant architecture. Funct Plant Biol, 2013, 40: 1137-1146.
doi: 10.1071/FP13105 pmid: 32481181
[34] Roychoudhry S, Kepinski S. Shoot and root branch growth angle control: the wonderfulness of lateralness. Curr Opin Plant Biol, 2015, 23: 124-131.
doi: 10.1016/j.pbi.2014.12.004 pmid: 25597285
[35] Perrin R M, Young L S, Narayana Murthy U M, Harrison B R, Wang Y, Will J L, Masson P H. Gravity signal transduction in primary roots. Ann Bot, 2005, 96: 737-743.
[36] 王贤, 彭亚坤, 陈猛, 孔梦娟, 谭树堂. 植物向重力反应中PIN-FORMED介导的生长素极性运输调控. 生物技术通报, 2024, 40(3): 25-40.
doi: 10.13560/j.cnki.biotech.bull.1985.2023-0882
Wang X, Peng Y K, Chen M, Kong M J, Tan S T. Regulation of PIN-FORMED-mediated polar auxin transport in plant gravitropism. Biotech Bull, 2024, 40(3): 25-40 (in Chinese with English abstract).
[37] Sun Q, Li T T, Li D D, Wang Z Y, Li S, Li D P, Han X, Liu J M, Xuan Y H. Overexpression of Loose Plant Architecture 1 increases planting density and resistance to sheath blight disease via activation of PIN-FORMED 1a in rice. Plant Biotechnol J, 2019, 17: 855-857.
[1] ZHAO Li-Ming, DUAN Shao-Biao, XIANG Hong-Tao, ZHENG Dian-Feng, FENG Nai-Jie, SHEN Xue-Feng. Effects of alternate wetting and drying irrigation and plant growth regulators on photosynthetic characteristics and endogenous hormones of rice [J]. Acta Agronomica Sinica, 2025, 51(1): 174-188.
[2] YANG Jing-Fa, YU Xin-Lian, YAO You-Hua, YAO Xiao-Hua, WANG Lei, WU Kun-Lun, LI Xin. QTL mapping of tiller angle in qingke (Hordeum vulgare L.) [J]. Acta Agronomica Sinica, 2025, 51(1): 260-272.
[3] JIA Shu-Han, HE Can, CHEN Min, LIU Jia-Xin, HU Wei-Min, HU Jin, GUAN Ya-Jing. Study on the quality differences of seeds with different pre-harvest sprouting levels and the grading of pre-harvest sprouting in hybrid rice [J]. Acta Agronomica Sinica, 2024, 50(9): 2310-2322.
[4] HU Li-Qin, XIAO Zheng-Wu, FANG Sheng-Liang, CAO Fang-Bo, CHEN Jia-Na, HUANG Min. Effects of planting season on digestive characteristics of high amylose content rice [J]. Acta Agronomica Sinica, 2024, 50(9): 2347-2357.
[5] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[6] SONG Zhi-Wen, ZHAO Lei, BI Jun-Guo, TANG Qing-Yun, WANG Guo-Dong, LI Yu-Xiang. Effects of nitrogen fertilization levels on matter accumulation and nutrient uptake in rice cultivar with different nitrogen efficiency under drip irrigation [J]. Acta Agronomica Sinica, 2024, 50(8): 2025-2038.
[7] SHAO Mei-Hong, ZHAO Ling-Ling, CHENG Chu, CHENG Si-Ming, ZHU Shuang-Bing, ZHAI Lai-Yuan, CHEN Kai, XU Jian-Long. Screening, evaluation, and utilization of low nitrogen tolerance for the selected introgression lines in rice with Huanghuazhan background [J]. Acta Agronomica Sinica, 2024, 50(8): 1907-1919.
[8] HE Dan-Dan, SHU Ya-Zhou, ZHOU Hai-Lian, WU Song-Guo, WEI Xiao-Shuang, YANG Ming-Chong, LI Bo, WU Zheng-Dan, HAN Shi-Jian, YANG Juan, WANG Ji-Bin, WANG Ling-Qiang. OsRPTA18 participated in the regulation of leaf inclination in rice [J]. Acta Agronomica Sinica, 2024, 50(8): 1934-1947.
[9] GUO Chun-Lin, LIN Man-Hong, CHEN Ting, CHEN Hong-Fei, LIN Wen-Fang, LIN Wen-Xiong. Evolution characteristics of rhizosphere microorganisms in response to ratoon rice senescence and underlying carry-over effect mechanism [J]. Acta Agronomica Sinica, 2024, 50(8): 2039-2052.
[10] FU Jing, MA Meng-Juan, ZHANG Qi-Fei, DUAN Ju-Qi, WANG Yue-Tao, WANG Fu-Hua, WANG Sheng-Xuan, BAI Tao, YIN Hai-Qing, WANG Ya. Effects of alternate wetting and drying irrigation and different nitrogen application levels on photosynthetic characteristics and nitrogen absorption and utilization of japonica rice [J]. Acta Agronomica Sinica, 2024, 50(7): 1787-1804.
[11] CHENG Shuang, XING Zhi-Peng, TIAN Chao, HU Qun, WEI Hai-Yan, ZHANG Hong-Cheng. Effects of an integrated dryland tillage and soaking pattern on the reducing substances in rice field and early growth of machine transplanted rice [J]. Acta Agronomica Sinica, 2024, 50(7): 1762-1775.
[12] PEI Fa-Jing, ZHANG Wen-Xuan, ZHANG Xiao, WANG Xin-Yu, PENG Shao-Bing, MI Jia-Ming. Developing new rice lines with ultrashort-duration, long-grain, and fragrance [J]. Acta Agronomica Sinica, 2024, 50(7): 1684-1698.
[13] TANG Qing-Yun, YANG Jing-Jing, ZHAO Lei, SONG Zhi-Wen, WANG Guo-Dong, LI Yu-Xiang. Effect of nitrogen application on morphological conformation and fractal characteristics of drip irrigated rice roots [J]. Acta Agronomica Sinica, 2024, 50(6): 1540-1553.
[14] ZHANG Xiao-Fang, ZHU Qi, HUA Yun-Yan, JIA Li-Hui-Ying, QIU Shi-You, CHEN Yu-Jie, MA Tao, DING Wo-Na. Screening and validation of OsCYP22 interacting proteins in rice [J]. Acta Agronomica Sinica, 2024, 50(6): 1628-1634.
[15] ZHU Zhong-Lin, WEN Yue, ZHOU Qi, WU Yan-Fei, DU Xue-Zhu, SHENG Feng. Mechanism of loding residence and drought tolerance of OsCNGC10 gene in rice [J]. Acta Agronomica Sinica, 2024, 50(5): 1351-1360.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[2] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[3] Hu Yuqi;Liao Xiaohai. A STUDY ON THE COEFFICIENT OF LEAVES SHAPE OF MAIZE[J]. Acta Agron Sin, 1986, (01): 71 -72 .
[4] LIANG Tai-Bo;YIN Yan-Ping;CAI Rui-Guo;YAN Su-Hui;LI Wen-Yang;GENG Qing-Hui;WANG Ping;WANG Zhen-Lin. Starch Accumulation and Related Enzyme Activities in Superior and Inferior Grains of Large Spike Wheat[J]. Acta Agron Sin, 2008, 34(01): 150 -156 .
[5] WANG Cheng-Zhang;HAN Jin-Feng;SHI Ying-Hua;LI Zhen-Tian;LI De-Feng. Production Performance in Alfalfa with Different Classes of Fall Dormancy[J]. Acta Agron Sin, 2008, 34(01): 133 -141 .
[6] TIAN Zhi-Jian;Yi Rong;CHEN Jian-Rong;GUO Qing-Quan;ZHANG Xue-Wen;. Cloning and Expression of Cellulose Synthase Gene in Ramie [Boehme- ria nivea (Linn.) Gaud.][J]. Acta Agron Sin, 2008, 34(01): 76 -83 .
[7] ZHAO Xiu-Qin;ZHU Ling-Hua;XU Jian-Long;LI Zhi-Kang. QTL Mapping of Yield under Irrigation and Rainfed Field Conditions for Advanced Backcrossing Introgression Lines in Rice[J]. Acta Agron Sin, 2007, 33(09): 1536 -1542 .
[8] WU Ying ; SONG Feng-Sun ; LU Xu-Zhong; ZHAO Wei; YANG Jian-Bo; LI Li ;. Detecting Genetically Modified Soybean by Real-time Quantitative PCR Technique[J]. Acta Agron Sin, 2007, 33(10): 1733 -1737 .
[9] GOU Ling ; HUANG Jian-Jun; ZHANG Bin; LI Tao; SUN Rui; ZHAO Ming ;. Effects of Population Density on Stalk Lodging Resistant Mechanism and Agronomic Characteristics of Maize[J]. Acta Agron Sin, 2007, 33(10): 1688 -1695 .
[10] YU Jing;ZHANG Lin;CUI Hong;ZHANG Yong-Xia;CANG Jing;HAO Zai-Bin;LI Zhuo-Fu. Physiological and Biochemical Characteristics of Dongnongdongmai 1 before Wintering in High-Cold Area[J]. Acta Agron Sin, 2008, 34(11): 2019 -2025 .