GAO Yuan1,2,LI Xia1,WEI Shao-Bo1,TIAN Xiao-Hai2,ZHOU Wen-Bin1,*
[1] 许大全. 光合作用“午睡”现象的生态, 生理与生化. 植物生理学通讯, 1990, 26(6): 5–10. [2] Thoday D. Experimental researches on vegetable assimilation and respiration. VI.—Some experiments on assimilation in the open air. Proc R Soc Lond. B, 1910, 82: 421–450. [3] Kumagai E, Araki T, Ueno O. Effect of nitrogen-deficiency on midday photoinhibition in flag leaves of different rice (Oryza sativa L.) cultivars. Photosynthetica, 2009, 47: 241–246. [4] Gu J F, Zhou Z X, Li Z K, Chen Y, Wang Z Q, Zhang H, Yang J C. Photosynthetic properties and potentials for improvement of photosynthesis in pale green leaf rice under high light conditions. Front Plant Sci, 2017, 8: 1082. [5] Miao Y X, Cai Y, Wu H, Wang D. Diurnal and seasonal variations in the photosynthetic characteristics and the gas exchange simulations of two rice cultivars grown at ambient and elevated CO2. Front Plant Sci, 2021, 12: 651606. [6] Huang L F, Zheng J H, Zhang Y Y, Hu W H, Mao W H, Zhou Y H, Yu J Q. Diurnal variations in gas exchange, chlorophyll fluorescence quenching and light allocation in soybean leaves: The cause for midday depression in CO2 assimilation. Sci Hortic, 2006, 110: 214–218.
[7] 徐江, 朱建雯, 张巨松, 周抑强. 田间棉花叶片呼吸作用对光合日变化的影响. 新疆农业大学学报, 1997, 20(4): 3–6.
[8] 娄长安, 莫庸, 王荣栋, 张煜星. 新疆大陆性气候春小麦“午睡”现象的研究. Ⅱ. 田间生态因子与“午睡”的关系. 石河子农学院学报, 1996, (2): 5–10.
[9] 白岚方, 路战远, 张向前, 贾凯, 王玉芬, 孙鸿举. 不同玉米品种灌浆期穗位叶光合特性日变化及青贮产量差异研究. 河南农业科学, 2020, 49(4): 29–37. [10] Verma K K, Wu K C, Verma C L, Li D M, Malviya M K, Singh R K, Singh P, Chen G L, Song X P, Li Y R. Developing mathematical model for diurnal dynamics of photosynthesis in Saccharum officinarum responsive to different irrigation and silicon application. PeerJ, 2020, 8: e10154. [11] Al-Salman Y, Ghannoum O, Cano F J. Midday water use efficiency in sorghum is linked to faster stomatal closure rate, lower stomatal aperture and higher stomatal density. Plant J, 2023, 115: 1661–1676. [12] Iio A, Fukasawa H, Nose Y, Kakubari Y. Stomatal closure induced by high vapor pressure deficit limited midday photosynthesis at the canopy top of Fagus crenata Blume on Naeba mountain in Japan. Trees, 2004, 18: 510–517. [13] Hu M J, Guo Y P, Shen Y G, Guo D P, Li D Y. Midday depression of photosynthesis and effects of mist spray in citrus. Ann Appl Biol, 2009, 154: 143–155. [14] Tanizaki T, Yokoyama G, Kitano M, Yasutake D. Contribution of diffusional and non-diffusional limitations to the midday depression of photosynthesis which varies dynamically even under constant environmental conditions. Int Agrophys, 2022, 36: 207–212.
[15] 许大全, 李德耀, 沈允钢, 阎继耀, 张原根, 郑友三. 田间小麦叶片光合作用“午睡”现象的研究. Ⅱ.喷雾对小麦光合作用与籽粒产量的影响. 作物学报, 1987, 13: 111–115. [16] Cock J H, Porto M C M, El-Sharkawy M A. Water use efficiency of cassava: III. influence of air humidity and water stress on gas exchange of field grown cassava. Crop Sci, 1985, 25: 265–272. [17] Murata Y, Iyama J. Studies on the photosynthesis of forage crops: 1. Diurnal changes in the photosynthesis of several grasses and barley seedlings under constant temperature and light intensity. Jpn J Crop Sci, 1963, 31: 311–314. [18] Barta C, Loreto F. The relationship between the methyl-erythritol phosphate pathway leading to emission of volatile isoprenoids and abscisic acid content in leaves. Plant Physiol, 2006, 141: 1676–1683.
[19] 卢育华, 刘金龙, 李炳华, 李志英, 徐立. 菜豆光合特性研究. 山东农业大学学报(自然科学版), 1998, 29: 165–170. [20] Shirke P A, Pathre U V. Diurnal and seasonal changes in photosynthesis and photosystem 2 photochemical efficiency in Prosopis juliflora leaves subjected to natural environmental stress. Photosynthetica, 2003, 41: 83–89. [21] Hennessey T L, Field C B. Circadian rhythms in photosynthesis: oscillations in carbon assimilation and stomatal conductance under constant conditions. Plant Physiol, 1991, 96: 831–836. [22] Macdowall F D H. Midday closure of stomata in aging tobacco leaves. Can J Bot, 1963, 41: 1289–1300. [23] Yokoyama G, Yasutake D, Tanizaki T, Kitano M. Leaf wetting mitigates midday depression of photosynthesis in tomato plants. Photosynthetica, 2019, 57: 740–747.
[24] 程云霞, 吴慧, 张婧, 申金秀, 俞安炜, 贾凯, 刘迁杰, 时振宇. 不同浓度营养液对袋式复合沙培辣椒光合日变化及产量的影响. 分子植物育种, 2022, 20: 1989–1995. [25] Yokoyama G, Yasutake D, Kitano M. A preliminary experiment on the effects of leaf wetting on gas exchange in tomato leaves. ECB, 2018, 56: 13–16.
[26] 张旺锋, 任丽彤, 王振林, 李少昆, 勾玲, 余松烈, 曹连莆. 膜下滴灌对新疆高产棉花光合特性日变化的影响. 中国农业科学, 2003, 36: 159–163.
[27] 田春洲, 田国政. 不同施氮素水平对菠菜光合日变化影响. 现代园艺, 2013, (8): 11–12.
[28] 肖智勇, 郭圣茂, 赵治国. 三种菊科药用植物光合特性的初步研究. 山东林业科技, 2009, 39(6): 14–18. [29] Quick W P, Chaves M M, Wendler R, David M, Rodrigues M L, Passaharinho J A, Pereira J S, Adcock M D, Leegood R C, Stitt M. The effect of water stress on photosynthetic carbon metabolism in four species grown under field conditions. Plant Cell Environ, 1992, 15: 25–35.
[30] 李萍萍, 胡永光, 赵玉国, 毛罕平. 叶用莴苣温室栽培单株光合作用日变化规律. 园艺学报, 2001, 28: 240–245.
[31] 王红宁, 林琭, 汤昀, 李永平, 孙俊宝, 张生智, 吴晓璇. 沼液营养液对基质栽培草莓叶片气体交换日变化的影响. 河北农业大学学报, 2019, 42(6): 57–64. [32] Osório M L, Breia E, Rodrigues A, Osório J, Le Roux X, Daudet F A, Ferreira I, Chaves M M. Limitations to carbon assimilation by mild drought in nectarine trees growing under field conditions. Environ Exp Bot, 2006, 55: 235–247.
[33] 张晓峰, 韩翔, 张建光. 不同土壤水分含量对黄冠梨叶片光合效率和抗氧化特性的影响. 北方园艺, 2013, (10): 7–11. [34] Romero P, Botía P. Daily and seasonal patterns of leaf water relations and gas exchange of regulated deficit-irrigated almond trees under semiarid conditions. Environ Exp Bot, 2006, 56: 158–173. [35] Raschke K, Resemann A. The midday depression of CO2 assimilation in leaves of Arbutus unedo L.: diurnal changes in photosynthetic capacity related to changes in temperature and humidity. Planta, 1986, 168: 546–558. [36] Chen M H, Feng S, Gao M Y, Liu M, Wang K B, Wang J, Shangguan Z P, Zhang Y W. The difference in the photosynthetic characteristics and soil moisture of different varieties of sweet cherry (Prunus avium L.). Agric Water Manage, 2024, 302: 109002. [37] Correia M J, Rodrigues M L, Ferreira M I, Pereira J S. Diurnal change in the relationship between stomatal conductance and abscisic acid in the xylem sap of field-grown peach trees. J Exp Bot, 1997, 48: 1727–1736.
[38] 李永秀, 孙敏, 丁鹏, 谢博文. 观赏凤梨光合特性的研究. 中国农学通报, 2010, 26(4): 219–223. [39] Song J Y, Zhang N. The photosynthetic characteristics of wild cymbidium faberi rolfe in the Qinling mountains, China. Bangl J Bot, 2018, 47: 805–813. [40] Chang Y C, Chen H W, Lee N. (137) High temperature increases the midday depression of net photosynthesis in Oncidium gower ramsey. Hort Sci, 2006, 41: 1056D–1057D. [41] Wang L J, Cao Q Z, Zhang X Q, Jia G X. Effects of polyploidization on photosynthetic characteristics in three Lilium species. Sci Hortic, 2021, 284: 110098. [42] Guo W D, Guo Y P, Liu J R, Mattson N. Midday depression of photosynthesis is related with carboxylation efficiency decrease and D1 degradation in bayberry (Myrica rubra) plants. Sci Hortic, 2009, 123: 188–196. [43] Jifon J L, Syvertsen J P. Moderate shade can increase net gas exchange and reduce photoinhibition in citrus leaves. Tree Physiol, 2003, 23: 119–127. [44] Pathre U, Sinha A K, Shirke P A, Sane P V. Factors determining the midday depression of photosynthesis in trees under monsoon climate. Trees, 1998, 12: 472–481. [45] Chamchaiyaporn T, Jutamanee K, Kasemsap P, Vaithanomsat P, Henpitak C. Effects of kaolin clay coating on mango leaf gas exchange, fruit yield and quality. Agric Nat Resour, 2013, 47: 479–491. [46] Kumudini S. Effect of radiation and temperature on cranberry photosynthesis and characterization of diurnal change in photosynthesis. J Amer Soc Hort Sci, 2004, 129: 106–111. [47] Gomez L F, López J C, Riano N M, Lopez Y, Montoya E C. Diurnal changes in leaf gas exchange and validation of a mathematical model for coffee (Coffea arabica L.) canopy photosynthesis. Photosynthetica, 2005, 43: 575–582. [48] Zhang J S, Zhang L Y, Wang Q, Liu J L, Sun Y J. Diurnal regulation of leaf photosynthesis is related to leaf-age-dependent changes in assimilate accumulation in Camellia oleifera. Plants, 2023, 12: 2161. [49] Ishida A, Toma T, Marjenah M. Limitation of leaf carbon gain by stomatal and photochemical processes in the top canopy of Macaranga conifera, a tropical pioneer tree. Tree Physiol, 1999, 19: 467–473. [50] Zhang J Z, Shi L, Shi A P, Zhang Q X. Photosynthetic responses of four Hosta cultivars to shade treatments. Photosynthetica, 2004, 42: 213–218. [51] Valentini R, Epron D, De Angelis P, Matteucci G, Dreyer E. In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q. cerris L.) leaves: diurnal cycles under different levels of water supply. Plant Cell Environ, 1995, 18: 631–640. [52] Ma Y L, Wang T, Xie Y F, Lv Q, Qiu L L. Alleviatory effect of rare earth micro-fertilizer on photosystem II (PSII) photoinhibition in Pseudostellaria heterophylla leaves at photosynthetic midday depression. J Rare Earths, 2022, 40: 1156–1164. [53] Pons T L, Welschen R A M. Midday depression of net photosynthesis in the tropical rainforest tree Eperua grandiflora: contributions of stomatal and internal conductances, respiration and Rubisco functioning. Tree Physiol, 2003, 23: 937–947. [54] Wimalasekera R. Effect of light intensity on photosynthesis. In: Ahmad P, Ahanger M A, Alyemeni N, Alam P, eds. Photosynthesis, Productivity and Environmental Stress. Springer Netherlands, 2019. pp 65–73. [55] Park Y I, Chow W S, Anderson J M. Chloroplast movement in the shade plant Tradescantia albiflora helps protect photosystem II against light stress. Plant Physiol, 1996, 111: 867–875. [56] Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M. Chloroplast avoidance movement reduces photodamage in plants. Nature, 2002, 420: 829–832. [57] Wada M, Kagawa T, Sato Y. Chloroplast movement. Annu Rev Plant Biol, 2003, 54: 455–468. [58] Maai E, Nishimura K, Takisawa R, Nakazaki T. Light stress-induced chloroplast movement and midday depression of photosynthesis in sorghum leaves. Plant Prod Sci, 2020, 23: 172–181. [59] Liu Y J, Zhang W, Wang Z B, Ma L, Guo Y P, Ren X L, Mei L X. Influence of shading on photosynthesis and antioxidative activities of enzymes in apple trees. Photosynthetica, 2019, 57: 857–865. [60] Correia M J, Chaves M M C, Pereira J S. Afternoon depression in photosynthesis in grapevine leaves: evidence for a high light stress effect. J Exp Bot, 1990:417–426. [61] Moore C E, Meacham-Hensold K, Lemonnier P, Slattery R A, Benjamin C, Bernacchi C J, Lawson T, Cavanagh A P. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. J Exp Bot, 2021, 72: 2822–2844. [62] Diao H Y, Cernusak L A, Saurer M, Gessler A, Siegwolf R T W, Lehmann M M. Uncoupling of stomatal conductance and photosynthesis at high temperatures: mechanistic insights from online stable isotope techniques. New Phytol, 2024, 241: 2366–2378. [63] Tschesnokov V, Bazyrina K. Die begrenzenden Faktoren bei der Photosynthese. Zeitschrift fur wissenschaftliche Biologie. Abteilung E: Planta, 1930, 11: 457–462 (in German).
[64] 吴艳洪, 李海霞, 董红霞, 曾汉来. 水稻光合能力的高温稳定性评价指标与遗传分析. 华中农业大学学报, 2011, 30: 8–12.
[65] 蒋德安, 徐银发. 水稻光合速率、气孔导度和Rubisco活力的日变化. 植物生理学报, 1996, 22: 94–100. [66] Loreto F, Sharkey T D. Low humidity can cause uneven photosynthesis in olive (Olea europea L.) leaves. Tree Physiol, 1990, 6: 409–415. [67] Amin B, Atif M J, Wang X, Meng H, Ghani M I, Ali M, Ding Y, Li X, Cheng Z. Effect of low temperature and high humidity stress on physiology of cucumber at different leaf stages. Plant Biol, 2021, 23: 785–796. [68] Chabane F, Moummia N, Brima A. Forecast of relationship between a relative humidity and a dew point temperature. J Power Technol, 2018, 98: 183–187. [69] Weber J A, Gates D M. Gas exchange in Quercus rubra (northern red oak) during a drought: analysis of relations among photosynthesis, transpiration, and leaf conductance. Tree Physiol, 1990, 7: 215–225. [70] Heath O V S. Studies in stomatal behaviour: V. The role of carbon dioxide in the light response of stomata. J Exp Bot, 1950, 1: 29–62. [71] Schulze E D, Lange O L, Evenari M, Kappen L, Buschbom U. The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions: I. A simulation of the daily course of stomatal resistance. Oecologia, 1974, 17: 159–170. [72] Schulze E D, Lange O L, Evenari M, Kappen L, Buschbom U. Long-term effects of drought on wild and cultivated plants in the Negev desert: II. Diurnal patterns of net photosynthesis and daily carbon gain. Oecologia, 1980, 45: 19–25. [73] Bunce J A. Effects of humidity on photosynthesis. J Exp Bot, 1984, 35: 1245–1251. [74] Flexas J, Bota J, Loreto F, Cornic G, Sharkey T D. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol, 2004, 6: 269–279. [75] Will R E, Wilson S M, Zou C B, Hennessey T C. Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest-grassland ecotone. New Phytol, 2013, 200: 366–374.
[76] 宁梓妤, 徐宪立, 杨东, 徐超昊, 李学章, 李振炜. 中国西南地区饱和水汽压差的年际变化及其影响因素. 农业现代化研究, 2022, 43: 172–179. [77] Medina C L, Souza R P, Machado E C, Ribeiro R V, Silva J A B. Photosynthetic response of citrus grown under reflective aluminized polypropylene shading nets. Sci Hortic, 2002, 96: 115–125. [78] Schulze E D, Hall A E. Stomatal responses, water loss and CO2 assimilation rates of plants in contrasting environments. In: Encyclopedia of Plant Physiology: Lange O L, Nobel P S, Osmond C B, Ziegler H, eds. Physiological Plant Ecology II. Springer Berlin Heidelberg, 1982. pp 181–230. [79] Roessler P G, Monson R K. Midday depression in net photosynthesis and stomatal conductance in Yucca glauca: Relative contributions of leaf temperature and leaf-to-air water vapor concentration difference. Oecologia, 1985, 67: 380–387. [80] Novick K A, Miniat C F, Vose J M. Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion-tension theory. Plant Cell Environ, 2016, 39: 583–596. [81] Li X, Ryu Y, Xiao J F, Dechant B, Liu J G, Li B L, Jeong S, Gentine P. New-generation geostationary satellite reveals widespread midday depression in dryland photosynthesis during 2020 western U.S. heatwave. Sci Adv. 2023, 9, eadi0775.
[82] 郑国生, 邹琦, 赵世杰. 田间大豆群体光合午休及喷灌效应. 华北农学报, 1994, 9(1): 44–47. [83] Li Z H, Jiang E S, Liu M H, Sun Q H, Gao Z, Du Y P. Effects of coverlys TF150® on the photosynthetic characteristics of grape. Int J Mol Sci, 2023, 24: 16659.
[84] 邓仲篪, 陈翠莲. 水稻光合作用“午睡”现象的初探. 华中农业大学学报, 1989, 8: 208–212. [85] Xu D Q, Wu S. Three phases of dark-recovery course from photoinhibition resolved by the chlorophyll fluorescence analysis in soybean leaves under field conditions. Photosynthetica, 1996, 32: 417–423. [86] Kostytschew S, Kudriavzewa M, Moissejewa W, Smirnowa M. Der tägliche verlauf der photosynthese bei landpflanzen. Planta: Archiv für Wissenschaftliche Botanik, 1926: 679–699 (in German). [87] Brodribb T J, Sussmilch F, McAdam S A M. From reproduction to production, stomata are the master regulators. Plant J, 2020, 101: 756–767. [88] Tenhunen J D, Lange O L, Braun M. Midday stomatal closure in Mediterranean type sclerophylls under simulated habitat conditions in an environmental chamber: II. Effect of the complex of leaf temperature and air humidity on gas exchange of Arbutus unedo and Quercus ilex. Oecologia, 1981, 50: 5–11. [89] Maskell E J. Experimental researches on vegetable assimilation and respiration: XVIII. —the relation between stomatal opening and assimilation. —a critical study of assimilation rates and porometer rates in leaves of Cherry Laurel. Proc R Soc Lond B, 1928, 102: 488–533. [90] Lawson T, Caemmerer S Von, Baroli I. Photosynthesis and stomatal behaviour. In: Lüttge U, Beyschlag W, Büdel B, Francis D eds. Progress in Botany. Springer Berlin Heidelberg, 2011. pp 265–304. [91] Agurla S, Gahir S, Munemasa S, Murata Y, Raghavendra A S. Mechanism of stomatal closure in plants exposed to drought and cold stress. Adv Exp Med Biol, 2018, 1081: 215–232. [92] Kollist H, Zandalinas S I, Sengupta S, Nuhkat M, Kangasjärvi J, Mittler R. Rapid responses to abiotic stress: priming the landscape for the signal transduction network. Trends Plant Sci, 2019, 24: 25–37. [93] Gong Z Z, Xiong L M, Shi H Z, Yang S H, Herrera-Estrella L R, Xu G H, Chao D Y, Li J R, Wang P Y, Qin F, et al. Plant abiotic stress response and nutrient use efficiency. Sci China Life Sci, 2020, 63: 635–674. [94] Hasanuzzaman M, Bhuyan M H M B, Zulfiqar F, Raza A, Mohsin S M, Mahmud J A, Fujita M, Fotopoulos V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants, 2020, 9: 681. [95] Pardo-Hernández M, López-Delacalle M, Rivero R M. ROS and NO regulation by melatonin under abiotic stress in plants. Antioxidants, 2020, 9: 1078. [96] Hsu P K, Dubeaux G, Takahashi Y, Schroeder J I. Signaling mechanisms in abscisic acid-mediated stomatal closure. Plant J, 2021, 105: 307–321. [97] Liu H, Song S B, Zhang H, Li Y H, Niu L J, Zhang J H, Wang W. Signaling transduction of ABA, ROS, and Ca2+ in plant stomatal closure in response to drought. Int J Mol Sci, 2022, 23: 14824. [98] Loveys B R. Diurnal changes in water relations and abscisic acid in field grown Vitis vinifera cultivars: III. The influence of xylem-derived abscisic acid on leaf gas exchange. New Phytol, 1984, 98: 563–573. [99] Yu J Q, Huang L F, Hu W H, Zhou Y H, Mao W H, Ye S F, Nogués S. A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J Exp Bot, 2004, 55: 1135–1143. [100] Hu W H, Yan X H, Xiao Y A, Zeng J J, Qi H J, Ogweno J O. 24-Epibrassinosteroid alleviate drought-induced inhibition of photosynthesis in Capsicum annuum. Sci Hortic, 2013, 150: 232–237. [101] Lima J V, Lobato A K S. Brassinosteroids improve photosystem II efficiency, gas exchange, antioxidant enzymes and growth of cowpea plants exposed to water deficit. Physiol Mol Biol Plants, 2017, 23: 59–72. [102] Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S. Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol, 2005, 138:2337–2343. [103] Song X G, She X P, He J M, Huang C, Song T S. Cytokinin- and auxin-induced stomatal opening involves a decrease in levels of hydrogen peroxide in guard cells of Vicia faba. Funct Plant Biol, 2006, 33: 573–583. [104] Lohse G, Hedrich R. Characterization of the plasma-membrane H+-ATPase from Vicia faba guard cells: Modulation by extracellular factors and seasonal changes. Planta, 1992, 188: 206–214. [105] Shi H T, Chen L, Ye T T, Liu X D, Ding K J, Chan Z L. Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiol Biochem, 2014, 82: 209–217. [106] Dodd A N, Kusakina J, Hall A, Gould P D, Hanaoka M. The circadian regulation of photosynthesis. Photosynth Res, 2014, 119: 181–190. [107] Steed G, Ramirez D C, Hannah M A, Webb A A R. Chronoculture, harnessing the circadian clock to improve crop yield and sustainability. Science, 2021, 372: eabc9141. [108] Xu X D, Yuan L, Yang X, Zhang X, Wang L, Xie Q G. Circadian clock in plants: Linking timing to fitness. J Integr Plant Biol, 2022, 64: 792–811. [109] Pruneda-Paz J L, Kay S A. An expanding universe of circadian networks in higher plants. Trends Plant Sci, 2010, 15: 259–265. [110] Kusakina J, Dodd A N. Phosphorylation in the plant circadian system. Trends Plant Sci, 2012, 17: 575–583. [111] Resco de Dios V, Gessler A. Circadian regulation of photosynthesis and transpiration from genes to ecosystems. Environ Exp Bot, 2018, 152: 37–48.
[112] 邓仲篪. 水稻光合日变化与内生节奏的关系. 中国水稻科学, 1994, 8(1): 9–14. [113] Chaumont M, Osório M L, Chaves M M, Vanacker H, Morot-Gaudry J F, Foyer C H. The absence of photoinhibition during the mid-morning depression of photosynthesis in Vitis vinifera grown in semi-arid and temperate climates. J Plant Physiol, 1997, 150: 743–751. [114] Sun Z Z, Wang X, Song Y L, Li Q, Song J, Cai J, Zhou Q, Zhong Y X, Jin S C, Jiang D. StomataTracker: revealing circadian rhythms of wheat stomata with in-situ video and deep learning. Comput Electron Agric, 2023, 212: 108120. [115] Covington M F, Maloof J N, Straume M, Kay S A, Harmer S L. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol, 2008, 9: R130. [116] Seung D, Risopatron J P M, Jones B J, Marc J. Circadian clock-dependent gating in ABA signalling networks. Protoplasma, 2012, 249: 445–457. [117] Dubois M, Claeys H, Van den Broeck L, Inzé D. Time of day determines Arabidopsis transcriptome and growth dynamics under mild drought. Plant Cell Environ, 2017, 40: 180–189. [118] Yari Kamrani Y, Shomali A, Aliniaeifard S, Lastochkina O, Moosavi-Nezhad M, Hajinajaf N, Talar U. Regulatory Role of circadian clocks on ABA production and signaling, stomatal responses, and water-use efficiency under water-deficit conditions. Cells, 2022, 11: 1154. [119] Adams S, Grundy J, Veflingstad S R, Dyer N P, Hannah M A, Ott S, Carré I A. Circadian control of abscisic acid biosynthesis and signalling pathways revealed by genome-wide analysis of LHY binding targets. New Phytol, 2018, 220: 893–907. [120] Baek D, Kim W Y, Cha J Y, Park H J, Shin G, Park J, Lim C J, Chun H J, Li N, Kim D H, et al. The GIGANTEA-ENHANCED EM LEVEL complex enhances drought tolerance via regulation of abscisic acid synthesis. Plant Physiol, 2020, 184: 443–458. [121] Nassoury N, Fritz L, Morse D. Circadian changes in ribulose-1,5-bisphosphate carboxylase/oxygenase distribution inside individual chloroplasts can account for the rhythm in dinoflagellate carbon fixation. Plant Cell, 2001, 13: 923–934. [122] García-Plazaola J I, Fernández-Marín B, Ferrio J P, Alday J G, Hoch G, Landais D, Milcu A, Tissue D T, Voltas J, Gessler A, et al. Endogenous circadian rhythms in pigment composition induce changes in photochemical efficiency in plant canopies. Plant Cell Environ, 2017, 40: 1153–1162. [123] Hassidim M, Dakhiya Y, Turjeman A, Hussien D, Shor E, Anidjar A, Goldberg K, Green R M. CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and the circadian control of stomatal aperture. Plant Physiol, 2017, 175: 1864–1877. [124] Muraoka H, Tang Y H, Terashima I, Koizumi H, Washitani I. Contributions of diffusional limitation, photoinhibition and photorespiration to midday depression of photosynthesis in Arisaema heterophyllum in natural high light. Plant Cell Environ, 2000, 23: 235–250. [125] Barber J, Andersson B. Too much of a good thing: light can be bad for photosynthesis. Trends Biochem Sci, 1992, 17: 61–66. [126] Tenhunen J D, Pearcy R W, Lange O L. Diurnal variations in leaf conductance and gas exchange in natural environments. In Zeiger E, Farquhar G D, Cowan I R, eds. Stomatal Function. Stanford: Stanford University Press, 1987. pp 323–351.
[127] 张大鹏, 黄丛林, 王学臣, 娄成后. 葡萄叶片光合速率与量子效率日变化的研究及利用. 植物学报, 1995, 37(1): 25–33. [128] Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Biol, 1991, 42: 313–349. [129] Sayed O H. Chlorophyll fluorescence as a tool in cereal crop research. Photosynthetica, 2003, 41: 321–330.
[130] 许大全. 回忆光合作用研究五十年. 植物生理学报, 2016, 52(11): 1593–1608. [131] Krause G H. Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol Plantarum, 1988, 74: 566–574. [132] Prakash J S, Srivastava A, Strasser R J, Mohanty P. Senescence-induced alterations in the photosystem II functions of Cucumis sativus cotyledons: probing of senescence driven alterations of photosystem II by chlorophyll a fluorescence induction O-J-I-P transients. Indian J Biochem Biophys, 2003, 40: 160–168. [133] Debabrata P. Diurnal variations in gas exchange and chlorophyll fluorescence in rice leaves: the cause for midday depression in CO2 photosynthetic rate. J Stress Physiol Biochem, 2011, 7: 175–186. [134] Trivedi P K, Reddy M S S, Sane P V. Plastid gene expression is not associated with midday depression in CO2 assimilation and electron transport. Plant Sci, 2000, 155: 187–192. [135] Zhang S R, Gao R F. Diurnal changes of gas exchange, chlorophyll fluorescence, and stomatal aperture of hybrid poplar clones subjected to midday light stress. Photosynthetica, 2000, 37: 559–571. [136] Jahns P, Holzwarth A R. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. BBA Bioenerg, 2012, 1817: 182–193. [137] Li X, Wang P, Li J, Wei S B, Yan Y Y, Yang J, Zhao M, Langdale J A, Zhou W B. Maize GOLDEN2-LIKE genes enhance biomass and grain yields in rice by improving photosynthesis and reducing photoinhibition. Commun Biol, 2020, 3: 151. [138] Osmond C B. Photorespiration and photoinhibition: Some implications for the energetics of photosynthesis. BBA Rev Bioenerg, 1981, 639: 77–98. [139] South P F, Cavanagh A P, Liu H W, Ort D R. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science, 2019, 363: eaat9077. [140] Westgeest A J, Dauzat M, Simonneau T, Pantin F. Leaf starch metabolism sets the phase of stomatal rhythm. Plant Cell, 2023, 35: 3444–3469. [141] Chanishvili S S, Badridze G S, Barblishvili T F, Dolidze M D. Defoliation, photosynthetic rates, and assimilate transport in grapevine plants. Russ J Plant Physiol, 2005, 52: 448–453. [142] Bläsing O E, Gibon Y, Günther M, Höhne M, Morcuende R, Osuna D, Thimm O, Usadel B, Scheible W R, Stitt M. Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis. Plant Cell, 2005, 17: 3257–3281. [143] LEWIS F J. Photosynthesis and related processes. Nature, 1945, 156: 487–488.
[144] 许大全, 丁勇, 武海. 田间小麦叶片光合效率日变化与光合“午睡”的关系. 植物生理学报, 1992, 18: 279–284. [145] Hodges J D. Patterns of photosynthesis under natural environmental conditions. Ecology, 1967, 48: 234–242. [146] Zhou Y H, Lam H M, Zhang J H. Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice. J Exp Bot, 2007, 58: 1207–1217. [147] Cui L L, Lu Y S, Li Y, Yang C W, Peng X X. Overexpression of glycolate oxidase confers improved photosynthesis under high light and high temperature in rice. Front Plant Sci, 2016, 7: 1165. [148] Zhou J F, Jiang X D, Agathokleous E, Lu X J, Yang Z Q, Li R Y. High temperature inhibits photosynthesis of chrysanthemum (Chrysanthemum morifolium Ramat.) seedlings more than relative humidity. Front Plant Sci, 2023, 14: 1272013. [149] Guo Q Q, Li X, Niu L, Jameson P E, Zhou W B. Transcription-associated metabolomic adjustments in maize occur during combined drought and cold stress. Plant Physiol, 2021, 186: 677–695. |
[1] | WANG Fen, WU Dong-Li, ZHANG Quan-Jun. Response of phenological phase stages of single-cropping rice to climate change in Hubei province, China [J]. Acta Agronomica Sinica, 2025, 51(7): 1934-1948. |
[2] | YAN Zhi-Lan, ZHAO Qin, CHANG Tian-Da, WANG Yi-Ming, WANG Bi-Hui, WANG Peng, HUANG Chun-Guo, ZHANG Hui, WANG Li-Xiang, HAO Xiao-Peng, ZHAO Bo. Genome-wide identification and characterization of Alternative oxidase (AOX) genes in leguminous crops and their expression patterns in response to abiotic stresses in common bean [J]. Acta Agronomica Sinica, 2025, 51(7): 1769-1783. |
[3] | YAN Shang-Long, WANG Qi-Ming, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, LIU Zhi-Peng, WEI Jin-Gui. Grain yield and quality of maize in response to dense density and intercropped peas in oasis irrigated areas [J]. Acta Agronomica Sinica, 2025, 51(6): 1665-1675. |
[4] | ZHANG Chen-Yu, GE Jun-Yong, CHU Jun-Cong, WANG Xing-Yu, ZHAO Bao-Ping, YANG Ya-Dong, ZANG Hua-Dong, ZENG Zhao-Hai. Yield effect and its root and soil enzyme characteristics of oat and red kidney bean strip intercropping [J]. Acta Agronomica Sinica, 2025, 51(2): 459-469. |
[5] | WANG Li-Ping, LI Pan, ZHAO Lian-Hao, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, CHAI Qiang, YIN Wen. Response of senescence characteristics for maize leaves under different plastic mulching and using patterns in oasis irrigation areas of northwestern China [J]. Acta Agronomica Sinica, 2025, 51(1): 233-246. |
[6] | LIU Zhi-Peng, GOU Zhi-Wen, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long, FAN Hong, WANG Qi-Ming. Effect of green manure on wheat and maize yields in diversified cropping patterns in an arid irrigated agricultural area [J]. Acta Agronomica Sinica, 2024, 50(9): 2415-2424. |
[7] | HU Li-Qin, XIAO Zheng-Wu, FANG Sheng-Liang, CAO Fang-Bo, CHEN Jia-Na, HUANG Min. Effects of planting season on digestive characteristics of high amylose content rice [J]. Acta Agronomica Sinica, 2024, 50(9): 2347-2357. |
[8] | LIU Chun-Yan, ZHANG Li-Ying, ZHOU Jie, XU Yi, YANG Ya-Dong, ZENG Zhao-Hai, ZANG Hua-Dong. Research progress on the intensification of agroecosystem functions through legume-based crop rotation [J]. Acta Agronomica Sinica, 2024, 50(8): 1885-1895. |
[9] | FANG Yu-Hui, QI Xue-Li, LI Yan, ZHANG Yu, PENG Chao-Jun, HUA Xia, CHEN Yan-Yan, GUO Rui, HU Lin, XU Wei-Gang. Effects of high light stress on photosynthesis and physiological characteristics of wheat with maize C4-type ZmPEPC+ZmPPDK gene [J]. Acta Agronomica Sinica, 2024, 50(7): 1647-1657. |
[10] | HU Ming-Ming, DING Feng, PENG Zhi-Yun, XIANG Kai-Hong, LI Yu, ZHANG Yu-Jie, YANG Zhi-Yuan, SUN Yong-Jian, MA Jun. Effects of straw returning to field combined with water and N management on rice yield formation and N uptake and utilization under diversified cropping patterns [J]. Acta Agronomica Sinica, 2024, 50(5): 1236-1252. |
[11] | CAO Xin-Yuan, DU Ming-Li, WANG Yu-Cheng, CHEN Xin-Hua, CHEN Jia-Xin, LING Xiao-Xia, HUANG Jian-Liang, PENG Shao-Bing, DENG Nan-Yan. Evaluation of annual yield gap and yield limiting facters in rice-rapeseed cropping system: an example from Wuxue city, Hubei province, China [J]. Acta Agronomica Sinica, 2024, 50(5): 1287-1299. |
[12] | WANG Yu, GAO Geng-Dong, GE Meng-Meng, CHANG Ying, TAN Jing, GE Xian-Hong, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Function and application of calcium in plant growth and development [J]. Acta Agronomica Sinica, 2024, 50(4): 793-807. |
[13] | HAO Jia-Le, ZHAO Jiong-Chao, ZHAO Ming-Yu, WANG Yi-Xuan, LU Jie, SHI Xiao-Yu, GAO Zhen-Zhen, CHU Qing-Quan. Assessment of the cultivation suitability and suitable regions of Gastrodia elata under climate change in China [J]. Acta Agronomica Sinica, 2024, 50(4): 1004-1014. |
[14] | WEI Jin-Gui, MAO Shou-Fa, JIANG Yu-Xin, FAN Zhi-Long, HU Fa-Long, CHAI Qiang, YIN Wen. Compensation mechanism of green manure on grain yield and nitrogen uptake of wheat with reduced nitrogen supply [J]. Acta Agronomica Sinica, 2024, 50(12): 3129-3143. |
[15] | WANG Cheng, MA Yang-Ming, WANG Chun-Yu, LI Zhi-Xin, LUO Jian-Sheng, PENG Zheng-Lan, LIU Ru-Hong-Ji, HUANG Xing-Hai, CAO Yun, PENG Zheng-Bo, MA Jun. Effects of cropping practices and nitrogen application on nutrient uptake characteristics and root vigor of hybrid indica rice [J]. Acta Agronomica Sinica, 2024, 50(12): 3069-3082. |
|