Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (8): 1114-1126.doi: 10.3724/SP.J.1006.2018.01114

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Molecular Evaluation for Chromosome Segment Substitution Lines of Gossypium barbadense and QTL Mapping for Fiber Quality and Yield

Chao LI1,2(),Zhi-Kun LI1,Qi-Shen GU1,Jun YANG1,Hui-Feng KE1,Li-Qiang WU1,Guo-Ning WANG1,Yan ZHANG1,Jin-Hua WU1,Gui-Yin ZHANG1,Yuan-Yuan YAN1,Zhi-Ying MA1,Xing-Fen WANG1,*()   

  1. 1 North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, Hebei, China
    2 Institute of Cotton Research, Chinese Academy of Agricultural Sciences / State Key Laboratory of Cotton Biology, Anyang 455000, Henan, China
  • Received:2017-11-06 Accepted:2018-06-12 Online:2018-08-10 Published:2018-06-20
  • Contact: Xing-Fen WANG E-mail:leechao816@163.com;cotton@hebau.edu.cn
  • Supported by:
    The study was supported by the National Key Research and Development Program of China(2016YFD0101006);Hebei Science and Technology Support Program(16226307D)

Abstract:

In the previous study, we developed a set of chromosome segment substitution lines (CSSLs) using G. hirsutum CCRI8 as the recipient parent and G. barbadense Pima 90-53 as the donor parent. In this study, we genotyped the BC3F5 generation of CSSLs with SSR markers, conducted QTL mapping for the fiber quality and yield traits and identified the stable QTLs in three different environments (Baoding, Qingxian, Luntai). The substituted segment number of the 182 CSSLs varied from one to fifteen, averaged 6.6. The length of introgressed segments ranged from 0.7 cM to 83.2 cM, and averaged 16.8 cM. The total length of the substituted fragment was 20 249.6 cM, background recoverage rate varied from 92.3% to 99.6%, and the average background recoverage rate was 96.2%. Fifty-nine QTLs related to fiber quality and yield traits were detected. Among them, 41 QTLs were related to fiber quality traits and each QTL explained 1.27% to 26.66% of the phenotypic variation. Eighteen QTLs for fiber yield-traits including boll weight and lint percentage were detected and each QTL explained 2.03% to 19.38% of the phenotypic variation. Fourteen stable QTLs were detected in multiple environments. Among them, four QTLs related to micronaire value and two QTLs related to fiber elongation both had enhancing alleles from G. barbadense Pima 90-53. Two boll weight QTLs had enhancing alleles from G. hirsutum CCRI8. The results provide a theoretical basis for QTL fine mapping, QTL interaction and molecular breeding for fiber quality and yield traits.

Key words: upland cotton, sea island cotton, CSSLs, fiber quality, yield, QTL mapping

Fig. 1

Amplification bands of SSR primers a: CCRI8 genotype; b: Pima 90-53 genotype; h: heterozygous genotype; -: missing genotype."

Fig. 2

Diagram of length analysis of the introgression segment"

Fig. 3

Graphical genotypes of CSSLs The left number represents the chromosome number (from the bottom to the top is A1, A2, ..., A12, A13, D1, D2, ..., D12, D13), the bottom number represents the number of CSSLs (from left to right is CSSL1, CSSL2, ..., CSSL181, CSSL182), gray, red, blue represent the genotypes of recipient parent, homozygous donor parent, and heterozygous individual, respectively."

Fig. 4

Substituted segment research in CSSLs A, B, C represent substituted segment number, substituted segment length, and background recoverage rate, respectively."

Table 1

Coverage of substituted segments in CSSLs"

染色体
Chromosome
染色体总长度
Chromosome length (cM)
覆盖长度
Coverage length (cM)
缺失长度
Deletion length (cM)
覆盖率
Coverage rate (%)
A1 82.7 82.7 0 100.0
A2 29.7 29.7 0 100.0
A3 167.7 167.7 0 100.0
A4 90.2 72.4 17.8 80.3
A5 255.8 255.8 0 100.0
A6 68.0 68.0 0 100.0
A7 111.1 105.7 5.4 95.1
A8 86.9 86.9 0 100.0
A9 151.8 151.8 0 100.0
A10 69.3 69.3 0 100.0
A11 113.4 113.4 0 100.0
A12 171.8 152.7 19.1 88.9
A13 56.8 56.8 0 100.0
D1 126.3 126.3 0 100.0
D2 155.8 142.3 13.5 91.3
D3 17.0 17.0 0 100.0
D4 51.2 51.2 0 100.0
D5 216.4 216.4 0 100.0
D6 83.9 83.9 0 100.0
D7 158.5 144.7 13.8 91.3
D8 94.2 94.2 0 100.0
D9 122.1 122.1 0 100.0
D10 95.7 95.7 0 100.0
D11 120.8 120.8 0 100.0
D12 149.1 131.4 17.7 88.1
D13 83.2 83.2 0 100.0

Table 2

Performance for fiber quality and yield traits of parents"

Table 3

Statistic analysis of fiber quality and yield traits for CSSLs"

性状
Trait
地点
Location
均值
Mean
最小值
Min.
最大值
Max.
极差
Range
标准差
SD
变异系数
CV (%)
偏度
Skewness
峰度
Kurtosis
FL 保定Baoding 29.85 26.13 34.02 7.89 1.46 4.89 0.11 -0.01
轮台Luntai 29.89 26.18 34.14 7.96 1.29 4.32 0.35 0.60
青县Qingxian 28.84 25.13 32.00 6.87 1.24 4.30 -0.01 -0.02
FS 保定Baoding 33.47 23.70 40.10 16.40 2.50 7.47 -0.46 1.81
轮台Luntai 31.23 26.88 37.09 10.21 1.83 5.86 0.32 0.04
青县Qingxian 31.83 25.23 38.61 13.38 2.37 7.45 0.10 0.04
MIC 保定Baoding 4.92 3.30 5.97 2.67 0.48 9.76 -0.70 1.12
轮台Luntai 4.68 2.99 5.68 2.69 0.44 9.40 -0.85 1.63
青县Qingxian 5.15 3.78 6.23 2.45 0.44 8.54 -0.30 -0.01
FE 保定Baoding 6.07 4.32 8.16 3.84 0.72 11.86 0.23 -0.01
轮台Luntai 7.66 5.51 10.78 5.27 0.84 10.97 0.31 1.03
青县Qingxian 5.68 3.85 8.79 4.94 0.74 13.03 0.58 1.48
FU 保定Baoding 86.48 81.50 89.10 7.60 1.16 1.34 -0.50 1.20
轮台Luntai 85.91 83.57 88.40 4.83 0.93 1.08 -0.04 -0.14
青县Qingxian 84.90 81.30 87.40 6.10 1.13 1.33 -0.10 -0.42
LP 保定Baoding 37.54 27.85 44.75 16.90 0.03 0.08 -0.28 0.85
轮台Luntai 38.82 31.00 44.00 13.00 0.02 0.05 -0.49 0.45
青县Qingxian 38.68 30.07 47.32 17.25 0.03 0.08 -0.12 0.84
BW 保定Baoding 5.08 2.37 7.72 5.35 0.87 17.13 -0.31 0.82
轮台Luntai 5.69 3.45 7.42 3.97 0.74 13.01 -0.40 0.13
青县Qingxian 5.05 2.86 7.58 4.72 0.80 15.84 -0.26 0.85

Table 4

Correlation coefficients among fiber quality and yield traits in CSSLs"

性状
Trait
地点
Location
FL FS MIC FE FU LP
FS 保定Baoding 0.279**
轮台Luntai 0.341**
青县Qingxian 0.486**
MIC 保定Baoding -0.095 0.213**
轮台Luntai -0.250** 0.038
青县Qingxian -0.011 0.151*
FE 保定Baoding -0.198** -0.128 -0.138
轮台Luntai -0.296** -0.198** -0.039
青县Qingxian -0.173* -0.104 -0.114
FU 保定Baoding 0.416** 0.565** 0.160* 0.565**
轮台Luntai 0.418** 0.476** 0.025 0.076
青县Qingxian 0.655** 0.577** 0.119 0.115
LP 保定Baoding -0.067 -0.027 0.083 -0.046 -0.055
轮台Luntai -0.051 -0.092 0.182* 0.051 0.056
青县Qingxian -0.016 -0.051 0.017 0.031 -0.020
BW 保定Baoding 0.064 0.013 0.148* 0.191** -0.034 0.046
轮台Luntai -0.106 -0.070 -0.074 -0.078 -0.057 0.214**
青县Qingxian -0.029 -0.106 -0.042 -0.091 -0.093 0.292**

Fig. 5

Position of QTLs for fiber quality and yield traits in the molecular genetic group"

Table 5

QTLs for fiber quality and yield traits detected in CSSLs"

性状
Trait
QTL 染色体
Chr.
标记区间
Interval
位置
Position
LOD 加性效应
Add
贡献率
PVE (%)
方向
Direction
FL qFL15-1-1 15 NAU5107b-NAU2094 1 3.44 1.04 8.56 Pima 90-53
qFL11-1-3 11 NAU4962-DPL0338 15 3.15 -1.14 8.73 CCRI8
FS qFS1-1-1 1 BNL3090-NAU5107c 60 4.67 0.75 3.56 Pima 90-53
qFS2-1-1 2 CER0061-NAU1053 18 3.26 -1.65 2.81 CCRI8
qFS5-1-1 5 NAU3450-NAU7067 30 3.53 0.07 2.03 Pima 90-53
qFS9-1-1 9 NAU2215-NAU2211 4 3.51 -1.03 4.57 CCRI8
qFS9-2-1 9 NAU2395-NAU1079 77 3.39 -0.09 4.09 CCRI8
qFS9-3-1 9 DPL0541-NAU6101 151 3.84 0.03 3.62 Pima 90-53
qFS10-1-1 10 NAU1236-NAU2082a 0 5.05 -4.71 2.42 CCRI8
qFS15-1-1 15 NAU5107b-NAU2094 1 5.07 1.18 4.02 Pima 90-53
qFS21-1-1 21 NAU3008-NAU7140b 55 5.13 -3.15 4.65 CCRI8
qFS14-1-2 14 NAU3820-NAU3474b 129 4.39 -0.69 7.09 CCRI8
qFS24-1-2 24 CER0091-NAU1133 91 4.13 -1.25 10.20 CCRI8
qFS5-1-3 5 NAU2140a-NAU2140b 150 3.47 3.16 7.66 Pima 90-53
MIC qMIC11-1-1 11 DPL0338-DPL0528a 18 4.36 0.44 7.72 Pima 90-53
qMIC15-1-1 15 NAU5107b-NAU2094 0 5.63 0.43 6.61 Pima 90-53
qMIC15-2-1 15 NAU7049-CIR009 106 5.00 0.30 5.74 Pima 90-53
qMIC22-1-1 22 STV191-NAU2302 38 3.46 0.79 4.68 Pima 90-53
qMIC23-1-1 23 NAU858a-BNL1317 44 5.98 -0.21 9.37 CCRI8
qMIC3-1-2 3 CER0028-DOW035 53 4.97 0.48 8.14 Pima 90-53
qMIC11-1-2 11 DPL0338-DPL0528a 26 3.05 0.42 8.50 Pima 90-53
qMIC23-1-2 23 NAU858a-BNL1317 45 6.07 -0.10 11.11 CCRI8
qMIC26-1-2 26 NAU1231-NAU2170 36 3.56 -0.06 7.12 CCRI8
qMIC3-1-3 3 CER0028-DOW035 48 3.35 0.33 6.66 Pima 90-53
qMIC11-1-3 11 NAU4962-DPL0338 8 5.93 0.57 12.45 Pima 90-53
qMIC13-1-3 13 NAU7130-NAU3468 17 3.37 -0.52 5.63 CCRI8
qMIC23-1-3 23 NAU858a-BNL1317 44 3.08 -0.12 8.95 CCRI8
FE qFE5-1-1 5 NAU7067-NAU3828 39 4.01 0.35 8.01 Pima 90-53
qFE14-1-1 14 NAU998a-NAU998b 29 3.23 0.62 7.55 Pima 90-53
qFE16-1-1 16 NAU3486b-NAU3486a 158 5.77 -0.79 9.28 CCRI8
qFE14-1-2 14 NAU998b-NAU7206 43 3.66 -0.73 7.86 CCRI8
qFE16-1-2 16 NAU3486b-NAU3486a 153 9.37 -1.33 26.66 CCRI8
qFE23-1-2 23 NAU6986a-NAU858a 24 4.65 0.63 10.19 Pima 90-53
qFE1-1-3 1 BNL3090-NAU5107c 50 5.00 0.64 10.86 Pima 90-53
qFE5-1-3 5 NAU7067-NAU3828 31 5.34 0.47 8.05 Pima 90-53
qFE16-1-3 16 NAU3486b-NAU3486a 129 8.03 -1.33 15.54 CCRI8
FU qFU24-1-1 24 NAU4099-NAU1369b 16 3.10 2.49 1.27 Pima 90-53
qFU23-1-1 23 BNL1317-NAU6764 52 3.32 -0.50 1.40 CCRI8
qFU3-1-2 3 CER0028-DOW035 54 3.31 0.90 5.60 Pima 90-53
qFU4-1-2 4 DOW046-DOW027 80 3.23 -0.36 7.35 CCRI8
qFU19-1-2 19 NAU3372-NAU1364 78 4.62 -0.94 7.80 CCRI8
LP qLP9-1-1 9 NAU2215-NAU2211 19 3.23 0.04 3.35 Pima 90-53
qLP1-1-2 1 TMF18-NAU2113 9 3.94 0.02 7.30 Pima 90-53
qLP11-1-2 11 DPL0338-DPL0528a 17 7.00 0.03 13.80 Pima 90-53
性状
Trait
QTL 染色体
Chr.
标记区间
Interval
位置
Position
LOD 加性效应
Add
贡献率
PVE (%)
方向
Direction
qLP17-1-2 17 DOW091-CER0076 17 4.00 0.02 5.86 Pima 90-53
qLP21-1-2 21 NAU3265-STV069 87 3.03 0.01 4.43 Pima 90-53
qLP11-1-3 11 NAU4962-DPL0338 15 6.74 0.04 10.07 Pima 90-53
qLP15-1-3 15 NAU7049-CIR009 111 3.22 0.02 9.72 Pima 90-53
BW qBW3-1-1 3 NAU972-NAU5035 16 3.10 -0.90 6.56 CCRI8
qBW3-2-1 3 NAU972-NAU5035 36 3.37 0.07 2.77 Pima 90-53
qBW3-3-1 3 NAU5035-CER0028 69 4.02 -1.08 8.80 CCRI8
qBW4-1-1 4 NAU1214-NAU7182 0 3.06 1.26 2.03 Pima 90-53
qBW6-1-1 6 NAU1385-NAU1110 183 4.30 0.46 5.37 Pima 90-53
qBW11-1-1 11 NAU4962-DPL0338 15 5.31 -0.95 3.91 CCRI8
qBW12-1-1 12 DOW045-NAU1368 48 5.53 -0.82 4.21 CCRI8
qBW15-1-1 15 NAU5107b-NAU2094 0 7.20 -0.82 5.41 CCRI8
qBW5-1-2 5 NAU786-DPL0241 220 5.43 -1.01 19.38 CCRI8
qBW11-1-3 11 NAU4962-DPL0338 15 7.55 -0.94 9.27 CCRI8
qBW12-1-3 12 NAU1368-NAU2251 49 5.65 -0.82 7.03 CCRI8

Fig. 6

Colinear comparison of genetic map and physical map A3 (C3), A5 (C5), A11 (C11), D7 (C7), and D9 (C9) are genetic map, and V3, V5, V11, V7, and V9 are physical map."

[1] Shen X L, Guo W Z, Lu Q X, Zhu X F, Yuan Y L, Zhang T Z . Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in upland cotton. Euphytica, 2007,155:371-380
doi: 10.1007/s10681-006-9338-6
[2] 林忠旭, 冯常辉, 郭小平, 张献龙 . 陆地棉产量、纤维品质相关性状主效QTL和上位性互作分析. 中国农业科学, 2009,42:3036-3047
Lin Z X, Feng C H, Guo X P, Zhang X L . Genetic analysis of major QTLs and epistasis interaction for yield and fiber quality in upland cotton. Sci Agric Sin, 2009,42:3036-3047 (in Chinese with English abstract)
[3] Tan Z Y, Fang X M, Tang S Y, Zhang J, Liu D J, Teng Z H, Li L, Ni H J, Zheng F M, Liu D X, Zhang T F, Paterson A H, Zhang Z S . Genetic map and QTL controlling fiber quality traits in upland cotton (Gossypium hirsutum L.). Euphytica, 2015,203:615-628
doi: 10.1007/s10681-014-1288-9
[4] Zhi Y N, Chen H, Mei H X, Zhang T Z . Molecular tagging of QTLs for fiber quality and yield in the upland cotton cultivar Acala-Prema. Euphytica, 2014,195:143-156
doi: 10.1007/s10681-013-0990-3
[5] 李朋波, 曹美莲, 刘惠民, 杨六六, 陈耕 . 陆地棉遗传图谱构建与纤维品质性状QTL定位. 西北植物学报, 2006,26:1098-1104
Li P B, Cao M L, Liu H M, Yang L L, Chen G . Genetic map construction and QTL mapping of fibre quality in upland cotton (Gossypium hirsutum L.). Acta Bot Boreali-Occident Sin, 2006,26:1098-1104
[6] 吴茂清, 张献龙, 聂以春, 贺道华 . 四倍体栽培棉种产量和纤维品质性状的QTL定位. 遗传学报, 2003,30:443-452
doi: 10.1016/S0891-0618(02)00103-5
Wu M Q, Zhang X L, Nie Y C, He D H . Localization of QTLs for yield and fiber quality traits of tetraploid cotton cultivar. Acta Genet Sin, 2003,30:443-452 (in Chinese with English abstract)
doi: 10.1016/S0891-0618(02)00103-5
[7] Li C, Dong Y T, Zhao T L, Li L, Li C, Yu E, Mei L, Daud M K, He Q L, Chen J H, Zhu S J . Genome-wide SNP linkage mapping and QTL analysis for fiber quality and yield traits in the upland cotton recombinant inbred lines population. Front Plant Sci, 2016,7:1356
[8] Wang H T, Huang C, Zhao W X, Dai B S, Shen C, Zhang B B, Li D G, Lin Z X . Identification of QTL for fiber quality and yield traits using two immortalized backcross populations in upland cotton. PLoS One, 2016,11:e0166970
[9] 朱亚娟, 王鹏, 郭旺珍, 张天真 . 利用海岛棉染色体片段导入系定位衣分和籽指QTL. 作物学报, 2010,36:1318-1323
doi: 10.3724/SP.J.1006.2010.01318
Zhu Y J, Wang P, Guo W Z, Zhang T Z . Mapping QTLs for lint percentage and seed index using Gossypium barbadense chromosome segment introgression lines. Acta Agron Sin, 2010,36:1318-1323 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2010.01318
[10] Wang P, Zhu Y J, Song X L, Cao Z B, Ding Y Z, Liu B L, Zhu X F, Wang S, Guo W Z, Zhang T Z . Inheritance of long staple fiber quality traits of Gossypium barbadense in G. hirsutum background using CSILs. Theor Appl Genet, 2012,124:1415-1428
[11] 付央, 苑冬冬, 胡文静, 蔡彩平, 郭旺珍 . 陆地棉背景下海岛棉第18染色体片段置换系的培育及相关农艺性状QTL定位. 作物学报, 2013,39:21-28
doi: 10.3724/SP.J.1006.2013.00021
Fu Y, Yuan D D, Hu W J, Cai C P, Guo W Z . Development of Gossypium barbadense chromosome 18 segment substitution lines in the genetic standard line TM-1 of Gossypium hirsutum and mapping of QTLs related to agronomic traits. Acta Agron Sin, 2013,39:21-28 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00021
[12] 沈超, 李定国, 聂以春, 林忠旭 . 利用黄褐棉染色体片段导入系定位产量和纤维品质性状QTL. 作物学报, 2017,43:1733-1745
Shen C, Li D G, Nie Y C, Lin Z X , QTL mapping for yield and fiber quality traits using Gossypium mustelinum chromosome segment introgression lines. Acta Agron Sin, 2017,43:1733-1745 (in Chinese with English abstract)
[13] 解信美 . 陆地棉遗传标准系TM-1背景的阔叶棉TX-48染色体片段渐渗系的培育. 南京农业大学硕士学位论文, 江苏南京, 2013
doi: 10.7666/d.Y2527436
Xie X M . Development of Chromosome Segment Introgression Lines from Gossypium hirsutumrace latifolium acc. TX-48 in Genetic Standard Line, G hirsutum cv. TM-l. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2013 ( in Chinese with English abstract)
doi: 10.7666/d.Y2527436
[14] Guo Y P, Guo X, Wang F, Wei Z, Zhang S Q, Wang L Y, Yuan Y C, Zeng W G, Zhang G H, Zhang T Z, Song X L, Sun X Z . Molecular tagging andmarker-assisted selection of fiber quality traits using chromosome segment introgression lines (CSILs) in cotton. Euphytica, 2014,200:239-250
doi: 10.1007/s10681-014-1150-0
[15] 何蕊, 石玉真, 张金凤, 梁燕, 张保才, 李俊文, 王涛, 龚举武, 刘爱英, 商海红, 巩万奎, 白志川, 袁有禄 . 利用染色体片段代换系定位陆地棉株高QTL. 作物学报, 2014,40:457-465
doi: 10.3724/SP.J.1006.2014.00457
He R, Shi Y Z, Zhang J F, Liang Y, Zhang B C, Li J W, Wang T, Gong J W, Liu A Y, Shang H H, Gong W K, Bai Z C, Yuan Y L . QTL mapping for plant height using chromosome segment substitution lines in upland cotton. Acta Agron Sin, 2014,40:457-465 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00457
[16] 王云鹏, 王省芬, 李志坤, 杨鑫雷, 张艳, 吴立强, 吴金华, 张桂寅, 马峙英 . 陆地棉背景的Pima棉染色体片段置换系创制. 植物遗传资源学报, 2016,17:114-119
doi: 10.13430/j.cnki.jpgr.2016.01.017
Wang Y P, Wang X F, Li Z K, Yang X L, Zhang Y, Wu L Q, Wu J H, Zhang G Y, Ma Z Y . Development of Pima cotton chromosome segment substitution lines with Gossypium hirsutum background. J Plant Genet Resour, 2016,17:114-119 (in Chinese with English abstract)
doi: 10.13430/j.cnki.jpgr.2016.01.017
[17] Paterson A H, Brubaker C L, Wendel J F . A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993,11:122-127
[18] Young N D, Tanksley S D . Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet, 1989,77:95-101
doi: 10.1007/BF00292322 pmid: 24232480
[19] Wang B H, Guo W Z, Zhu X F, Wu Y T, Huang N T, Zhang T Z . QTL mapping of fiber quality in an elite hybrid derived-RIL population of upland cotton. Euphytica, 2006,152:367-378
doi: 10.1007/s10681-006-9224-2
[20] Zhang Z S, Hu M C, Zhang J, Liu D J, Zheng J, Zhang K, Wang W, Wan Q . Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Mol Breed, 2009,24:49-61
[21] 王琳, 刘方, 黎绍惠, 王春英, 张香娣, 王玉红, 华金平, 王坤波 . 鲁棉研15号纤维品质性状QTL定位研究. 棉花学报, 2012,24:97-105
doi: 10.3969/j.issn.1002-7807.2012.02.001
Wang L, Liu F, Li S H, Wang C Y, Zhang X D, Wang Y H, Hua J P, Wang K B . QTL mapping for fiber quality properties in lumianyan 15. Cotton Sci, 2012, 24:97-105 (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-7807.2012.02.001
[22] 杨晓军, 谢传晓, 李新海, 张世煌 . 低氮逆境下玉米产量及相关性状 QTL整合与一致性分析. 玉米科学, 2010,18(4):32-39
Yang X J, Xie C X, Li X H, Zhang S H . Analysis of consensus QTL for grain yield and other traits under low nitrogen conditions on maize. J Maize Sci, 2010, 18(4):32-39 (in Chinese with English abstract)
[23] Causse M, Salibacolombani V, Lecomte L, Duffé P, Rousselle P, Buret M . QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J Exp Bot, 2002,53:2089-2098
doi: 10.1093/jxb/erf058
[24] Moncada P, Martinez C P, Borrero J, Chatel M, Gauch H Jr, Guimaraes E, Tohme J, McCouch S R . Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet, 2001,102:41-52
[25] 胡文静, 张晓阳, 张天真, 郭旺珍 . 陆地棉优质纤维QTL的分子标记筛选及优质来源分析. 作物学报, 2008,34:578-586
Hu W J, Zhang X Y, Zhang T Z, Guo W Z . Molecular tagging and source analysis of QTL for elite fiber quality in upland cotton. Acta Agron Sin, 2008,34:578-586 (in Chinese with English abstract)
[26] Gore M A, Fang D D, Poland J A . Linkage map construction and quantitative trait locus analysis of agronomic and fiber quality traits in cotton. Plant Genome, 2014,7:1-10
[27] Zhang K, Zhang J, Ma J, Tang S Y, Liu D J, Teng Z H, Liu D X, Zhang Z S . Genetic mapping and quantitative trait locus analysis of fiber quality traits using a three-parent composite population in upland cotton (Gossypium hirsutum L.). Mol Breed, 2012,29:335-348
[28] Akash M W. Quantitative trait loci mapping for agronomic and fiber quality traits in upland cotton (Gossypium hirsutum L.)using molecular markers. PhD Dissertation of Louisiana State University, Louisiana, USA, 2003.
[29] Zhang T Z, Qian N, Zhu X F, Chen H, Wang S, Mei H X, Zhang Y M . Variations and transmission of QTL alleles for yield and fiber qualities in upland cotton cultivars developed in china. PLoS One, 2013,8:e57220
doi: 10.1371/journal.pone.0057220
[30] 杨鑫雷, 王志伟, 张桂寅, 潘玉欣, 吴立强, 李志坤, 王省芬, 马峙英 . 棉花分子遗传图谱构建和纤维品质性状QTL分析. 作物学报, 2009,35:2159-2166
Yang X L, Wang Z W, Zhang G Y, Pan Y X, Wu L Q, Li Z K, Wang X F, Ma Z Y . Construction of molecular genetic map and QTL analysis of fiber quality in cotton. Acta Agron Sin, 2009,35:2159-2166 (in Chinese with English abstract)
[31] Zhou L J, Chen L M, Jiang L, Zhang W W, Liu L L, Liu X, Zhao Z G, Liu S J, Zhang L J, Wang J K, Wan J M . Fine mapping of the grain chalkiness QTL qPGWC-7 in rice(Oryza sativa L.). Theor Appl Genet, 2009,118:581-590
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[8] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[9] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[10] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[11] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[12] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[13] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[14] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[15] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!