Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Overexpression of OsPIN2 increases tiller angle by reducing shoot gravitropic response in rice

WU Jia-Jun,TU Ran-Ran,ZHANG Qiu-Li,ZOU Qin-Wen,SUN Zhi-Hao,WANG Hong,HE Guang-Hua*   

  1. Rice Research Institute, Southwest University / Academy of Agricultural Sciences, Southwest University / Key Laboratory of Crop Molecular Improvement, Chongqing 400715, China
  • Received:2024-04-22 Revised:2024-08-15 Accepted:2024-08-15 Published:2024-08-29
  • Supported by:
    This study was supported by the National Natural Science Foundation of Chongqing, China (cstc2021jcyj-cxttX0004), and the Chongqing Modern Agricultural Industry Technology System Rice Innovation Team of Chongqing, China (CQMAITS202301).

Abstract:

Shoot gravitropism is closely related to the formation of the tiller angle, and understanding its regulatory mechanism is crucial for rationally designing tiller angles to improve crop plant architecture. In the rice auxin efflux carrier gene OsPIN2 overexpression lines, two lines with significantly increased tiller angles, OE-OsPIN2-1 and OE-OsPIN2-2, were identified. Scanning electron microscopy revealed that the near-ground and far-ground parts of the tiller bases in OE-OsPIN2-1/2 grew nearly symmetrically. Shoot gravitropism assays indicated that the shoot gravitropic responses of OE-OsPIN2-1/2 seedlings were reduced, and the asymmetric expression of the auxin marker gene OsIAA20 and WUSCHEL RELATED HOMEOBOX6/11 (WOX6/11) was weakened upon gravistimulation. This suggests that overexpression of OsPIN2 attenuates the asymmetric distribution of auxin following gravistimulation. Furthermore, the expressions of positive regulators involved in the gravitropic response at the tiller base in OE-OsPIN2-1/2 lines were downregulated, while the expressions of negative regulators were upregulated. This further indicates that overexpression of OsPIN2 leads to a reduced shoot gravitropic response. This study elucidates the mechanism by which OsPIN2 controls rice tiller angle by regulating shoot gravitropism, providing a theoretical basis for in-depth studies of shoot gravitropic responses.

Key words: rice, OsPIN2, tiller angle, shoot gravitropism

[1] Wang B, Smith S M, Li J Y. Genetic regulation of shoot architecture. Annu Rev Plant Biol, 2018, 69: 437–468.

[2] Wang Y H, Li J Y. Molecular basis of plant architecture. Annu Rev Plant Biol, 2008, 59: 253–279.

[3] Guo W, Chen L, Herrera-Estrella L, Cao D, Tran L S P. Altering plant architecture to improve performance and resistance. Trends Plant Sci, 2020, 25: 1154–1170.

[4] 许娜, 徐铨, 徐正进, 陈温福. 水稻株型生理生态与遗传基础研究进展. 作物学报, 2023, 49: 1735–1746.

Xu N, Xu Q, Xu Z J, Chen W F. Research progress on physiological ecology and genetic basis of rice plant architecture. Acta Agron Sin, 2023, 49: 1735–1746 (in Chinese with English abstract).

[5] 方立魁, 桑贤春, 何光华. 水稻分蘖角度遗传机制的研究进展. 分子植物育种, 2008, 6: 935–940.

Fang L K, Sang X C, He G H. Development of mechanism genetics of tiller angle in rice. Mol Plant Breed, 2008, 6: 935–940 (in Chinese with English abstract).

[6] Morita M T, Tasaka M. Gravity sensing and signaling. Curr Opin Plant Biol, 2004, 7: 712–718.

[7] 武迪, 黄林周, 高谨, 王永红. 植物重力反应的分子调控机制. 遗传, 2016, 38: 589–602.

Wu D, Huang L Z, Gao J, Wang Y. The molecular mechanism of plant gravitropism. Hereditas, 2016, 38: 589–602 (in Chinese with English abstract).

[8] Wang J, Huang J, Bao J L, Li X Z, Zhu L, Jin J. Rice domestication-associated transcription factor PROSTRATE GROWTH 1 controls plant and panicle architecture by regulating the expression of LAZY1 and OsGIGANTEA, respectively. Mol Plant, 2023, 16: 1413–1426.

[9] Li P J, Wang Y H, Qian Q, Fu Z M, Wang M, Zeng D L, Li B H, Wang X J, Li J Y. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res, 2007, 17: 402–410.

[10] Yoshihara T, Iino M. Identification of the gravitropism-related rice gene LAZY1 and elucidation of LAZY1-dependent and -independent gravity signaling pathways. Plant Cell Physiol, 2007, 48: 678–688.

[11] Huang L Z, Wang W G, Zhang N, Cai Y Y, Liang Y, Meng X B, Yuan Y D, Li J Y, Wu D X, Wang Y H. LAZY2 controls rice tiller angle through regulating starch biosynthesis in gravity-sensing cells. New Phytol, 2021, 231: 1073–1087.

[12] Pan X W, Li Y C, Zhang H W, Liu W Q, Dong Z, Liu L C, Liu S X, Sheng X N, Min J, Huang R F, Li X X. The chloroplast-localized protein LTA1 regulates tiller angle and yield of rice. Crop J, 2022, 10: 952–961.

[13] Cai Y Y, Huang L Z, Song Y Q, Yuan Y D, Xu S, Wang X P, Liang Y, Zhou J, Liu G F, Li J Y, Wang W G, Wang Y H. LAZY3 interacts with LAZY2 to regulate tiller angle by modulating shoot gravity perception in rice. Plant Biotechnol J, 2023, 21: 1217–1228.

[14] Wang H, Tu R R, Ruan Z Y, Chen C, Peng Z Q, Zhou X P, Sun L P, Hong Y B, Chen D B, Liu Q N, Wu W X, Zhan X D, Shen X H, Zhou Z P, Cao L Y, Zhang Y X, Cheng S H. Photoperiod and gravistimulation-associated Tiller Angle Control 1 modulates dynamic changes in rice plant architecture. Theor Appl Genet, 2023, 136: 160.

[15] Li H, Sun H Y, Jiang J H, Sun X Y, Tan L B, Sun C Q. TAC4 controls tiller angle by regulating the endogenous auxin content and distribution in rice. Plant Biotechnol J, 2021, 19: 64–73.

[16] Wu X R, Tang D, Li M, Wang K J, Cheng Z K. Loose Plant Architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice. Plant Physiol, 2013, 161: 317–329.

[17] Li Z, Liang Y, Yuan Y, Wang L, Meng X, Xiong G, Zhou J, Cai Y, Han N, Hua L, Liu G, Li J, Wang Y. OsBRXL4 regulates shoot gravitropism and rice tiller angle through affecting LAZY1 nuclear localization. Mol Plant, 2019, 12: 1143–1156.

[18] Li Y, Li J L, Chen Z H, Wei Y, Qi Y H, Wu C Y. OsmiR167a-targeted auxin response factors modulate tiller angle via fine-tuning auxin distribution in rice. Plant Biotechnol J, 2020, 18: 2015–2026.

[19] Zhang N, Yu H, Yu H, Cai Y Y, Huang L Z, Xu C, Xiong G S, Meng X B, Wang J Y, Chen H F, Liu G F, Jing Y H, Yuan Y D, Liang Y, Li S, Smith S M, Li J Y, Wang Y H. A core regulatory pathway controlling rice tiller angle mediated by the LAZY1-dependent asymmetric distribution of auxin. Plant Cell, 2018, 30: 1461–1475.

[20] Hu Y, Li S L, Fan X W, Song S, Zhou X, Weng X Y, Xiao J H, Li X H, Xiong L Z, You A Q, Xing Y Z. OsHOX1 and OsHOX28 redundantly shape rice tiller angle by reducing HSFA2D expression and auxin content. Plant Physiol, 2020, 184: 1424–1437.

[21] Ding C H, Lin X H, Zuo Y, Yu Z L, Baerson S R, Pan Z Q, Zeng R S, Song Y Y. Transcription factor OsbZIP49 controls tiller angle and plant architecture through the induction of indole‐3‐acetic acid‐amido synthetases in rice. Plant J, 2021, 108: 1346–1364.

[22] Baster P, Robert S, Kleine-Vehn J, Vanneste S, Kania U, Grunewald W, De Rybel B, Beeckman T, Friml J. SCF(TIR1/AFB)-auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism. EMBO J, 2013, 32: 260–274.

[23] Rakusová H, Gallego‐Bartolomé J, Vanstraelen M, Robert H S, Alabadí D, Blázquez M A, Benková E, Friml J. Polarization of PIN3‐dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. Plant J, 2011, 67: 817–826.

[24] Li Y, Zhu J S, Wu L L, Shao Y L, Wu Y R, Mao C Z. Functional divergence of PIN1 paralogous genes in rice. Plant Cell Physiol, 2019, 60: 2720–2732.

[25] Inahashi H, Shelley I J, Yamauchi T, Nishiuchi S, Takahashi‐Nosaka M, Matsunami M, Ogawa A, Noda Y, Inukai Y. OsPIN2, which encodes a member of the auxin efflux carrier proteins, is involved in root elongation growth and lateral root formation patterns via the regulation of auxin distribution in rice. Physiol Plant, 2018, 164: 216–225.

[26] Wang L L, Guo M X, Li Y, Ruan W Y, Mo X R, Wu Z C, Sturrock C J, Yu H, Lu C G, Peng J R, Mao C Z. LARGE ROOT ANGLE1, encoding OsPIN2, is involved in root system architecture in rice. J Exp Bot, 2018, 69: 385–397.

[27] Chen Y N, Fan X R, Song W J, Zhang Y L, Xu G H. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnol J, 2012, 10: 139–149.

[28] Wang H, Tu R R, Sun L P, Wang D F, Ruan Z Y, Zhang Y, Peng Z Q, Zhou X P, Fu J L, Liu Q N, Wu W X, Zhan X D, Shen X H, Zhang Y X, Cao L Y, Cheng S H. Tiller angle control 1 is essential for the dynamic changes in plant architecture in rice. Int J Mol Sci, 2022, 23: 4997.

[29] Zou Q W, Tu R R, Wu J J, Huang T T, Sun Z H, Ruan Z Y, Cao H Y, Yang S H, Shen X, He G H, Wang H. A polygalacturonase gene OsPG1 modulates water homeostasis in rice. Crop J, 2024, 12: 79–91.

[30] Wang W G, Gao H B, Liang Y, Li J Y, Wang Y H. Molecular basis underlying rice tiller angle: Current progress and future perspectives. Mol Plant, 2022, 15: 125–137.

[31] Morita M T. Directional gravity sensing in gravitropism. Annu Rev Plant Biol, 2010, 61: 705–720.

[32] Morita R, Sugino M, Hatanaka T, Misoo S, Fukayama H. CO2-responsive CONSTANS, CONSTANS-like, and time of chlorophyll a/b binding protein Expression1 protein is a positive regulator of starch synthesis in vegetative organs of rice. Plant Physiol, 2015, 167: 1321–1331.

[33] Okamura M, Hirose T, Hashida Y, Yamagishi T, Ohsugi R, Aoki N. Starch reduction in rice stems due to a lack of OsAGPL1 or OsAPL3 decreases grain yield under low irradiance during ripening and modifies plant architecture. Funct Plant Biol, 2013, 40: 11371146.

[34] Roychoudhry S, Kepinski S. Shoot and root branch growth angle control–the wonderfulness of lateralness. Curr Opin Plant Biol, 2015, 23: 124–131.

[35] Perrin R M, Young L S, Narayana Murthy U M, Harrison B R, Wang Y, Will J L, Masson P H. Gravity signal transduction in primary roots. Ann Bot, 2005, 96: 737–743.

[36] 王贤, 彭亚坤, 陈猛, 孔梦娟, 谭树堂. 植物向重力反应中PIN-FORMED介导的生长素极性运输调控. 生物技术通报, 2024, 40(3): 25–40.

Wang X, Peng Y K, Chen M, Kong M J, Tan S T. Regulation of PIN-FORMED-mediated polar auxin transport in plant gravitropism. Biotech Bull, 2024, 40(3): 25–40 (in Chinese with English abstract).

[37] Sun Q, Li T T, Li D D, Wang Z Y, Li S, Li D P, Han X, Liu J M, Xuan Y H. Overexpression of Loose Plant Architecture 1 increases planting density and resistance to sheath blight disease via activation of PIN‐FORMED 1a in rice. Plant Biotechnol J, 2019, 17: 855–857.

[1] JIA Shu-Han, HE Can, CHEN Min, LIU Jia-Xin, HU Wei-Min, HU Jin, GUAN Ya-Jing. Study on the quality differences of seeds with different pre-harvest sprouting levels and the grading of pre-harvest sprouting in hybrid rice [J]. Acta Agronomica Sinica, 2024, 50(9): 2310-2322.
[2] HU Li-Qin, XIAO Zheng-Wu, FANG Sheng-Liang, CAO Fang-Bo, CHEN Jia-Na, HUANG Min. Effects of planting season on digestive characteristics of high amylose content rice [J]. Acta Agronomica Sinica, 2024, 50(9): 2347-2357.
[3] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[4] SONG Zhi-Wen, ZHAO Lei, BI Jun-Guo, TANG Qing-Yun, WANG Guo-Dong, LI Yu-Xiang. Effects of nitrogen fertilization levels on matter accumulation and nutrient uptake in rice cultivar with different nitrogen efficiency under drip irrigation [J]. Acta Agronomica Sinica, 2024, 50(8): 2025-2038.
[5] SHAO Mei-Hong, ZHAO Ling-Ling, CHENG Chu, CHENG Si-Ming, ZHU Shuang-Bing, ZHAI Lai-Yuan, CHEN Kai, XU Jian-Long. Screening, evaluation, and utilization of low nitrogen tolerance for the selected introgression lines in rice with Huanghuazhan background [J]. Acta Agronomica Sinica, 2024, 50(8): 1907-1919.
[6] HE Dan-Dan, SHU Ya-Zhou, ZHOU Hai-Lian, WU Song-Guo, WEI Xiao-Shuang, YANG Ming-Chong, LI Bo, WU Zheng-Dan, HAN Shi-Jian, YANG Juan, WANG Ji-Bin, WANG Ling-Qiang. OsRPTA18 participated in the regulation of leaf inclination in rice [J]. Acta Agronomica Sinica, 2024, 50(8): 1934-1947.
[7] GUO Chun-Lin, LIN Man-Hong, CHEN Ting, CHEN Hong-Fei, LIN Wen-Fang, LIN Wen-Xiong. Evolution characteristics of rhizosphere microorganisms in response to ratoon rice senescence and underlying carry-over effect mechanism [J]. Acta Agronomica Sinica, 2024, 50(8): 2039-2052.
[8] FU Jing, MA Meng-Juan, ZHANG Qi-Fei, DUAN Ju-Qi, WANG Yue-Tao, WANG Fu-Hua, WANG Sheng-Xuan, BAI Tao, YIN Hai-Qing, WANG Ya. Effects of alternate wetting and drying irrigation and different nitrogen application levels on photosynthetic characteristics and nitrogen absorption and utilization of japonica rice [J]. Acta Agronomica Sinica, 2024, 50(7): 1787-1804.
[9] CHENG Shuang, XING Zhi-Peng, TIAN Chao, HU Qun, WEI Hai-Yan, ZHANG Hong-Cheng. Effects of an integrated dryland tillage and soaking pattern on the reducing substances in rice field and early growth of machine transplanted rice [J]. Acta Agronomica Sinica, 2024, 50(7): 1762-1775.
[10] PEI Fa-Jing, ZHANG Wen-Xuan, ZHANG Xiao, WANG Xin-Yu, PENG Shao-Bing, MI Jia-Ming. Developing new rice lines with ultrashort-duration, long-grain, and fragrance [J]. Acta Agronomica Sinica, 2024, 50(7): 1684-1698.
[11] TANG Qing-Yun, YANG Jing-Jing, ZHAO Lei, SONG Zhi-Wen, WANG Guo-Dong, LI Yu-Xiang. Effect of nitrogen application on morphological conformation and fractal characteristics of drip irrigated rice roots [J]. Acta Agronomica Sinica, 2024, 50(6): 1540-1553.
[12] ZHANG Xiao-Fang, ZHU Qi, HUA Yun-Yan, JIA Li-Hui-Ying, QIU Shi-You, CHEN Yu-Jie, MA Tao, DING Wo-Na. Screening and validation of OsCYP22 interacting proteins in rice [J]. Acta Agronomica Sinica, 2024, 50(6): 1628-1634.
[13] ZHU Zhong-Lin, WEN Yue, ZHOU Qi, WU Yan-Fei, DU Xue-Zhu, SHENG Feng. Mechanism of loding residence and drought tolerance of OsCNGC10 gene in rice [J]. Acta Agronomica Sinica, 2024, 50(5): 1351-1360.
[14] HU Ming-Ming, DING Feng, PENG Zhi-Yun, XIANG Kai-Hong, LI Yu, ZHANG Yu-Jie, YANG Zhi-Yuan, SUN Yong-Jian, MA Jun. Effects of straw returning to field combined with water and N management on rice yield formation and N uptake and utilization under diversified cropping patterns [J]. Acta Agronomica Sinica, 2024, 50(5): 1236-1252.
[15] GENG Xiao-Yu, ZHANG Xiang, LIU Yang, ZUO Bo-Yuan, ZHU Wang, MA Wei-Yi, WANG Lu-Lu, MENG Tian-Yao, GAO Ping-Lei, CHEN Ying-Long, XU Ke, DAI Qi-Gen, WEI Huan-He. Grain yield and its characteristics of japonica/indica hybrids rice in coastal saline-alkali lands [J]. Acta Agronomica Sinica, 2024, 50(5): 1253-1270.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!