Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (4): 793-807.doi: 10.3724/SP.J.1006.2024.34145

• REVIEW •     Next Articles

Function and application of calcium in plant growth and development

WANG Yu(), GAO Geng-Dong, GE Meng-Meng, CHANG Ying, TAN Jing, GE Xian-Hong, WANG Jing, WANG Bo, ZHOU Guang-Sheng(), FU Ting-Dong   

  1. College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2023-07-31 Accepted:2023-10-29 Online:2024-04-12 Published:2023-11-17
  • Contact: * E-mail: zhougs@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program “Creation and Industrialization of Green Fertilizer and Efficiency Enhancing Products”(2021YFD1700201)

Abstract:

Calcium is one of the essential elements in crops. It is widely present in roots, stems, leaves, flowers, fruits, and seeds, and is of great significance for the growth and development of crops. Calcium is a difficult element to redistribute, and its absorption and transport are subject to transpiration. Therefore, crops often experience physiological calcium deficiency, which weakens their stress resistance and reduces both yield and quality. Calcium in crops has dual functions. It not only participates in the formation of cell walls and membranes but also plays a role in responding to various environmental stimuli and internal growth and development signals as an intracellular second messenger. The absorption and transportation of calcium in cells are essential for maintaining intracellular calcium homeostasis and ensuring calcium signal transduction. In recent years, the function and application of calcium in crops have been extensively studied. In this study, we describe the distribution, absorption, transportation, and demand of calcium in crops, introduce the symptoms and causes of calcium deficiency in crops, review the nutritional structure functions of calcium, the second messenger function and the mechanism of calcium signal generation, transmission, and decoding, and summarize the role of calcium in crop growth and development, including its effects on yield, quality, and stress resistance. Meanwhile, the future research direction is proposed.

Key words: crop, calcium deficiency, calcium absorption, calcium transporter proteins, the second messenger, stress resistance

Fig. 1

Role, distribution, and movement of calcium and calcium signaling in crop cells Ca2+ can bind phospholipids and membrane proteins to maintain cell membrane stability by binding to carboxyl residues, and can cross-link homogalacturonan to form an “egg box” structure to strengthen cell wall. Ca2+ is widely distributed in cell wall, membrane, cytoplasm, nucleus, chloroplast, mitochondria, and endoplasmic reticulum. [Ca2+]cyt is strictly controlled and maintained at about 100 nmol L-1 at resting state. The concentration of Ca2+ in the nucleus and mitochondria is relatively close to [Ca2+]cyt. Ca2+ concentration in cell wall, vacuole, and chloroplast reaches the level of mmol L-1, which is much higher than cytoplasmic Ca2+ concentration, and is an important for Ca2+ storage site. Receptor-like kinases (RLKs) sense extracellular stimulation and activate Ca2+ influx systems by phosphorylation. Ca2+ influx systems include cyclic nucleotide-gated channels (CNGCs), glutamate receptor-like channels (GLRs), mechanosensitive-like channels (MSLs), Mid1-complementary activity channels (MCAs), mechanosensitive piezoelectric channels (PIEZO), and hyperosmo-induced [Ca2+]cyt channels (OSCAs). Ca2+ flows from intercellular spaces into the cytoplasm through Ca2+ influx systems, producing calcium peaks that are then transferred extracellular by Ca2+-ATPase (ACAs/ECAs) and Ca2+/cationic exchangers (CAXs) against concentration gradients, resulting in transient or sustained calcium oscillations. At this time, receptors such as calmodulin/calmodulin-like (CaMs/CMLs) and calcineurin B proteins (CBLs) with EF-hands can bind Ca2+, identify, and decode the generated calcium peaks or calcium oscillations, and thus activating the catalytic or transcriptional activation activity of target proteins (CIPKs, CCaMKs, CAMTA, etc.). This in turn activates the downstream response in response to the stimulus. Calcium-dependent protein kinases (CDPKs) possess both EF-hands and catalytic domains, and can directly bind Ca2+ and activate kinase activity independently of other calcium receptors. The picture is restructured according to the references [4,14,23,52,62,65,70]."

Fig. 2

Influence of calcium application in crop growth and development"

[1] 白由路. 中国农业科学院植物营养与肥料研究60年. 植物营养与肥料学报, 2017, 23: 1409-1415.
Bai Y L. History of plant nutrition and fertilizer research in China. J Plant Nutr Fert, 2017, 23: 1409-1415. (in Chinese with English abstract)
[2] 胡铁军, 张怀杰, 郑佩君, 周飞, 魏杰. 硅钙磷镁钾肥对小麦扬麦20经济性状和土壤理化性状的影响. 浙江农业科学, 2020, 61(1): 15-16.
Hu T J, Zhang H J, Zheng P J, Zhou F, Wei J. Effects of silicon, calcium, magnesium, phosphorus and potassium fertilizer on economic characters of wheat Yangmai 20 and soil physical and chemical properties. J Zhejiang Agric Sci, 2020, 61(1): 15-16. (in Chinese with English abstract)
[3] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响. 作物学报, 2021, 47: 1666-1679.
doi: 10.3724/SP.J.1006.2021.04186
Wang J G, Zhang J L, Guo F, Tang C H, Yang S, Peng Z Y, Meng J J, Cui L, Li X G, Wan S B. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution and yield of peanut. Acta Agron Sin, 2021, 47: 1666-1679. (in Chinese with English abstract)
[4] Thor K. Calcium-nutrient and messenger. Front Plant Sci, 2019, 10: 440.
doi: 10.3389/fpls.2019.00440 pmid: 31073302
[5] 陈德伟, 汤寓涵, 石文波, 张夏燕, 陶俊, 赵大球. 钙调控植物生长发育的进展分析. 分子植物育种, 2019, 17: 3593-3601.
Chen D W, Tang Y H, Shi W B, Zhang X Y, Tao J, Zhao D Q. Progress in the regulation of calcium growth and development. Mol Plant Breed, 2019, 17: 3593-3601. (in Chinese with English abstract)
[6] Barberon M, Vermeer J E, De Bellis D, Wang P, Naseer S, Andersen T G, Humbel B M, Nawrath C, Takano J, Salt D E, Geldner N. Adaptation of root function by vutrient-induced plasticity of endodermal differentiation. Cell, 2016, 164: 447-459.
doi: 10.1016/j.cell.2015.12.021 pmid: 26777403
[7] White P J. The pathways of calcium movement to the xylem. J Exp Bot, 2001, 52: 891-899.
doi: 10.1093/jexbot/52.358.891 pmid: 11432906
[8] McAinsh M R, Webb A, Taylor J E, Hetherington A M. Stimulus-induced oscillations in guard cell cytosolic free calcium. Plant Cell, 1995, 7: 1207-1219.
doi: 10.2307/3870096
[9] White P J, Broadley M R. Calcium in plants. Ann Bot, 2003, 92: 487-511.
doi: 10.1093/aob/mcg164
[10] 宋雯佩. 果实摄取钙的规律、途径及调控机理的研究. 华南农业大学博士学位论文, 广东广州, 2018.
Song W P. The Study of Fruit Calcium Uptake Pattern, Pathways and Regulatory Mechanisms. PhD Dissertation of South China Agricultural University, Guangzhou, Guangdong, China, 2018. (in Chinese with English abstract)
[11] Hocking B, Tyerman S D, Burton R A, Gilliham M. Fruit calcium: transport and physiology. Front Plant Sci, 2016, 7: 569.
doi: 10.3389/fpls.2016.00569 pmid: 27200042
[12] Hepler P K, Winship L J. Calcium at the cell wall-cytoplast interface. J Integr Plant Biol, 2010, 52: 147-160.
doi: 10.1111/j.1744-7909.2010.00923.x
[13] 徐平宜. 中国北方不同类群植物草酸钙特征研究. 南开大学硕士学位论文, 天津, 2021.
Xu P Y. The Characteristics of Calcium Oxalate in Different Groups of Plants in Northern China. MS Thesis of Nankai University, Tianjin, China, 2021. (in Chinese with English abstract)
[14] 周卫, 汪洪. 植物钙吸收、转运及代谢的生理和分子机制. 植物学通报, 2007, 24: 762-778.
Zhou W, Wang H. The physiological and molecular mechanisms of Calcium uptake, transport and metabolism in plants. Chin Bull Bot, 2007, 24: 762-778. (in Chinese with English abstract)
[15] Hetherington A M, Brownlee C. The generation of Ca2+ signals in plants. Annu Rev Plant Biol, 2004, 55: 401-427.
pmid: 15377226
[16] 王守银, 张宁, 樊兆博, 宋涛, 刘志涛, 桑净净, 邢璐, 栾好安, 彭云. 不同形态钙对设施黄瓜生长及钙吸收的影响. 安徽农业科学, 2015, 43(34): 199-201.
Wang S Y, Zhang N, Fan Z B, Song T, Liu Z T, Sang J J, Xing L, Luan H A, Peng Y. Effects of different calcium forms on growth and assimilation of calcium of cucumber. J Anhui Agric Sci, 2015, 43(34): 199-201. (in Chinese with English abstract)
[17] 张鹏飞, 王立峰, 刘倩倩, 张小娟, 凌冬. 植物中Ca2+生理功能的研究进展. 中南农业科技, 2023, 44(5): 227-232.
Zhang P F, Wang L F, Liu Q Q, Zhang X J, Ling D. Advances in physiological functions of Ca2+ in plants. South-Central Agric Sci Technol, 2023, 44(5): 227-232. (in Chinese)
[18] 王学武. 水稻钙积累分布规律与调控研究. 湖南农业大学博士学位论文, 湖南长沙, 2007.
Wang X W. Studies on the Characters of Calcium Accumulation and Distribution of Rice and Its Regulation. PhD Dissertation of Hunan Agricultural University, Changsha, Hunan, China, 2007. (in Chinese with English abstract)
[19] 徐静静, 慈华聪, 何兴东, 薛苹苹, 赵雪莱, 郭健潭, 高玉葆. 天津盐渍化生境54种植物钙晶体与钙组分特征. 应用生态学报, 2012, 23: 1247-1253.
Xu J J, Ci H C, He X D, Xue P P, Zhao X L, Guo J T, Gao Y B. Features of calcium crystals and calcium components in 54 plant species in salinized habitats of Tianjin. J Appl Ecol, 2012, 23: 1247-1253. (in Chinese with English abstract)
[20] 杨利玲, 张桂兰. 土壤中的钙化学与植物的钙营养. 甘肃农业, 2006, (10): 272-273.
Yang L L, Zhang G L. Calcium chemistry in soil and calcium nutrition in plants. Gansu Agric, 2006, (10): 272-273. (in Chinese)
[21] 刘晓伟, 鲁剑巍, 李小坤, 卜容燕, 刘波. 直播冬油菜钙、镁、硫养分吸收规律. 中国油料作物学报, 2012, 34: 638-644.
Liu X W, Lu J W, Li X K, Bu R Y, Liu B. Absorption of calcium, magnesium and sulfur by winter rapeseed (Brassica napus) under direct-seeding cropping system. Chin J Oil Crop Sci, 2012, 34: 638-644. (in Chinese with English abstract)
[22] 龚明, 李英, 曹宗巽. 植物体内的钙信使系统. 植物学通报, 1990, (3): 19-29.
Gong M, Li Y, Cao Z X. Calcium messenger system in plants. Chin Bull Bot, 1990, (3): 19-29. (in Chinese)
[23] 郑远, 陈兆进. 植物细胞器钙信号研究进展. 植物生理学报, 2015, 51: 1195-1203.
Zheng Y, Chen Z J. Organellar calcium signaling in plants. Plant Physiol J, 2015, 51: 1195-1203. (in Chinese with English abstract)
[24] 邹娟, 鲁剑巍, 吴江生, 李银水. 4个双低甘蓝型油菜品种钙、镁、硫吸收动态. 华中农业大学学报, 2009, 28: 295-299.
Zou J, Lu J W, Wu J S, Li Y S. Uptake dynamics of calcium, magnesium and sulfur in four double low Brassica napus varieties. J Huazhong Agric Univ, 2009, 28: 295-299. (in Chinese with English abstract)
[25] 刘珂珂, 于宏, 高华鑫, 郭峰, 张佳蕾, 王建国, 万书波. 施钙对酸性土花生钙素吸收与积累的影响. 中国油料作物学报, 2023 [2023-10-16]. https://kns.cnki.net/kcms/detail/42.1429.s.20230327.1134.001.html.
Liu K K, Yu H, Gao H X, Gao F, Zhang J L, Wang J G, Wan S B. Effects of Ca fertilizer application on Ca absorption and accumulation of peanut in acid soil. Chin J Oil Crop Sci, 2023 [2023-10-16]. https://kns.cnki.net/kcms/detail/42.1429.s.20230327.1134.001.html. (in Chinese with English abstract)
[26] 马文博. 高钙酵素水溶肥制备及对蔬菜钙含量和产量影响. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2022.
Ma W B. Preparation of High Calcium Enzyme Water-soluble Fertilizer and Its Effect on Vegetable Calcium Content and Yield. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2022. (in Chinese with English abstract)
[27] 林葆, 周卫. 棕壤中花生钙素营养的化学诊断与施钙量问题的探讨. 土壤通报, 1997, 28(3): 127-130.
Lin B, Zhou W. Chemical diagnosis of peanut calcin nutrition in brown soil and discussion on the amount of calcium application. Chin J Soil Sci, 1997, 28(3): 127-130. (in Chinese)
[28] 李兆林, 才卓伟. 钙素营养对大豆的影响研究概述. 农业系统科学与综合研究, 2009, 25: 487-489.
Li Z L, Cai Z W. A review of the influence of calcium on soybean. Syst Sci Compr Stud Agric, 2009, 25: 487-489. (in Chinese with English abstract)
[29] 刘永菁, 周淑清. 番茄、秋白菜钙营养的研究. 辽宁农业科学, 1988, (5): 22-25.
Liu Y J, Zhou S Q. Studies on calcium nutrition of tomato and Chinese cabbage. J Liaoning Agric Sci, 1988, (5): 22-25. (in Chinese)
[30] 韩配配. 不同营养元素缺乏对甘蓝型油菜营养生长及根系生长相关基因表达的影响. 中国农业科学院硕士学位论文, 北京, 2016.
Han P P. The Effects of Different Nutrient Deficiencies on Vegetative Growth and the Expressions of Root Growth-related Genes in Rapeseed Seedlings (Brassica napus L.). MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2016. (in Chinese with English abstract)
[31] 王一斐, 周江明, 黄俊峰. 硼镁钙肥对油菜生长及产量的影响. 中国农技推广, 2019, 35(10): 83-85.
Wang Y F, Zhou J M, Huang J F. Effects of borax, magnesium and calcium fertilizer on growth and yield of rape. China Agric Technol Ext, 2019, 35(10): 83-85. (in Chinese)
[32] 李树学. 水稻缺素防治技术浅析. 农民致富之友, 2017, (24): 139.
Li S X. Analysis of prevention and control technology of rice deficiency. Nongmin Zhifu Zhiyou, 2017, (24): 139. (in Chinese)
[33] 俞玉. 玉米补钙防止“牛尾巴”. 农家之友, 2016, (9): 56.
Yu Y. Corn calcium supplements to prevent “cow tail”. NongJia ZhiYou, 2016, (9): 56. (in Chinese)
[34] Wang Y, Martins L B, Sermons S, Balint-Kurti P. Genetic and physiological characterization of a calcium deficiency phenotype in maize. G3: Genes Genom Genet, 2020, 10: 1963-1970.
[35] 李晓彤, 杨婉莹, 孙莎莎, 巩彪, 史庆华. 外源褪黑素对番茄缺钙胁迫的缓解效应. 植物生理学报, 2019, 55: 169-176.
Li X T, Yang W Y, Sun S S, Gong B, Shi Q H. Effect of exogenous melatonin on alleviating calcium deficiency stress in tomato. Plant Physiol J, 2019, 55: 169-176. (in Chinese with English abstract)
[36] 徐谦, 李登云, 李配, 修明霞, 姜兴盛. 果树巧施钙肥提质增效. 果树资源学报, 2021, 2(3): 81-83.
Xu Q, Li D Y, Li P, Xiu M X, Jiang X S. Calcium fertilizer of fruit trees is used to improve fruit quality and efficiency. J Fruit Resour, 2021, 2(3): 81-83. (in Chinese with English abstract)
[37] 刘银发, 戴熙燕. 合理施肥预防油菜生理性缺钙. 江西农业, 2015, (11): 64.
Liu Y F, Dai X Y. Rational fertilization prevents physiological calcium deficiency in rapeseed. Jiangxi Agric, 2015, (11): 64. (in Chinese)
[38] 李新国, 万书波. 钙对花生生长发育调控的研究进展. 山东农业科学, 2011, 43(8): 65-67.
Li X G, Wan S B. Research progress on regulation of calcium to growth and development of peanut (Arachis hypogaea L.). J Shandong Agric Sci, 2011, 43(8): 65-67. (in Chinese with English abstract)
[39] 贾立国, 李利, 秦永林, 樊明寿. 马铃薯钙素营养研究进展. 北方农业学报, 2018, 46(1): 72-75.
Jia L G, Li L, Qin Y L, Fan M S. Research progress of calcium nutrition in potato. J North Agric, 2018, 46(1): 72-75. (in Chinese with English abstract)
[40] Wang X Q, Liu X M, Wang W. National-scale distribution and its influence factors of calcium concentrations in Chinese soils from the China Global Baselines project. J Geochem Explor, 2022, 233: 106907.
doi: 10.1016/j.gexplo.2021.106907
[41] 刘芳. 钾镁互作对番茄生长、产量及钾、钙、镁养分吸收的影响. 宁夏大学硕士学位论文, 宁夏银川, 2022.
Liu F. Effects of K-Mg Interaction on Growth, Yield and K, Ca and Mg Uptake in Tamato. MS Thesis of Ningxia University, Yinchuan, Ningxia, China, 2022. (in Chinese with English abstract)
[42] 路亚. 施钙对山东花生土壤特性及花生生长发育的调控机制. 湖南农业大学博士学位论文, 湖南长沙, 2022.
Lu Y. Effects of Calcium Application on Soil Propertiesand Growth and Development of Peanut in Shandong Province. PhD Dissertation of Hunan Agricultural University, Changsha, Hunan, China, 2022. (in Chinese with English abstract)
[43] 林锋. 琯溪蜜柚果园钙、镁、硫营养状况及缺镁矫治措施研究. 福建农林大学硕士学位论文, 福建福州, 2013.
Lin F. The Research on Calcium Magnesium Sulfur Nutritional Status and Correctional Measures about Lack of Magnesium about Guanxi Honey Pomelo. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2013. (in Chinese with English abstract)
[44] 鲁剑巍. 湖北省柑橘园土壤: 植物养分状况与柑橘平衡施肥技术研究. 华中农业大学博士学位论文, 湖北武汉, 2003.
Lu J W. Study on Soil and Plant Nutrition Status and Balanced Fertilization Techniques of the Citrus Orchards in Hubei. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2003. (in Chinese with English abstract)
[45] Maclin D, Donald T S, Allen L R, Matthew G. Calcium storage in plants and the implications for calcium biofortification. Protoplasma, 2010, 247: 215-231.
doi: 10.1007/s00709-010-0182-0 pmid: 20658253
[46] Liang M, Zhang S. Why are crops prone to show symptoms of calcium deficiency in abnormal weather. Res World Agric Econ, 2020, 1: 17-23.
doi: 10.36956/rwae.v1i1.164
[47] 马建梅. 施用钾肥对土壤中钙、镁有效性及其效应的影响. 宁夏大学硕士学位论文, 宁夏银川, 2021.
Ma J M. Effects of Different Potassium Levels on Availability of Calcium and Magnesium in the Soil and Effection. MS Thesis of Ningxia University, Yinchuan, Ningxia, China, 2021. (in Chinese with English abstract)
[48] Li S, Bashline L, Lei L, Gu Y. Cellulose synthesis and its regulation. Arabidopsis Book, 2014, 12: e0169.
doi: 10.1199/tab.0169
[49] Lampugnani E R, Khan G A, Somssich M, Persson S. Building a plant cell wall at a glance. J Cell Sci, 2018, 131: jcs207373.
doi: 10.1242/jcs.207373
[50] 王艳婷. 植物细胞壁果胶结构特性与木质纤维素高效酶解产糖分子机理的研究. 华中农业大学博士学位论文, 湖北武汉, 2018.
Wang Y T. Characterization of Pectin Features that Distinctively Affect Lignocellulose Enzymatic Saccharification in Plants. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2018. (in Chinese with English abstract)
[51] Bischoff V, Nita S, Neumetzler L, Schindelasch D, Urbain A, Eshed R, Persson S, Delmer D, Scheible W R. TRICHOME BIREFRINGENCE and its homolog AT5G01360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis. Plant Physiol, 2010, 153: 590-602.
doi: 10.1104/pp.110.153320 pmid: 20388664
[52] Hepler P K. Calcium: a central regulator of plant growth and development. Plant Cell, 2005, 17: 2142-2155.
doi: 10.1105/tpc.105.032508 pmid: 16061961
[53] Díaz-Corona D A, López-López M E, Ayón-Reyna L E, López-Velázquez J G, López-Zazueta B A, Vega-García M O. Impact of hot water-calcium on the activity of cell wall degrading and antioxidant system enzymes in mango stored at chilling temperature. J Food Biochem, 2020, 44: e13286.
[54] Tang Y H, Zhao D Q, Meng J S, Tao J. EGTA reduces the inflorescence stem mechanical strength of herbaceous peony by modifying secondary wall biosynthesis. Hortic Res, 2019, 6: 36.
doi: 10.1038/s41438-019-0117-7
[55] Li C, Tao J, Zhao D Q, You C, Ge J. Effect of calcium sprays on mechanical strength and cell wall fractions of herbaceous peony (Paeonia lactiflora Pall.) inflorescence stems. Int J Mol Sci, 2012, 13: 4704-4713.
doi: 10.3390/ijms13044704
[56] Perik R R J, Razé D, Ferrante A, Doorn W G V. Stem bending in cut Gerbera jamesonii flowers: effects of a pulse treatment with sucrose and calcium ions. Postharvest Biol Technol, 2014, 98: 7-13.
doi: 10.1016/j.postharvbio.2014.06.008
[57] Bosch M, Cheung A Y, Hepler P K. Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol, 2005, 138: 1334-1346.
doi: 10.1104/pp.105.059865 pmid: 15951488
[58] Benga G, Holmes R P. Interactions between components in biological membranes and their implications for membrane function. Prog Biophys Mol Biol, 1984, 43: 195-257.
doi: 10.1016/0079-6107(84)90014-2
[59] 王云堂. 钙在植物营养中的作用分析. 种子科技, 2019, 37(6): 32-33.
Wang Y T. Analysis on the role of calcium in plant nutrition. Seed Sci Technol, 2019, 37(6): 32-33. (in Chinese)
[60] Zhang T, Yang J, Sun Y W, Kang Y, Yang J, Qi Z. Calcium deprivation enhances non-selective fluid-phase endocytosis and modifies membrane lipid profiles in Arabidopsis roots. J Plant Physiol, 2018, 226: 22-30.
doi: 10.1016/j.jplph.2018.04.002
[61] Varyukhina S, Lamazière A, Delaunay J L, De Wreede A, Ayala-Sanmartin J. The Ca2+ and phospholipid-binding protein Annexin A2 is able to increase and decrease plasma membrane order. Biochim Biophys Acta, 2022, 1864: 183810.
[62] Luan S, Wang C. Calcium signaling mechanisms across kingdoms. Annu Rev Cell Dev Biol, 2021, 37: 311-340.
doi: 10.1146/annurev-cellbio-120219-035210 pmid: 34375534
[63] Mochida S. Presynaptic calcium channels. Int J Mol Sci, 2019, 20: 2217.
doi: 10.3390/ijms20092217
[64] Peiter E, Maathuis F J, Mills L N, Knight H, Pelloux J, Hetherington A M, Sanders D. The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature, 2005, 434: 404-408.
doi: 10.1038/nature03381
[65] Demidchik V, Shabala S, Isayenkov S, Cuin T A, Pottosin I. Calcium transport across plant membranes: mechanisms and functions. New Phytol, 2018, 220: 49-69.
doi: 10.1111/nph.15266 pmid: 29916203
[66] Hamilton E S, Schlegel A M, Haswell E S. United in diversity: mechanosensitive ion channels in plants. Annu Rev Plant Biol, 2015, 66: 113-137.
doi: 10.1146/annurev-arplant-043014-114700 pmid: 25494462
[67] Laohavisit A, Davies J M. Annexins. New Phytol, 2011, 189: 40-53.
doi: 10.1111/j.1469-8137.2010.03533.x pmid: 21083562
[68] Laohavisit A, Richards S L, Shabala L, Chen C, Colaço R D, Swarbreck S M, Shaw E, Dark A, Shabala S, Shang Z, Davies J M. Salinity-induced calcium signaling and root adaptation in Arabidopsis require the calcium regulatory protein annexin1. Plant Physiol, 2013, 163: 253-262.
doi: 10.1104/pp.113.217810 pmid: 23886625
[69] Gerke V, Creutz C E, Moss S E. Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol, 2005, 6: 449-461.
[70] Tong T, Li Q, Jiang W, Chen G, Xue D W, Deng F L, Zeng F R, Chen Z H. Molecular evolution of calcium signaling and transport in plant adaptation to abiotic stress. Int J Mol Sci, 2021, 22: 12308.
doi: 10.3390/ijms222212308
[71] Huda K M, Banu M S, Tuteja R, Tuteja N. Global calcium transducer P-type Ca²⁺-ATPases open new avenues for agriculture by regulating stress signalling. J Exp Bot, 2013, 64: 3099-3109.
doi: 10.1093/jxb/ert182 pmid: 23918957
[72] Pittman J K, Hirschi K D. CAX-ing a wide net: Cation/H+ transporters in metal remediation and abiotic stress signalling. Plant Biol (Stuttg), 2016, 18: 741-749.
doi: 10.1111/plb.2016.18.issue-5
[73] Tidow H, Poulsen L R, Andreeva A, Knudsen M, Hein K L, Wiuf C, Palmgren M G, Nissen P. A bimodular mechanism of calcium control in eukaryotes. Nature, 2012, 491: 468-472.
doi: 10.1038/nature11539
[74] Meneghelli S, Luoni L, De Michelis M I, Heparin stimulates a plasma membrane Ca2+-ATPase of Arabidopsis thaliana. J Biochem, 2008, 143: 253-259.
pmid: 18006516
[75] Bonza M C, De Michelis M I. The plant Ca2+-ATPase repertoire: biochemical features and physiological functions. Plant Biol (Stuttg), 2011, 13: 421-430.
doi: 10.1111/plb.2011.13.issue-3
[76] Yadav A K, Shankar A, Jha S K, Kanwar P, Pandey A, Pandey G K. A rice tonoplastic calcium exchanger, OsCCX2 mediates Ca2+/cation transport in yeast. Sci Rep, 2015, 5: 17117.
doi: 10.1038/srep17117 pmid: 26607171
[77] Thor K, Peiter E. Cytosolic calcium signals elicited by the pathogen-associated molecular pattern flg22 in stomatal guard cells are of an oscillatory nature. New Phytol, 2014, 204: 873-881.
doi: 10.1111/nph.13064 pmid: 25243759
[78] 郑仲仲, 沈金秋, 潘伟槐, 潘建伟. 植物钙感受器及其介导的逆境信号途径. 遗传, 2013, 35: 875-884.
Zheng Z Z, Shen J Q, Pan W H, Pan J W. Calcium sensors and their stress signaling pathways in plants. Hereditas, 2013, 35: 875-884. (in Chinese with English abstract)
[79] Harper J F, Harmon A. Plants, symbiosis and parasites: a calcium signaling connection. Nat Rev Mol Cell Biol, 2005, 6: 555-566.
doi: 10.1038/nrm1679
[80] Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol, 2004, 134: 43-58.
doi: 10.1104/pp.103.033068 pmid: 14730064
[81] Upadhyaya H, Dutta B K, Sahoo L, Panda S K. Comparative effect of Ca, K, Mn and B on post-drought stress recovery in tea [Camellia sinensis (L.) O. Kuntze]. Am J Plant Sci, 2012, 3: 443-460.
doi: 10.4236/ajps.2012.34054
[82] Yuan F, Yang H M, Xue Y, Kong D D, Ye R, Li C J, Zhang J Y, Theprungsirikul L, Shrift T, Krichilsky B, Johnson D M, Swift G B, He Y K, Siedow J N, Pei Z M. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature, 2014, 514: 367-371.
doi: 10.1038/nature13593
[83] Hamilton E S, Jensen G S, Maksaev G, Katims A, Sherp A M, Haswell E S. Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination. Science, 2015, 350: 438-441.
doi: 10.1126/science.aac6014 pmid: 26494758
[84] He L R, Yang X Y, Wang L C, Zhu L F, Zhou T, Deng J W, Zhang X L. Molecular cloning and functional characterization of a novel cotton CBL-interacting protein kinase gene (GhCIPK6) reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Biochem Biophys Res Commun, 2013, 435: 209-215.
doi: 10.1016/j.bbrc.2013.04.080
[85] Jing P, Zou J Z, Kong L, Hu S Q, Wang B Y, Yang J, Xie G S. OsCCD1, a novel small calcium-binding protein with one EF-hand motif, positively regulates osmotic and salt tolerance in rice. Plant Sci, 2016, 247: 104-114.
doi: 10.1016/j.plantsci.2016.03.011 pmid: 27095404
[86] 陈娇娆, 续旭, 胡章立, 杨爽. 植物感受盐胁迫及相关钙信号的研究进展. 植物研究, 2022, 42: 713-720.
doi: 10.7525/j.issn.1673-5102.2022.04.021
Chen J L, Xu X, Hu Z L, Yang S. Recent Advances on salt stress and related calcium signals in plants. Bull Bot Res, 2022, 42: 713-720. (in Chinese with English abstract)
[87] Choi W G, Toyota M, Kim S H, Hilleary R, Gilroy S. Salt stress- induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants. Proc Natl Acad Sci USA, 2014, 111: 6497-6502.
doi: 10.1073/pnas.1319955111
[88] Feng W, Kita D, Peaucelle A, Cartwright H N, Doan V, Duan Q, Liu M C, Maman J, Steinhorst L, Schmitz-Thom I, Yvon R, Kudla J, Wu H M, Cheung A Y, Dinneny J R. The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr Biol, 2018, 28: 666-675.
doi: S0960-9822(18)30025-3 pmid: 29456142
[89] 项洪涛, 郑殿峰, 何宁, 李琬, 王曼力, 王诗雅. 植物对低温胁迫的生理响应及外源脱落酸缓解胁迫效应的研究进展. 草业学报, 2021, 30(1): 208-219.
doi: 10.11686/cyxb2020091
Xiang H T, Zheng D F, He N, Li W, Wang M L, Wang S Y. Research progress on physiological response of plants to low temperature and the amelioration effcectiveness of exogenous ABA. Acta Pratac Sin, 2021, 30(1): 208-219. (in Chinese with English abstract)
[90] Miura K, Furumoto T. Cold signaling and cold response in plants. Int J Mol Sci, 2013, 14: 5312-5337.
doi: 10.3390/ijms14035312 pmid: 23466881
[91] Mori K, Renhu N, Naito M, Nakamura A, Shiba H, Yamamoto T, Suzaki T, Iida H, Miura K. Ca2+-permeable mechanosensitive channels MCA1 and MCA2 mediate cold-induced cytosolic Ca2+ increase and cold tolerance in Arabidopsis. Sci Rep, 2018, 8: 550.
doi: 10.1038/s41598-017-17483-y
[92] Wang J C, Ren Y L, Liu X, Luo S, Zhang X, Liu X, Lin Q B, Zhu S S, Wan H, Yang Y, Zhang Y, Lei B, Zhou C L, Pan T, Wang Y F, Wu M M, Jing R N, Xu Y, Han M, Wu F Q, Lei C L, Guo X P, Cheng Z J, Zheng X M, Wang Y H, Zhao Z G, Jiang L, Zhang X, Wang Y F, Wang H Y, Wan J M. Transcriptional activation and phosphorylation of OsCNGC9 confer enhanced chilling tolerance in rice. Mol Plant, 2021, 14: 315-329.
doi: 10.1016/j.molp.2020.11.022 pmid: 33278597
[93] Liu Q B, Ding Y L, Shi Y T, Ma L, Wang Y, Song C P, Wilkins K A, Davies J M, Knight H, Knight M R, Gong Z Z, Guo Y, Yang S H. The calcium transporter ANNEXIN1 mediates cold-induced calcium signaling and freezing tolerance in plants. EMBO J, 2021, 40: e104559.
doi: 10.15252/embj.2020104559
[94] Chu M X, Li J J, Zhang J Y, Shen S F, Li C N, Gao Y J, Zhang S Q. AtCaM4 interacts with a Sec14-like protein, PATL1, to regulate freezing tolerance in Arabidopsis in a CBF-independent manner. J Exp Bot, 2018, 69: 5241-5253.
doi: 10.1093/jxb/ery278
[95] Zhang H F, Yang B, Liu W Z, Li H W, Wang L, Wang B Y, Deng M, Liang W W, Deyholos M K, Jiang Y Q. Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.). BMC Plant Biol, 2014, 14: 8.
doi: 10.1186/1471-2229-14-8
[96] Iqbal Z, Memon A G, Ahmad A, Iqbal M S. Calcium mediated cold acclimation in plants: underlying signaling and molecular mechanisms. Front Plant Sci, 2022, 13: 855559.
doi: 10.3389/fpls.2022.855559
[97] Iqbal Z, Shariq Iqbal M, Singh S P, Buaboocha T. Ca2+/Calmodulin complex triggers CAMTA transcriptional machinery under stress in plants: signaling cascade and molecular regulation. Front Plant Sci, 2020, 11: 598327.
doi: 10.3389/fpls.2020.598327
[98] Kidokoro S, Yoneda K, Takasaki H, Takahashi F, Shinozaki K, Yamaguchi-Shinozaki K. Different cold-signaling pathways function in the responses to rapid and gradual decreases in temperature. Plant Cell, 2017, 29: 760-774.
doi: 10.1105/tpc.16.00669
[99] Wang Q, Yang S, Wan S B, Li X G. The significance of calcium in photosynthesis. Int J Mol Sci, 2019, 20: 1353.
doi: 10.3390/ijms20061353
[100] 陈向明, 郑国生, 张圣旺. 钙对保护地栽培牡丹光合特性的影响. 园艺学报, 2001, 28: 572-574.
Chen X M, Zheng G S, Zhang S W. Effects of calcium on photosynthetic characteristics of peony cultivated in protected areas. Acta Hortic Sin, 2001, 28: 572-574. (in Chinese with English abstract)
[101] 李敏, 吉文丽, 张恒, 李程程, 杨静萱, 张延龙. 外源Ca2+对油用牡丹凤丹白幼苗光合特性的影响. 西北林学院学报, 2017, 32(5): 39-45.
Li M, Ji W L, Zhang H, Li C C, Yang J X, Zhang Y L. Effects of exogenous calcuim on photosynthetic characteristics and biomass of oil peony ostii ‘Fengdan White’. Acta Agric Boreali-Occident Sin, 2017, 32(5): 39-45. (in Chinese with English abstract)
[102] Feng N J, Yu M L, Li Y, Jin D, Zheng D F. Prohexadione-calcium alleviates saline-alkali stress in soybean seedlings by improving the photosynthesis and up-regulating antioxidant defense. Ecotoxicol Environ Saf, 2021, 220: 112369.
doi: 10.1016/j.ecoenv.2021.112369
[103] 秦喜彤. 钙调控对春玉米产量和氮肥利用效率的影响. 吉林大学硕士学位论文, 吉林长春, 2020.
Qin X T. Effects of Calcium Regulation on Yield and Nitrogen Utilization Efficiency of Spring Maize. MS Thesis of Jilin University, Changchun, Jilin, China, 2020. (in Chinese with English abstract)
[104] Weinl S, Held K, Schlücking K, Steinhorst L, Kuhlgert S, Hippler M, Kudla J. A plastid protein crucial for Ca2+-regulated stomatal responses. New Phytol, 2008, 179: 675-686.
doi: 10.1111/j.1469-8137.2008.02492.x pmid: 18507772
[105] Kreimer G, Melkonian M, Holtum J A, Latzko E. Stromal free calcium concentration and light-mediated activation of chloroplast fructose-1,6-bisphosphatase. Plant Physiol, 1988, 86: 423-428.
doi: 10.1104/pp.86.2.423 pmid: 16665924
[106] Nishiyama Y, Yamamoto H, Allakhverdiev S I, Inaba M, Yokota A, Murata N. Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J, 2001, 20: 5587-5594.
doi: 10.1093/emboj/20.20.5587 pmid: 11598002
[107] Takamatsu H, Takagi S. Actin-dependent chloroplast anchoring is regulated by Ca2+-calmodulin in spinach mesophyll cells. Plant Cell Physiol, 2011, 52: 1973-1982.
doi: 10.1093/pcp/pcr130 pmid: 21949029
[108] Galeriani T M, Neves G O, Santos Ferreira J H, Oliveira R N, Oliveira S L, Calonego J C, Crusciol C A C. Calcium and boron fertilization improves soybean photosynthetic efficiency and grain yield. Plants (Basel), 2022, 11: 2937.
doi: 10.3390/plants11212937
[109] Zhang J Z, Li B S, Zhang J L, Christie P, Li X L. Organic fertilizer application and Mg fertilizer promote banana yield and quality in an Udic Ferralsol. PLoS One, 2020, 15: e0230593.
doi: 10.1371/journal.pone.0230593
[110] Perveen S, Parveen A, Saeed M, Arshad R, Zafar S. Interactive effect of glycine, alanine, and calcium nitrate Ca(NO3)2 on wheat (Triticum aestivum L.) under lead (Pb) stress. Environ Sci Pollut Res Int, 2022, 29: 37954-37968.
doi: 10.1007/s11356-021-17348-y
[111] Kanu A S, Ashraf U, Mo Z, Sabir S U, Baggie I, Charley C S, Tang X. Calcium amendment improved the performance of fragrant rice and reduced metal uptake under cadmium toxicity. Environ Sci Pollut Res Int, 2019, 26: 24748-24757.
doi: 10.1007/s11356-019-05779-7
[112] 张元棋. 外源钙对酸雨胁迫下水稻氮利用和稻米品质的影响. 江南大学硕士学术论文, 江苏无锡, 2022.
Zhang Y Q. Effect of Exogenous Ca2+ on Plasma Membrane Composition, Ca2+ Distribution and Transport in Rice Roots under Acid Rain Stress. MS Thesis of Jiangnan University, Wuxi, Jiangsu, China, 2022. (in Chinese with English abstract)
[113] Metwally A M, Radi A A, El-Shazoly R M, Hamada A M. The role of calcium, silicon and salicylic acid treatment in protection of canola plants against boron toxicity stress. J Plant Res, 2018, 131: 1015-1028.
doi: 10.1007/s10265-018-1008-y pmid: 29357048
[114] Hou J F, Li J, Yang Y, Wang Z X, Chang B W, Yu X W, Yuan L Y, Wang C G, Chen G H, Tang X Y, Zhu S D. Physiological and transcriptomic analyses elucidate that exogenous calcium can relieve injuries to potato plants (Solanum tuberosum L.) under weak light. Int J Mol Sci, 2019, 20: 5133.
doi: 10.3390/ijms20205133
[115] 张浩, 郑云普, 叶嘉, 高伟, 乔雅君, 戴川景, 赵雨欣, 石少婕. 外源钙离子对盐胁迫玉米气孔特征、光合作用和生物量的影响. 应用生态学报, 2019, 30: 923-930.
doi: 10.13287/j.1001-9332.201903.020
Zhang H, Zheng Y P, Ye J, Gao W, Qiao Y J, Dai C J, Zhao Y X, Shi S J. Effects of exogenous Ca2+ on stomatal traits, photosynthesis, and biomass of maize seedings under salt stress. J Appl Ecol, 2019, 30: 923-930. (in Chinese with English abstract)
[116] Li Y W, Liang C J. Exogenous application of Ca2+ mitigates simulated acid rain stress on soybean productivity and quality by maintaining nutrient absorption. Environ Sci Pollut Res Int, 2019, 26: 4975-4986.
doi: 10.1007/s11356-018-4034-3
[117] Lin K H, Lin T Y, Wu C W, Chang Y S. Protective effects of salicylic acid and calcium chloride on sage plants (Salvia officinalis L. and Salvia elegans Vahl) under high-temperature stress. Plants (Basel), 2021, 10: 2110.
doi: 10.3390/plants10102110
[118] Sugimoto T, Watanabe K, Yoshida S, Aino M, Furiki M, Shiono M, Matoh T, Biggs A R. Field application of calcium to reduce phytophthora stem rot of soybean, and calcium distribution in plants. Plant Dis, 2010, 94: 812-819.
doi: 10.1094/PDIS-94-7-0812 pmid: 30743551
[119] 陈卫平, 杨阳, 谢天, 王美娥, 彭驰, 王若丹. 中国农田土壤重金属污染防治挑战与对策. 土壤学报, 2018, 55: 261-272.
Chen W P, Yang Y, Xie T, Wang M E, Peng C, Wang R D. Challenges and countermeasures for heavy metal pollution control in farmalands of China. Acta Pedol Sin, 2018, 55: 261-272. (in Chinese with English abstract)
[120] Ahmad P, Abdel Latef A A, Abd Allah E F, Hashem A, Sarwat M, Anjum N A, Gucel S. Calcium and potassium supplementation enhanced growth, osmolyte secondary metabolite production, and enzymatic antioxidant machinery in cadmium-exposed chickpea (Cicer arietinum L.). Front Plant Sci, 2016, 7: 513.
[121] Gong X M, Liu Y G, Huang D L, Zeng G M, Liu S B, Tang H, Zhou L, Hu X, Zhou Y Y, Tan X F. Effects of exogenous calcium and spermidine on cadmium stress moderation and metal accumulation in Boehmeria nivea (L.) Gaudich. Environ Sci Pollut Res Int, 2016, 23: 8699-8708.
doi: 10.1007/s11356-016-6122-6
[122] Zhang S, Li Q, Nazir M M, Ali S, Ou-Yang Y, Ye S, Zeng F. Calcium plays a double-edged role in modulating cadmium uptake and translocation in rice. Int J Mol Sci, 2020, 21: 8058.
doi: 10.3390/ijms21218058
[123] Nazir M M. 钙和氧化钙纳米颗粒减缓大麦砷和镉毒害及其机理. 浙江大学博士学位论文, 浙江杭州, 2022.
Nazir M M. Alleviation of Arsenic and Cadmium Toxicity in Barley by Calcium and Calcium Oxide Nanoparticles (CaO NPs) and their Mechanisms. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2022. (in Chinese with English abstract)
[124] Ji R J, Zhou L M, Liu J L, Wang Y, Yang L, Zheng Q S, Zhang C, Zhang B, Ge H M, Yang Y H, Zhao F G, Luan S, Lan W Z. Calcium-dependent protein kinase CPK31 interacts with arsenic transporter AtNIP1;1 and regulates arsenite uptake in Arabidopsis thaliana. PLoS One, 2017, 12: e0173681.
doi: 10.1371/journal.pone.0173681
[125] 尤召阳, 王建国, 刘颖, 闫振辉, 张佳蕾, 万书波. 氮钙互作对花生氮素利用及钙素积累的影响. 中国油料作物学报, 2023 [2023-10-16]. https://kns.cnki.net/kcms/detail/42.1429.s.20230614.1821.001.html.
You Z Y, Wang J G, Liu Y, Yan Z H, Zhang J L, Wan S B. Interactive effect of N and Ca on the nitrogen metabolism enzyme activity, nitrogen utilization and calcium accumulation of peanut. Chin J Oil Crop Sci, 2023 [2023-10-16]. https://kns.cnki.net/kcms/detail/42.1429.s.20230614.1821.001.html. (in Chinese with English abstract)
[126] 杜英俊, 杨洁, 张琪, 陈泽浩, 毛柯, 马锋旺, 李超. 喷施不同钙肥以及钙肥混施激素对‘蜜脆’苹果果实的影响. 陕西农业科学, 2022, 68(6): 54-63.
Du Y J, Yang J, Zhang Q, Chen Z H, Mao K, Ma F W, Li C. Effects of spraying different calcium fertilizers and mixed application of calcium fertilizers with hormones on ‘Honey Crisp’ apple fruit. J Shaanxi Agric Sci, 2022, 68(6): 54-63. (in Chinese with English abstract)
[127] 张贤聪. 喷施钙肥对蓝莓品质及果胶降解的影响. 四川农业大学硕士学位论文, 四川雅安, 2019.
Zhang X C. Effects of Calcium Fertilizer Spraying on Blueberry Quality and Pectin Degradation. MS Thesis of Sichuan Agricultural University, Ya’an, Sichuan, China, 2019. (in Chinese with English abstract)
[128] Amarante C V T, Katsurayama J M, Pereira A J, Steffens C A. Apple orchard spraying with commercial sources of calcium to improve fruit quality. Acta Hortic, 2020, 1275: 201-206.
[129] El-Hady E S, Merwad M A, Shahin M F M, Hagagg L F. Influence of foliar spray with some calcium sources on flowering, fruit set, yield and fruit quality of olive Kalmata and Manzanillo cultivars under salt stress. Bull Natl Res Centre, 2020, 44: 197.
doi: 10.1186/s42269-020-00452-3
[130] Wahab M, Ullah Z, Sajid M, Usman M, Sohail K, Nayab S, Ullah M. Effect of calcium sources as foliar applications on fruit quality of peach cultivars. Prog Hortic, 2016, 48: 167-172.
[131] El-Ghany M F A, El-Kherbawy M I, Abdel-Aal Y A, El-Dek S I, Abd El-Baky T. Comparative study between traditional and nano calcium phosphate fertilizers on growth and production of snap bean (Phaseolus vulgaris L.) plants. Nanomaterials (Basel), 2021, 11: 2913.
doi: 10.3390/nano11112913
[132] Bakshi A, Choi W G, Kim S H, Gilroy S. The vacuolar Ca2+ transporter CATION EXCHANGER 2 regulates cytosolic calcium homeostasis, hypoxic signaling, and response to flooding in Arabidopsis thaliana. New Phytol, 2023, 240: 1830-1847.
doi: 10.1111/nph.v240.5
[133] Islam M M, Munemasa S, Hossain M A, Nakamura Y, Mori I C, Murata Y. Roles of AtTPC1, vacuolar two pore channel 1, in Arabidopsis stomatal closure. Plant Cell Physiol, 2010, 51: 302-311.
doi: 10.1093/pcp/pcq001
[1] HU Ming-Ming, DING Feng, PENG Zhi-Yun, XIANG Kai-Hong, LI Yu, ZHANG Yu-Jie, YANG Zhi-Yuan, SUN Yong-Jian, and MA Jun. Effects of straw returning to field combined with water and N management on rice yield formation and N uptake and utilization under diversified cropping patterns [J]. Acta Agronomica Sinica, 2024, 50(5): 1236-1252.
[2] CAO Xin-Yuan, DU Ming-Li, WANG Yu-Cheng, CHEN Xin-Hua, CHEN Jia-Xin, LING Xiao-Xia, HUANG Jian-Liang, PENG Shao-Bing, DENG Nan-Yan. Annual yield gap and the causes assessment for rice-rapeseed cropping system: an example from Wuxue city, Hubei province [J]. Acta Agronomica Sinica, 2024, 50(5): 1287-1299.
[3] YANG Li-Da, REN Jun-Bo, PENG Xin-Yue, YANG Xue-Li, LUO Kai, CHEN Ping, YUAN Xiao-Ting, PU Tian, YONG Tai-Wen, YANG Wen-Yu. Crop growth characteristics and its effects on yield formation through nitrogen application and interspecific distance in soybean/maize strip relay intercropping [J]. Acta Agronomica Sinica, 2024, 50(1): 251-264.
[4] YUAN Xiao-Ting, WANG Tian, LUO Kai, LIU Shan-Shan, PENG Xin-Yue, YANG Li-Da, PU Tian, WANG Xiao-Chun, YANG Wen-Yu, YONG Tai-Wen. Effects of bandwidth and plant spacing on biomass accumulation and allocation and yield formation in strip intercropping soybean [J]. Acta Agronomica Sinica, 2024, 50(1): 161-171.
[5] YANG Xiao-Hui, WANG Bi-Sheng, SUN Xiao-Lu, HOU Jin-Jin, XU Meng-Jie, WANG Zhi-Jun, FANG Quan-Xiao. Modeling the response of winter wheat to deficit drip irrigation for optimizing irrigation schedule [J]. Acta Agronomica Sinica, 2023, 49(8): 2196-2209.
[6] CHEN Ting, JIAO Yan-Yang, ZHOU Xin-Ye, WU Lin-Kun, ZHANG Zhong-Yi, LIN Yu, LIN Sheng, LIN Wen-Xiong. Effects of different soil intensification treatments on growth and development of Radix pseudostellariae in continuous cropping system [J]. Acta Agronomica Sinica, 2023, 49(8): 2225-2239.
[7] TAO Yue-Yue, SHENG Xue-Wen, XU Jian, SHEN Yuan, WANG Hai-Hou, LU Chang-Ying, SHEN Ming-Xing. Characteristics of heat and solar resources allocation and utilization in rice- oilseed rape double cropping systems in the Yangtze River Delta [J]. Acta Agronomica Sinica, 2023, 49(5): 1327-1338.
[8] LIU Er-Hua, ZHOU Guang-Sheng, WU Bing-Yi, SONG Yan-Ling, HE Qi-Jin, LYU Xiao-Min, ZHOU Meng-Zi. Response of reproductive growth period length to climate warming and technological progress in the middle and lower reaches of the Yangtze River during 1981-2010 in single-cropping rice [J]. Acta Agronomica Sinica, 2023, 49(5): 1305-1315.
[9] WU Xiang-Qi, LIU Bo, ZHANG Wei, YANG Xue-Ni, GUO Zi-Yan, LIU Tie-Ning, ZHANG Xu-Dong, HAN Qing-Fang. Effects of wheat-pea intercropping on population photosynthetic characteristics and crops productivity [J]. Acta Agronomica Sinica, 2023, 49(4): 1079-1089.
[10] TANG Wen-Qiang, ZHANG Wen-Long, ZHU Xiao-Qiao, DONG Bi-Zheng, LI Yong-Cheng, YANG Nan, ZHANG Yao, WANG Yun-Yue, HAN Guang-Yu. Effects of diverse mixture intercropping on the structure and function of bacterial communities in rice rhizosphere [J]. Acta Agronomica Sinica, 2023, 49(4): 1111-1121.
[11] ZHANG Jin-Xin, GE Jun-Zhu, MA Wei, DING Zai-Song, WANG Xin-Bing, LI Cong-Feng, ZHOU Bao-Yuan, ZHAO Ming. Research advance on annual water use efficiency of winter wheat-summer maize cropping system in North China Plain [J]. Acta Agronomica Sinica, 2023, 49(4): 879-892.
[12] SHU Ze-Bing, LUO Wan-Yu, PU Tian, CHEN Guo-Peng, LIANG Bing, YANG Wen-Yu, WANG Xiao-Chun. Optimization of field configuration technology of strip intercropping of fresh corn and fresh soybean based on high yield and high efficiency [J]. Acta Agronomica Sinica, 2023, 49(4): 1140-1150.
[13] LIU Shan-Shan, PANG Ting, YUAN Xiao-Ting, LUO Kai, CHEN Ping, FU Zhi-Dan, WANG Xiao-Chun, YANG Feng, YONG Tai-Wen, YANG Wen-Yu. Effects of row spacing on root nodule growth and nitrogen fixation potential of different nodulation characteristics soybeans in intercropping [J]. Acta Agronomica Sinica, 2023, 49(3): 833-844.
[14] XIAO Jian, WEI Xing-Xuan, YANG Shang-Dong, LU Wen, TAN Hong-Wei. Effects of intercropping with watermelons on cane yields, soil physicochemical properties and micro-ecology in rhizospheres of sugarcanes [J]. Acta Agronomica Sinica, 2023, 49(2): 526-538.
[15] HE Xu-Gang, MAMAT Sawut, XIA Zi-Yang, SHI Jun-Yin, HE Xiao-Ning, SHENG Yan-Fang, LI Rong-Peng. Spatio-temporal characteristics of water requirement of main crops in Xinjiang from 1960 to 2020 [J]. Acta Agronomica Sinica, 2023, 49(12): 3352-3363.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .