[1] 许智宏, 李家洋. 中国植物激素研究: 过去、现在和未来. 植物学通报, 2006, 23: 433–442
Xu Z H, Li J Y. Plant hormones research in china: past, present and future. Chin Bull Bot, 2006, 23: 433–442 (in Chinese with English abstract)
[2] 王威豪, 王一丁, 莫云川, 叶燕萍, 李杨瑞. 水分胁迫下喷施乙烯利对甘蔗分蘖及农艺性状的影响. 广西农业科学, 2007, (2): 148–151
Wang W H, Wang Y D, Mo Y C, Ye Y P, Li Y Y. Studies on effects of etheph on physiological, biochemical and agronomical characters in sugarcane during tillering stage under water stress. Guangxi Agric Sci, 2007, (2): 148–151 (in Chinese with English abstract)
[3] Vasantha S, Shekinah D E, Gupta C, Rakkiyappan P. Tiller production, regulation and senescence in sugarcane (Saccharum species hybrid) genotypes. Sugar Tech, 2012, 14: 156–160
[4] Gomez-Roldan V, Fermas S, Brewer P B, Puech-Pages V, Dun E A, Pillot J P, Letisse F, Matusova R, Danoun S, Portais J C, Bouwmeester H, Becard G, Beveridge C A, Rameau C, Rochange S F. Strigolactone inhibition of shoot branching. Nature, 2008, 455: 189–194
[5] Klee H. Plant biology: Hormones branch out. Nature, 2008, 455: 176–177
[6] Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008, 455: 195–200
[7] Koltai H. Strigolactones are regulators of root development. New Phytol, 2011, 190: 545–549
[8] Al-Babili S, Bouwmeester H J. Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol, 2015, 66: 161–186
[9] Rasmussen A, Hosseini S A, Hajirezaei M R, Druege U, Geelen D. Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis. J Exp Bot, 2015, 66: 1437–1452
[10] Andreo-Jimenez B, Ruyter-Spira C, Bouwmeester H J, Lopez-Raez J A. Ecological relevance of strigolactones in nutrient uptake and other abiotic stresses, and in plant-microbe interactions below-ground. Plant Soil. 2015, 394: 1–19
[11] Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S. The path from beta-carotene to carlactone, a strigolactone-like plant hormone. Science, 2012, 335: 1348–1351
[12] Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P, Turnbull C, Srinivasan M, Goddard P, Leyser O. MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev Cell, 2005, 8: 443–449
[13] Simons J L, Napoli C A, Janssen B J, Plummer K M, Snowden K C. Analysis of the DECREASED APICAL DOMINANCE genes of petunia in the control of axillary branching. Plant Physiol, 2007, 143: 697–706
[14] Drummond R S, Martinez-Sanchez N M, Janssen B J, Templeton K R, Simons J L, Quinn B D, Karunairetnam S, Snowden K C. Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE 7 is involved in the production of negative and positive branching signals in petunia. Plant Physiol, 2009, 151: 1867–1877
[15] Drummond R S, Sheehan H, Simons J L, Martinez-Sanchez N M, Turner R M, Putterill J, Snowden K C. The expression of petunia strigolactone pathway genes is altered as part of the endogenous developmental program. Front Plant Sci, 2011, 2: 115
[16] Sorefan K, Booker J, Haurogne K, Goussot M, Bainbridge K, Foo E, Chatfield S, Ward S, Beveridge C, Rameau C, Leyser O. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev, 2003, 17: 1469–1474
[17] 王涛. 水稻独脚金内酯相关基因的图位克隆与功能分析. 中国农业科学院博士学位论文, 北京, 2012
Wang T. Map-Based Cloning and Functional Analysis of the Strigolactones-Related Genes in Rice (Orzya sativa L.). PhD Dissertation of Chinese Academy of Agriculture Science, Beijing, China, 2012
[18] Waters M T, Brewer P B, Bussell J D, Smith S M, Beveridge C A. The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiol, 2012, 159: 1073–1085
[19] Zhang Y, van Dijk A D, Scaffidi A, Flematti G R, Hofmann M, Charnikhova T, Verstappen F, Hepworth J, van der Krol S, Leyser O, Smith S M, Zwanenburg B, Al-Babili S, Ruyter-Spira C, Bouwmeester H J. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat Chem Biol, 2014, 10: 1028–1033
[20] Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J, Wang Y. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell, 2009, 21: 1512–1525
[21] Rubio-Moraga A, Ahrazem O, Perez-Clemente R M, Gomez-Cadenas A, Yoneyama K, Lopez-Raez J A, Molina R V, Gomez-Gomez L. Apical dominance in saffron and the involvement of the branching enzymes CCD7 and CCD8 in the control of bud sprouting. BMC Plant Biol, 2014, 14: 171
[22] 陈芳育, 江良荣, 郑景生, 黄荣裕, 王侯聪. 用蛋白质组遗传方法分析水稻多蘖矮秆突变体的共分离蛋白. 中国遗传学会大会,厦门大学, 2011
Chen F Y, Jiang L R, Zheng J S, Huang R Y, Wang H C. Fine mapping and proteomics analysis of a high-tillering dwarf mutant in rice. Congress of Chinese genetic Society Xiamen University, 2010
[23] Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J, 2007, 51: 1019–1029
[24] Harrison P J, Newgas S A, Descombes F, Shepherd S A, Thompson A J, Bugg T D. Biochemical characterization and selective inhibition of beta-carotene cis-trans isomerase D27 and carotenoid cleavage dioxygenase CCD8 on the strigolactone biosynthetic pathway. FEBS J, 2015, 282: 3986–4000
[25] Wen C, Zhao Q, Nie J, Liu G, Shen L, Cheng C, Xi L, Ma N, Zhao L. Physiological controls of chrysanthemum DgD27 gene expression in regulation of shoot branching. Plant Cell Rep, 2016
[26] Abe S, Sado A, Tanaka K, Kisugi T, Asami K, Ota S, Kim H I, Yoneyama K, Xie X, Ohnishi T, Seto Y, Yamaguchi S, Akiyama K, Yoneyama K, Nomura T. Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc Natl Acad Sci USA, 2014, 111: 18084–18089
[27] Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W, Zhao X, Pan X, Xie Q, Zhu L. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J, 2006, 48: 687–698
[28] 王闵霞, 白玉路, 王平, 向跃武, 蔡平钟, 张志雄. 水稻Dwarf 14(D14)基因的生物信息学分析. 西南农业学报. 2014, 27: 1347–1352
Wang M X, Bai Y L Wang P, Xiang Y W, Cai P Z, Zhang Z X. Bioinformatics analysis of D14(Dwarf 14) in rice. Southwest China J Agric Sci, 2014, 27: 1347–1352 (in Chinese with English abstract)
[29] Zhao J, Wang T, Wang M, Liu Y, Yuan S, Gao Y, Yin L, Sun W, Peng L, Zhang W, Wan J, Li X. DWARF3 participates in an SCF complex and associates with DWARF14 to suppress rice shoot branching. Plant Cell Physiol, 2014, 55: 1096–1109
[30] Zhao L H, Zhou X E, Yi W, Wu Z, Liu Y, Kang Y, Hou L, de Waal P W, Li S, Jiang Y, Scaffidi A, Flematti G R, Smith S M, Lam V Q, Griffin P R, Wang Y, Li J, Melcher K, Xu H E. Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3. Cell Res, 2015, 25: 1219–1236
[31] Soundappan I, Bennett T, Morffy N, Liang Y, Stanga J P, Abbas A, Leyser O, Nelson D C. SMAX1-LIKE/D53 Family Members Enable Distinct MAX2-Dependent Responses to Strigolactones and Karrikins in Arabidopsis. Plant Cell, 2015, 27: 3143–3159
[32] Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J. d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol, 2009, 50: 1416–1424
[33] Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol, 2005, 46: 79–86
[34] Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Shabek N, Wu F, Mao H, Dong W, Gan L, Ma W, Gao H, Chen J, Yang C, Wang D, Tan J, Zhang X, Guo X, Wang J, Jiang L, Liu X, Chen W, Chu J, Yan C, Ueno K, Ito S, Asami T, Cheng Z, Wang J, Lei C, Zhai H, Wu C, Wang H, Zheng N, Wan J. D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature, 2013, 504: 406–410
[35] Jiang L, Liu X, Xiong G, Liu H, Chen F, Wang L, Meng X, Liu G, Yu H, Yuan Y, Yi W, Zhao L, Ma H, He Y, Wu Z, Melcher K, Qian Q, Xu H E, Wang Y, Li J. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature, 2013, 504: 401–405
[36] Brewer P B, Dun E A, Ferguson B J, Rameau C, Beveridge C A. Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiol, 2009, 150: 482–493
[37] 贾昆鹏. 植物激素独脚金内酯和茉莉酸信号与光信号互作的分子机制研究. 上海: 上海交通大学, 2014
Jia K P. The molecular mechanism of cross talking between light and phytohormones strigolactone and jasmonate signaling. Shanghai: Shanghai Jiao Tong University, 2014 (in Chinese with English abstract)
[38] Kumar M, Pandya-Kumar N, Dam A, Haor H, Mayzlish-Gati E, Belausov E, Wininger S, Abu-Abied M, Mcerlean C S, Bromhead L J, Prandi C, Kapulnik Y, Koltai H. Arabidopsis response to low-phosphate conditions includes active changes in actin filaments and PIN2 polarization and is dependent on strigolactone signalling. J Exp Bot, 2015, 66: 1499–1510
[39] Yoneyama K, Xie X, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y, Yoneyama K. Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta, 2007, 227: 125–132
[40] Lopez-Raez J A, Charnikhova T, Gomez-Roldan V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, Becard G, Mulder P, Bouwmeester H. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol, 2008, 178: 863–874
[41] Bu Q, Lv T, Shen H, Luong P, Wang J, Wang Z, Huang Z, Xiao L, Engineer C, Kim T H, Schroeder J I, Huq E. Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis. Plant Physiol, 2014, 164: 424–439
[42] Ha C V, Leyva-Gonzalez M A, Osakabe Y, Tran U T, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Dong N V, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L, Tran L S. Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci USA, 2014, 111: 851–856
[43] Yamaguchi S, Kyozuka J. Branching hormone is busy both underground and overground. Plant Cell Physiol, 2010, 51: 1091–1094
[44] Sun H, Tao J, Liu S, Huang S, Chen S, Xie X, Yoneyama K, Zhang Y, Xu G. Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. J Exp Bot, 2014, 65: 6735–6746
[45] 李晓君. 甘蔗逆境相关锌指蛋白基因ShSAP1的功能研究. 海南大学博士学位论文, 海南海口, 2012
Li X J. Functional Analysis of Stress Associated Zinc Finger Protein Gene ShSAP1 from Sugarcane. PhD Dissertation of Hainan University, Haikou, China, 2012 (in Chinese with English abstract)
[46] 阙友雄, 许莉萍, 徐景升, 张积森, 张木清, 陈如凯. 甘蔗基因表达定量PCR分析中内参基因的选择. 热带作物学报, 2009, 30(3): 274–278
Que Y X, Xu L P, Xu J S, Zhang J S, Zhang M Q, Chen Y K. Selection of control genes in Real-time qPCR analysis of gene expression in sugarcane. Chin J Trop Crops, 2009, 30(3): 274–278 (in Chinese with English abstract)
[47] 谢晓娜, 杨丽涛, 王盛, 张小秋, 李杨瑞. 甘蔗NADP异柠檬酸脱氢酶基因(SoNADP-IDH)的克隆与表达分析. 中国农业科学, 2015, 48: 185–196
Xie X N, Yang L T, Wang S, Zhang X Q, Li Y Y. Cloning and expression analysis of sugarcane NADP+-dependent isocitrate dehydrogenase (SoNADP-IDH) gene. Sci Agric Sin, 2015, 48: 185–196 (in Chinese with English abstract)
[48] Vij S, Tyagi A K. Genome-wide analysis of the stress associated protein (SAP) gene family containing A20/AN1 zinc-finger(s) in rice and their phylogenetic relationship with Arabidopsis. Mol Genet Genom, 2006, 276: 565–575
[49] Waldie T, Mcculloch H, Leyser O. Strigolactones and the control of plant development: lessons from shoot branching. Plant J, 2014, 79: 607–622
[50] 李晓君, 武媛丽, 孔冉, 杨本鹏, 张树珍. 植物A20/AN1型锌指蛋白基因功能研究进展. 生物技术通报, 2013, 29(12): 6–14
Li X J, Wu Y L, Kong R, Yang B P, Zhang S Z. Functional Research of A20/AN1 type zinc finger protein gene in plants. Biotechnol Bull, 2013, 29(12): 6–14 (in Chinese with English abstract)
[51] Mayzlish-Gati E, De-Cuyper C, Goormachtig S, Beeckman T, Vuylsteke M, Brewer P B, Beveridge C A, Yermiyahu U, Kaplan Y, Enzer Y, Wininger S, Resnick N, Cohen M, Kapulnik Y, Koltai H. Strigolactones are involved in root response to low phosphate conditions in Arabidopsis. Plant Physiol, 2012, 160: 1329–1341
[52] Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H. Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta, 2007, 225: 1031–1038 |