Acta Agron Sin ›› 2012, Vol. 38 ›› Issue (10): 1752-1759.doi: 10.3724/SP.J.1006.2012.01752
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
HUANG Bing-Yan1,2,ZHANG Xin-You2,*,MIAO Li-Juan2,GAO Wei2,HAN Suo-Yi2,DONG Wen-Zhao2,TANG Feng-Shou2,LIU Zhi-Yong1,*
[1]Norden A J, Gorbet D W, Knauft D A, Young C T. Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci, 1987, 14: 7–11[2]Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A. High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet, 2004, 108: 1492–1502[3]Ray T K, Holly S P, Knauft D A, Abbott A G, Powell G L. The primary defect in developing seed from the high oleate variety of peanut (Arachis hypogaea L.) is the absence of Δ12-desaturase activity. Plant Sci, 1993, 91:15–21[4]Lopez Y, Nadaf H L, Smith O D, Connell J P, Reddy A S, Fritz A K. Isolation and characterization of the Δ12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in Spanish market-type lines. Theor Appl Genet, 2000, 101: 1131–1138[5]Lopez Y, Smith O D, Senseman S A, Rooney W L. Genetic factors influencing high oleic acid content in Spanish market-type peanut cultivars. Crop Sci, 2001, 41: 51–56[6]Jung S, Swift D, Sengoku E, Patel M, Teule F, Powell G, Moore K, Abbott A. The high oleate trait in the cultivated peanut (Arachis hypogaea L.): I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet, 2000, 263: 796–805[7]Jung S, Powell G, Moore K, Abbott A. The high oleate trait in the cultivated peanut (Arachis hypogaea L.): II. Molecular basis and genetics of the trait. Mol Gen Genet, 2000, 263: 806–811[8]Chen Z, Wang M L, Barkley N A, Pittman R N. A simple allele-specific PCR assay for detecting FAD2 alleles in both A and B genomes of the cultivated peanut for high-oleate trait selection. Plant Mol Biol Rep, 2010, 28: 542–548[9]Chu Y, Holbrook C C, Ozias-Akins P. Two alleles of ahFAD2B control the high oleic acid trait in cultivated peanut. Crop Sci, 2009, 49: 2029–2036[10]Chu Y, Ramos L, Holbrook C C, Ozias-Akins P. Frequency of a loss-of-function mutation in oleoyl-PC desaturase (ahFAD2A) in the minicore of the U.S. peanut germplasm collection. Crop Sci, 2007, 47: 2372–2378[11]Lei Y(雷永), Jiang H-F(姜慧芳), Wen Q-G(文奇根), Huang J-Q(黄家权), Yan L-Y(晏立英), Liao B-S(廖伯寿). Frequencies of ahFAD2A alleles in Chinese peanut mini core collection and its correlation with oleic acid content. Acta Agron Sin (作物学报), 2010, 36(11): 1864−1869 (in Chinese with English abstract)[12]Wang M L, Sukumaran S, Barkley N A, Chen Z, Chen C Y, Guo B, Pittman R N, Stalker H T, Holbrook C C, Pederson G A, Yu J. Population structure and marker-trait association analysis of the US peanut (Arachis hypogaea L.) mini-core collection. Theor Appl Genet, 2011, 123: 1307–1317[13]Bruner A C, Jung S, Abbott A G, Powell G L. The naturally occurring high oleate oil character in some peanut varieties results from reduced oleoyl-PC desaturase activity from mutation of aspartate 150 to Asparagine. Crop Sci, 2001, 41: 522–526[14]Yu S-L(禹山林), Isleib T G. The inheritance of high oleic acid content in peanut of Virginia type in USA. Chin J Oil Crop Sci (中国油料作物学报), 2000, 22(1): 34–37 (in Chinese with English abstract)[15]Han Z-Q(韩柱强), Gao G-Q(高国庆), Zhou R-Y(周瑞阳), Tang R-H (唐荣华), Zhong R-C(钟瑞春), Zhou C-Q(周翠球), He L-Q(贺梁琼). Inheritance of oleic, linoleic acid content and O /L ratio in high oleic acid Arachis hypogaea L. var. hirsuta. J Plant Genet Resour (植物遗传资源学报), 2010, 11(1): 17–22 (in Chinese with English abstract)[16]Jiang H-F(姜慧芳), Ren X-P(任小平), Huang J-Q(黄家权), Liao B-S(廖伯寿), Lei Y(雷永). Establishment of peanut mini core collection in China and exploration of new resource with high oleat. Chin J Oil Crop Sci (中国油料作物学报) , 2008, 30(3): 294–299 (in Chinese with English abstract)[17]Ding J-P(丁锦平), Han Z-Q(韩柱强) , Zhou R-Y(周瑞阳), Gao G-Q(高国庆), Yang Y-P(杨玉萍). Genetic analysis of oleic / linoleic (O/L) ratio in peanut. Chin J Oil Crop Sci (中国油料作物学报) , 2007, 29(3): 233–237 (in Chinese with English abstract)[18]Yan H, Yuan W, Velculescu V E, Vogelstein B, Kinzler K W. Allelic variation in human gene expression. Science, 2002, 297: 1143[19]Lo S H, Wang Z, Hu Y, Yang H H, Gere S, Buetow K H, Lee M P. Allelic variation in gene expression is common in the human genome. Genome Res, 2003, 13: 1855–1862[20]Guo M, Rupe M A, Zinselmeier C, Habben J, Bowen B A, Smith O S. Allelic variation of gene expression in maize hybrids. Plant Cell, 2004, 16: 1707–1716[21]Mikkilineni V, Rocheford T R. Sequence variation and genomic organization of fatty acid desaturase-2 (fad2) and fatty acid desaturase-6 (fad6) cDNAs in maize. Theor Appl Genet, 2003, 106: 1326–1332[22]Belo A, Zheng P, Luck S, Shen B, Meyer D J, Li B, Tingey S, Rafalski A. Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genom, 2008, 279: 1–10[23]Lopez Y, Nadaf H L, Smith O D, Simpson C E, Fritz A K. Expressed variants of Δ12-fatty acid desaturase for the high oleate trait in Spanish market-type peanut lines. Mol Breed, 2002, 9: 183–190[24]Yu S, Pan L, Yang Q, Min P, Ren Z, Zhang H. Comparison of the Δ12 fatty acid desaturase gene between high-oleic and normal-oleic peanut genotypes. J Genet Genom, 2008, 35: 679–685 |
[1] | ZHANG Yu-Kun, LU Ying, CUI Kan, XIA Shi-Tou, LIU Zhong-Song. Allelic variation and geographical distribution of TT8 for seed color in Brassica juncea Czern. et Coss. [J]. Acta Agronomica Sinica, 2022, 48(6): 1325-1332. |
[2] | ZHANG Fu-Yan, CHENG Zhong-Jie, CHEN Xiao-Jie, WANG Jia-Huan, CHEN Feng, FAN Jia-Lin, ZHANG Jian-Wei, YANG Bao-An. Molecular identification and breeding application of allelic variation of grain weight gene in wheat from the Yellow-Huai-River Valley [J]. Acta Agronomica Sinica, 2021, 47(11): 2091-2098. |
[3] | HUANG Bing-Yan,QI Fei-Yan,SUN Zi-Qi,MIAO Li-Juan,FANG Yuan-Jin,ZHENG Zheng,SHI Lei,ZHANG Zhong-Xin,LIU Hua,DONG Wen-Zhao,TANG Feng-Shou,ZHANG Xin-You. Improvement of oleic acid content in peanut (Arachis hypogaea L.) by marker assisted successive backcross and agronomic evaluation of derived lines [J]. Acta Agronomica Sinica, 2019, 45(4): 546-555. |
[4] | WANG Juan,DONG Cheng-Guang,LIU Li,KONG Xian-Hui,WANG Xu-Wen,YU Yu. Association Analysis and Exploration of Elite Alleles of Mechanical Harvest-Related Traits with SSR Markers in Upland Cotton Cultivars (Gossypium hirsutum L.) [J]. Acta Agron Sin, 2017, 43(07): 954-966. |
[5] | YU Ming-Yang,SUN Ming-Ming,GUO Yue,JIANG Ping-Ping,LEI Yong,HUANG Bing-Yan,FENG Su-Ping,GUO Bao-Zhu,SUI Jiong-Ming,WANG Jing-Shan,QIAO Li-Xian. Breeding New Peanut Line with High Oleic Acid Content Using Backcross Method [J]. Acta Agron Sin, 2017, 43(06): 855-861. |
[6] | DONG Xue,LIU Meng,ZHAO Xian-Lin,FENG Yu-Mei,YANG Yan. Isolation and Characterization of LMW-GS Glu-A3 in Common Wheat Related Species [J]. Acta Agron Sin, 2017, 43(06): 829-838. |
[7] | LI Li-Na,,DU Pei,FU Liu-Yang,LIU Hua,XU Jing,QIN Li,YAN Mei,HAN Suo-Yi,HUANG Bing-Yan,DONG Wen-Zhao,TANG Feng-Shou,ZHANG Xin-You. Development and Characterization of Amphidiploid Derived from Interspecific Cross between Cultivated Peanut and Its Wild Relative Arachis oteroi [J]. Acta Agron Sin, 2017, 43(01): 133-140. |
[8] | ZHENG Ling,SHI Ling-Min,TIAN Hai-Ying,SHAN Lei,BIAN Fei,GUO Feng. Cloning and Functional Analysis of Peanut AhDGAT2a Promoter? [J]. Acta Agron Sin, 2016, 42(07): 1094-1099. |
[9] | KOU Cheng,GAO Xin,LI Li-Qun,LI Yang,WANG Zhong-Hua,LI Xue-Jun*. Composition and Selection of TaGW2-6A Alleles for Wheat Kernel Weight [J]. Acta Agron Sin, 2015, 41(11): 1640-1647. |
[10] | LI Wen,WAN Qian,LIU Feng-Zhen*,ZHANG Kun,ZHANG Xiu-Rong,LI Guang-Hui,WAN Yong-Shan. Allelic Variation of Transcription Factor Genes NAC4 in Arachis Species [J]. Acta Agron Sin, 2015, 41(01): 31-41. |
[11] | SHI Chun-Yan,SHEN Jia-Heng*,LI Wei. Double Fertilization and Duration of Phases in Peanut (Arachis hgpogaea L.) [J]. Acta Agron Sin, 2014, 40(08): 1513-1519. |
[12] | HU Wen-Ming,KAN Hai-Hua,WANG Wei,XU Chen-Wu. Statistical Genetics Approach for Functional Difference Identification of Allelic Variations and Its Application [J]. Acta Agron Sin, 2014, 40(01): 72-79. |
[13] | LIU Ya-Nan,XIA Xian-Chun,HE Zhong-Hu. Characterization of Dense and Erect Panicle 1 Gene (TaDep1) Located on Common Wheat Group 5 Chromosomes and Development of Allele-Specific Markers [J]. Acta Agron Sin, 2013, 39(04): 589-598. |
[14] | LI Shuan-Zhu,WAN Yong-Shan,LIU Feng-Zhen. Cloning and Bioinformatic Analysis of γ-Tocopherol Methyltransferase Gene (γ-TMT) in Peanut [J]. Acta Agron Sin, 2012, 38(10): 1856-1863. |
[15] | HUANG Li,REN Xiao-Ping,ZHANG Xiao-Jie,CHEN Yu-Ning,JIANG Hui-Fang. Association Analysis of Agronomic Traits and Resistance to Aspergillus flavus in the ICRISAT Peanut Mini-Core Collection [J]. Acta Agron Sin, 2012, 38(06): 935-946. |
|