Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (3): 401-410.doi: 10.3724/SP.J.1006.2019.83028

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effect of organic fertilizer and rotational tillage practices on soil carbon and nitrogen and maize yield in wheat-maize cropping system

Kai SUN1,Zhen LIU1,Heng-Yu HU1,Geng LI1,Wen-Tao LIU1,Liu YANG1,Tang-Yuan NING1,*(),Yan-Ling WANG2   

  1. 1 State Laboratory of Crop Biology, Key Laboratory of Crop Water Physiology and Drought-tolerance Germplasm Improvement, Ministry of Agriculture, College of Agronomy, Shandong Agricultural University, Tai’an 271018, Shandong, China;
    2 Tengzhou Agricultural Bureau, Tengzhou 277519, Shandong, China
  • Received:2018-06-26 Accepted:2018-12-24 Online:2019-03-12 Published:2019-01-06
  • Contact: Tang-Yuan NING E-mail:ningty@163.com
  • Supported by:
    This study was supported by the Special Fund for Agro-scientific Research in the Public Interest of China (201503121) and the Major Agricultural Applied Technology Innovation Project of Shandong Province in 2017.

Abstract:

Quantitatively analyzing the effects of different tillage rotations and organic fertilization practices on soil carbon, nitrogen and their enzyme activities is of great importance to improve soil fertility and promote maize yield. This study was intended to explore changes of soil organic carbon, total nitrogen, urease and sucrase activities under different tillage rotations and organic manure patterns in wheat-maize cropping system of North China Plain. Six treatments were compared, which were straw returning with rotary tillage-subsoiling (PRS), straw returning with subsoiling-no tillage (PSN), straw returning with conventional tillage-no tillage (PCN), cow manure with rotary tillage-subsoiling (FRS), cow manure with subsoiling-no tillage (FSN), and cow manure with conventional tillage-no tillage (FCN). The tillage mode, organic manure and their interactions had significant effects on soil fertility. The RS and SN patterns had higher contents of soil organic carbon and total nitrogen, and higher enzyme activities of urease and sucrase in 0-10 cm and 10-20 cm soil layers compared with the CN pattern. In rotation tillage mode of RS, straw returning significantly increased the soil organic carbon contents in 10-20 cm, 20-30 cm, and 30-40 cm soil layers, and increased the total nitrogen content and sucrase activity in 10-20 cm soil layer. In rotation tillage mode of SN, the soil organic carbon, total nitrogen content, and sucrase activity in 0-10 cm and 10-20 cm soil layers, and urease enzyme activity in each soil layer, were significantly increased by applying cow manure compared with straw returning. Compared with PCN, PRS and FSN could significantly increase the soil fertility. The soil organic carbon, total nitrogen, urease and sucrase activities in FSN treatment were the highest in 0-10 cm and 10-20 cm soil layers in all treatments. The tillage mode, organic manure and their interactions had significant effects on maize yield. Compare with CN pattern, maize yield of the RS and SN patterns were averagely increased by 1.89%-10.49% and 5.44%-11.99%, respectively. In rotation tillage mode of RS, the yield under straw returning was significantly increased by 2.91%-3.11% compared with that under using cow manure; while in rotation tillage mode of SN, the yield under straw returning was 5.02%-9.07% lower than that under applying cow manure. The average yields of two years were in the order of FSN>PRS>FRS>PSN>FCN>PCN. This study demonstrates that cow manure with subsoiling-no tillage can increase the soil organic carbon, total nitrogen, and urease and sucrase activities, and increase the crop yield as a result. Thus, cow manure with subsoiling-no tillage management practice is a better mode for increasing soil fertility and crop productivity, which should be expected to be adopted in the North China Plain.

Key words: rotation tillage, organic fertilizer, soil carbon and nitrogen, enzyme activity, yield

Table 1

Effects of organic manure and rotational tillage practices on soil organic carbon (mg g-1) "

处理
Treatment
2016 2017
0-10 cm 10-20 cm 20-30 cm 30-40 cm 0-10 cm 10-20 cm 20-30 cm 30-40 cm
PRS 11.91 a 10.19 a 7.02 a 5.05 bc 12.60 b 12.36 a 8.47 a 5.18 b
PSN 11.23 b 9.66 c 6.75 b 5.18 ab 12.50 b 12.24 b 6.31 d 6.17 a
PCN 11.17 c 9.65 c 5.83 d 4.26 d 12.13 c 10.27 e 6.59 c 4.67 c
FRS 11.03 b 9.94 b 6.20 c 4.39 d 12.55 b 12.00 c 6.54 c 4.89 c
FSN 11.98 a 10.27 a 7.27 a 5.31 a 12.69 a 12.47 a 7.91 b 6.41 a
FCN 10.99 c 9.79 bc 5.86 d 4.90 c 12.20 c 10.93 d 6.64 c 4.23 d
方差分析 Analysis of variance
T ** ** ** ** ** ** ** **
C ** ** ns ns ** * * **
T×C ** ** ** ** ** ** ** **

Table 2

Effects of organic manure and rotational tillage practices on total nitrogen (mg g-1) "

处理
Treatment
2016 2017
0-10 cm 10-20 cm 20-30 cm 30-40 cm 0-10 cm 10-20 cm 20-30 cm 30-40 cm
PRS 1.04 b 0.91 b 0.51 d 0.40 d 1.08 b 1.05 a 0.72 a 0.57 ab
PSN 0.94 cd 0.83 c 0.58 c 0.49 c 1.06 c 0.99 c 0.67 b 0.55 b
PCN 0.92 d 0.73 d 0.64 b 0.50 bc 1.05 c 0.92 d 0.59 d 0.58 ab
FRS 1.08 a 0.87 bc 0.62 b 0.52 ab 1.10 a 1.02 b 0.64 c 0.59 a
FSN 1.09 a 0.99 a 0.61 b 0.44 e 1.12 a 1.06 a 0.71 a 0.56 ab
FCN 0.97 c 0.77 d 0.70 a 0.54 a 1.04 c 1.00 c 0.61 d 0.57 ab
方差分析 Analysis of variance
T ** ** ** ** ** ** ** *
C ** ** ** ** ** ** ** ns
T×C ** ** ** ** ** ** ** ns

Table 3

Effects of organic manure and rotational tillage practices on soil organic carbon and total nitrogen and C/N in 0-40 cm soil layer (mg g-1) "

处理
Treatment
2016 2017
C N C/N C N C/N
PRS 8.54 b 0.72 c 11.93 a 9.65 a 0.85 a 11.24 b
PSN 8.21 c 0.71 c 11.52 b 9.31 b 0.82 c 11.33 ab
PCN 7.73 e 0.70 d 11.09 c 8.41 c 0.78 d 10.67 c
FRS 7.89 d 0.77 a 10.19 e 8.99 b 0.84 b 10.76 c
FSN 8.71 a 0.78 a 11.13 c 9.87 a 0.86 a 11.43 a
FCN 7.88 d 0.75 b 10.56 d 8.50 c 0.81 c 10.50 d
方差分析 Analysis of variance
T ** ** ** ** ** **
C ns ** ** ns ** **
T×C ** ** ** ** ** **

Fig. 1

Effects of organic manure and rotational tillage practices on invertase activity Bars superscripted by different letters are significantly different among different treatments at the same soil layer at P<0.05. ** mean significance at the 0.01 probability level. T: tillage factor; C: organic fertilizer factor; P: straw; F: cow manure. Other abbreviations are the same as those given in Table 1."

Fig. 2

Effects of returning organic manure and rotational tillage practices on urease activity Bars superscripted by different letters are significantly different among different treatments at the same soil layer at P<0.05. * and ** means significance at the 0.01 probability level. T: tillage factor; C: organic fertilizer factor; P: straw; F: cow manure. Other abbreviations are the same as those given in Table 1."

Table 4

Effects of organic manure and rotational tillage practices on yield and its components of summer maize"

处理
Treatment
千粒重
1000-grain weight (g)
穗粒数
Grain number per spike
公顷穗数
Spike number (×104)
产量
Yield (kg hm-2)
2016 PRS 278.95 a 594.33 b 6.22 a 8787 b
PSN 268.83 d 589.90 b 6.24 a 8504 c
PCN 275.22 bc 568.03 d 5.97 b 8065 e
FRS 275.85 b 592.07 b 6.14 a 8522 c
FSN 277.06 ab 605.07 a 6.23 a 8931 a
FCN 272.54 c 575.73 c 6.03 b 8364 d
2017 PRS 282.39 ab 596.47 b 6.28 a 9054 b
PSN 277.80 b 591.80 c 6.24 ab 8647 d
PCN 271.89 c 566.70 d 6.07 c 8194 f
FRS 274.32 c 590.61 c 6.26 ab 8798 c
FSN 285.93 a 609.85 a 6.27 a 9431 a
FCN 273.23 c 564.07 e 6.18 b 8421 e
F-value T ** ** ** **
C ns ** ns **
Y ** ns ** **
T×C ** ** ** **
T×Y ** ** ** **
C×Y ns * * **
T×C×Y ns ** ns **
[1] 王淑兰, 王浩, 李娟, 吕薇, 陈宁宁, 李军 . 不同耕作方式下长期秸秆还田对旱作春玉米田土壤碳、氮、水含量及产量的影响. 应用生态学报, 2016,27:1530-1540.
doi: 10.13287/j.1001-9332.201605.035
Wang S L, Wang H, Li J, Lyu W, Chen N N, Li J . Effects of long-term straw mulching on soil organic carbon, nitrogen and moisture and spring maize yield on rain-fed croplands under different patterns of soil tillage practice. Chin J Appl Ecol, 2016,27:1530-2540 (in Chinese with English abstract).
doi: 10.13287/j.1001-9332.201605.035
[2] 孙立军, 张仁陟, 黄高宝 . 保护性耕作对黄土高原旱地地表土壤理化性状的影响. 干旱地区农业研究, 2007,25(6):207-211.
Sun L J, Zhang R Z, Huang G B . Effects of the conservation tillage on the physicochemical characteristics of soil surface in the semi-arid areas of the Loess plateau. Agric Res Arid Areas, 2007,25(6):207-211 (in Chinese with English abstract).
[3] 高焕文, 李问盈, 李洪文 . 中国特色保护性耕作技术. 农业工程学报, 2003,19(3):1-4.
doi: 10.3321/j.issn:1002-6819.2003.03.001
Gao H W, Li W Y, Li H W . Conservation tillage technology with Chinese characteristics. Trans CSAE, 2003,19(3):1-4 (in Chinese with English abstract).
doi: 10.3321/j.issn:1002-6819.2003.03.001
[4] 陈学文, 张晓平, 梁爱珍, 贾淑霞, 时秀焕, 范如芹, 魏守才 . 耕作方式对黑土硬度和容重的影响. 应用生态学报, 2012,23:439-444.
Chen X W, Zhang X P, Liang A Z, Jia S X, Shi X H, Fan R Q, Wei S C . Effects of tillage mode on black soils penetration resistance and bulk density. Chin J Appl Ecol, 2012,23:439-444 (in Chinese with English abstract).
[5] Tian S Z, Ning T Y, Zhao H X, Wang B W, Li N, Han H F, Li Z J, Chi S Y . Response of CH4 and N2O emissions and wheat yields to tillage method changes in the North China plain. PLoS One, 7:e51206.
doi: 10.1371/journal.pone.0051206 pmid: 3516551
[6] 孔凡磊, 陈阜, 张海林, 黄光辉 . 轮耕对土壤物理性状和冬小麦产量的影响. 农业工程学报, 2010,26(8):150-155.
doi: 10.3969/j.issn.1002-6819.2010.08.026
Kong F L, Chen F, Zhang H L, Huang G H . Effects of rotational tillage on soil physical properties and winter wheat yield. Trans CSAE, 2010,26(8):150-155 (in Chinese with English abstract).
doi: 10.3969/j.issn.1002-6819.2010.08.026
[7] 聂良鹏, 郭利伟, 牛海燕, 魏杰, 李增嘉, 宁堂原 . 轮耕对小麦-玉米两熟农田耕层构造及作物产量与品质的影响. 作物学报, 2015,41:468-478.
doi: 10.3724/SP.J.1006.2015.00468
Nie L P, Guo L W, Niu H Y, Wei J, Li Z J, Ning T Y . Effects of rotational tillage on tilth soil structure and crop yield and quality in maize-wheat cropping system. Acta Agron Sin, 2015,41:468-478 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2015.00468
[8] 吕薇, 李军, 岳志芳, 陈宁宁, 王淑兰 . 轮耕对渭北旱塬麦田土壤有机质和全氮含量的影响. 中国农业科学, 2015,48:3186-3200.
doi: 10.3864/j.issn.0578-1752.2015.16.009
Lyu W, Li J, Yue Z F, Chen N N, Wang S L . Effects of rotational tillage on soil organic matter and soil total nitrogen contents of continuous cropping wheat field in Weibei Highland. Sci Agric Sin, 2015,48:3186-3200 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2015.16.009
[9] 薛建福, 赵鑫 ,Dikgwatlhe S B, 陈阜, 张海林 . 保护性耕作对农田碳、氮效应的影响研究进展. 生态学报, 2013,33:6006-6013.
doi: 10.5846/stxb201305121021
Xue J F, Zhao X, Dikgwatlhe S B, Chen F, Zhang H L . Advances in effects of conservation tillage on soil organic carbon and nitrogen. Acta Ecol Sin, 2013,33:6006-6013 (in Chinese with English abstract).
doi: 10.5846/stxb201305121021
[10] Huang M X, Liang T, Wang L Q, Zhou C H . Effects of no-tillage systems on soil physical properties and carbon sequestration under long-term wheat-maize double cropping system. Catena, 2015,128:195-202.
doi: 10.1016/j.catena.2015.02.010
[11] 侯贤清, 李荣, 贾志宽, 韩清芳 . 不同农作区土壤轮耕模式与生态效应研究进展. 生态学报, 2016,36:1215-1223.
doi: 10.5846/stxb201408011540
Hou X Q, Li R, Jia Z K, Han Q F . Research progress on ecological effects under the rotational tillage patterns in agricultural regions of China. Acta Ecol Sin, 2016,36:1215-1223 (in Chinese with English abstract).
doi: 10.5846/stxb201408011540
[12] He J, Li H W, Wang X Y, Li W Y, Gao H W . The adoption of annual subsoiling as conservation tillage in dryland maize and wheat cultivation in northern China. Soil Tillage Res, 2007,94:493-502.
doi: 10.1016/j.still.2006.10.005
[13] Tian S Z, Ning T Y, Wang Y, Liu Z, Li G, Li Z J . Crop yield and soil carbon responses to tillage method changes in North China. Soil Tillage Res, 2016,163:207-213.
doi: 10.1016/j.still.2016.06.005
[14] 黄鸿翔, 李书田, 李向林, 姚杰, 曹卫东, 王敏, 刘荣乐 . 我国有机肥的现状与发展前景分析. 中国土壤与肥料, 2006, ( 1):3-8.
doi: 10.11838/sfsc.20060101
Huang H X, Li S T, Li X L, Yao J, Cao W D, Wang M, Liu R L . Analysis on the status of organic fertilizer and its development strategies in China. Soil Fert Sci China, 2006, ( 1):3-8 (in Chinese with English abstract).
doi: 10.11838/sfsc.20060101
[15] Wang Y D, Hu N, Xu M G, Li Z F, Lou Y L, Chen Y, Wu C Y, Wang Z L . 23-year manure and fertilizer application increases soil organic carbon sequestration of a rice-barley cropping system. Biol Fert Soils, 2015,51:583-591.
doi: 10.1007/s00374-015-1007-2
[16] 陆海飞, 郑金伟, 余喜初, 周惠民, 郑聚锋, 张旭辉, 刘晓雨, 程琨, 李恋卿, 潘根兴 . 长期无机有机肥配施对红壤性水稻土微生物群落多样性及酶活性的影响. 植物营养与肥料学报, 2015,21:632-643.
doi: 10.11674/zwyf.2015.0310
Lu H F, Zheng J W, Yu X C, Zhou H M, Zheng J F, Zhang X H, Liu X Y, Cheng K, Li L Q, Pan G X . Microbial community diversity and enzyme activity of red paddy soil under long-term combined inorganic-organic fertilization. J Plant Nutr Fert, 2015,21:632-643 (in Chinese with English abstract).
doi: 10.11674/zwyf.2015.0310
[17] 荣勤雷, 梁国庆, 周卫, 刘东海, 王秀斌, 孙静文, 李双来, 胡诚 . 不同有机肥对黄泥田土壤培肥效果及土壤酶活性的影响. 植物营养与肥料学报, 2014,20:1168-1177.
doi: 10.11674/zwyf.2014.0513
Rong Q L, Liang G Q, Zhou W, Liu D H, Wang X B, Sun J W, Li S L, Hu C . Effects of different organic fertilization on fertility and enzyme activities of yellow clayey soil. J Plant Nutr Fert, 2014,20:1168-1177 (in Chinese with English abstract)
doi: 10.11674/zwyf.2014.0513
[18] 王玉玲, 李军 . 利于小麦-玉米轮作田土壤理化性状和作物产量的耕作方式研究. 植物营养与肥料学报, 2014,20:1139-1150.
doi: 10.11674/zwyf.2014.0510
Wang Y L, Li J . Study of tillage patterns suitable for soil physicochemical properties and crop yields in wheat-maize fields. J Plant Nutr Fert, 2014,20:1139-1150 (in Chinese with English abstract).
doi: 10.11674/zwyf.2014.0510
[19] 鲍士旦 . 土壤农业化学分析(第3版). 北京: 中国农业出版社, 2000. pp 25-114.
Bao S D. Analysis of Soil and Agricultural Chemistry, 3rd edn. Beijing: China Agriculture Press, 2000. pp 25-114(in Chinese).
[20] 关松荫 . 土壤酶及其研究法. 北京: 农业出版社, 1986. pp 274-297.
Guan S Y. Soil Enzyme and Its Research Methods. Beijing: Agriculture Press, 1986. pp 274-297(in Chinese).
[21] 范黎 . 产纤维素酶耐高温真菌在有机肥料生产中的潜在价值. 微生物学通报, 2013,40:380.
Fan L . Potential value of thermostable cellulose-producing fungi in organic fertilizer production. Microbiology, 2013,40:380 (in Chinese with English abstract).
[22] Pramod J, Nikita G, Lakaria B L, Biswas A K, Rao A S . Soil and residue carbon mineralization as affected by soil aggregate size. Soil Tillage Res, 2012,121:57-62.
doi: 10.1016/j.still.2012.01.018
[23] 谢迎新, 靳海洋, 李梦达, 翟羽雪, 王永华, 谢耀丽, 李向东, 夏来坤, 王晨阳, 郭天财, 贺德先 . 周年耕作方式对砂姜黑土农田土壤养分及作物产量的影响. 作物学报, 2016,42:1560-1568.
doi: 10.3724/SP.J.1006.2016.01560
Xie Y X, Jin H Y, Li M D, Zhai Y X, Wang Y H, Xie Y L, Li X D, Xia L K, Wang C Y, Guo T C ,He D X . Effect of annual tillage practices on soil nutrient and crop yield in Lime concretion black soil farmland. Acta Agron Sin, 2016,42:1560-1568 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01560
[24] 张晗, 欧阳真程, 赵小敏, 郭熙, 匡丽花, 叶英聪 . 江西省不同农田利用方式对土壤碳、氮和碳氮比的影响. 环境科学学报, 2018,38:2486-2497.
doi: 10.13671/j.hjkxxb.2017.0520
Zhang H ,Ou-Yang Z C, Zhao X M, Guo X, Kuang L H, Ye Y C . Effects of different land use types on soil organic carbon, nitrogen and ratio of carbon to nitrogen in the plow layer of farmland soil in Jiangxi province. Acta Sci Circumstantiae, 2018,38:2486-2497 (in Chinese with English abstract).
doi: 10.13671/j.hjkxxb.2017.0520
[25] 潘剑玲, 代万安, 尚占环, 郭瑞英 . 秸秆还田对土壤有机质和氮素有效性影响及机制研究进展. 中国生态农业学报, 2013,21:526-535.
doi: 10.3724/SP.J.1011.2013.00526
Pan J L, Dai W A, Shang Z H, Guo R Y . Review of research progress on the influence and mechanism of field straw residue incorporation on soil organic matter and nitrogen availability. Chin J Eco-Agric, 2013,21:526-535 (in Chinese with English abstract).
doi: 10.3724/SP.J.1011.2013.00526
[26] 刘善江, 夏雪, 陈桂梅, 卯丹, 车升国, 李亚星 . 土壤酶的研究进展. 中国农学通报, 2011,27(21):1-7.
Liu S J, Xia X, Chen G M, Mao D, Che S G, Li Y X . Study progress on functions and affecting factors of soil enzymes. Chin Agric Sci Bull, 2011,27(21):1-7 (in Chinese with English abstract).
[27] 边雪廉, 赵文磊, 岳中辉, 王慧一, 焦浩, 隋海霞 . 土壤酶在农业生态系统碳、氮循环中的作用研究进展. 中国农学通报, 2016,32(4):171-178.
Bian X L, Zhao W L, Yue Z H, Wang H Y, Jiao H, Sui H X . Research process of soil enzymes effect on carbon and nitrogen cycle in agricultural ecosystem. Chin Agric Sci Bull, 2016,32(4):171-178 (in Chinese with English abstract).
[28] 邱现奎, 董元杰, 万勇善, 胡国庆, 王艳华 . 不同施肥处理对土壤养分含量及土壤酶活性的影响. 土壤, 2010,42:249-255.
Qiu X K, Dong Y J, Wang Y S, Hu G Q, Wang Y H . Effect of different fertilization treatments on soil nutrient and soil enzyme activities. Soils, 2010,42:249-255 (in Chinese with English abstract).
[29] 曾玲玲, 张兴梅, 洪音, 刘德福 . 长期施肥与耕作方式对土壤酶活性的影响. 中国土壤与肥料, 2008, (2):27-30.
doi: 10.11838/sfsc.20080207
Zeng L L, Zhang X M, Hong Y, Liu D F . Effects of long-term fertilization and tillage on soil enzyme activities. Soil Fert Sci China, 2008, (2):27-30 (in Chinese with English abstract).
doi: 10.11838/sfsc.20080207
[30] 陈娟, 马忠明, 刘莉莉, 吕晓东 . 不同耕作方式对土壤有机碳、微生物量及酶活性的影响. 植物营养与肥料学报, 2016,22:667-675.
doi: 10.11674/zwyf.15246
Chen J, Ma Z M, Liu L L, Lyu X D . Effect of tillage system on soil organic carbon, microbial biomass and enzyme activities. J Plant Nutr Fert, 2016,22:667-675 (in Chinese with English abstract).
doi: 10.11674/zwyf.15246
[31] 蒋向, 贺德先, 任洪志, 刘清瑞, 胡敏 . 轮耕对麦田土壤容重和小麦根系发育的影响. 麦类作物学报, 2012,32:711-715.
doi: 10.7606/j.issn.1009-1041.2012.04.020
Jiang X, He D X, Ren H Z, Liu Q R, Hu M . Effects of different patterns of rotational tillage on soil bulk density in wheat field and wheat root development. J Triticeae Crops, 2012,32:711-715 (in Chinese with English abstract).
doi: 10.7606/j.issn.1009-1041.2012.04.020
[32] 卢宗凡 . 中国黄土高原生态农业. 西安: 陕西科学技术出版社, 1997.
Lu Z F. Chinese Loess Plateau Ecological Agriculture. Xi’an: Shaanxi Science and Technology Press, 1997 (in Chinese).
[33] 柏炜霞, 李军, 王玉玲, 王丽 . 渭北旱塬小麦玉米轮作区不同耕作方式对土壤水分和作物产量的影响. 中国农业科学, 2014,47:880-894.
doi: 10.3864/j.issn.0578-1752.2014.05.005
Bai W X, Li J, Wang Y L, Wang L . Effects of different tillage methods on soil water and crop yield of winter wheat-spring maize rotation region in Weibei highland. Sci Agric Sin, 2014,47:880-894 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2014.05.005
[34] Hou X Q, Li R, Jia Z K, Han Q F, Wang W, Yang B P . Effects of rotational tillage practices on soil properties, winter wheat yields and water-use efficiency in semi-arid areas of north-west China. Field Crops Res, 2012,129:7-13.
doi: 10.1016/j.fcr.2011.12.021
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[8] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[9] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[10] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[11] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[12] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[13] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[14] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[15] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!