Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (01): 74-83.doi: 10.3724/SP.J.1006.2020.93026

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Current status and influencing factors of broken rate in mechanical grain harvesting of maize in Southwest China

ZHAO Bo1,LI Xiao-Long1,ZHOU Mao-Lin2,SONG Bi3,LEI En4,LI Zhong5,WU Ya-Wei1,YUAN Ji-Chao1,KONG Fan-Lei1,*()   

  1. 1 College of Agronomy, Sichuan Agricultural University/Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, Sichuan, China
    2 Corn Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
    3 College of Agronomy, Guizhou Agricultural University, Guiyang 550025, Guizhou, China
    4 Honghe University, Honghe 661106, Yunnan, China
    5 Nanchong Academy of Agricultural Sciences, Nanchong 637000, Sichuan, China
  • Received:2019-04-18 Accepted:2019-08-09 Online:2020-01-12 Published:2019-09-01
  • Contact: Fan-Lei KONG E-mail:kflstar@163.com
  • Supported by:
    This study was supported by the State Key Research and Development Program of China(2016YFD0300307);This study was supported by the State Key Research and Development Program of China(2017YFD0301704)

Abstract:

Maize mechanical grain harvesting is the development direction of maize production in Southwest China. High grain broken rate is the main limiting factor for the development and application of this technology. It is of great significance to clarify the current status of broken rate of mechanical grain harvesting in Southwest China, to study the main influencing factors, so as to promote the development of mechanical grain harvesting in Southwest China. Using 788 sets of sample data of grain broken rate obtained from a series of multi-point and multi-variety grain harvesting experiments conducted in Southwest China from 2017 to 2018, the present situation of mechanical grain broken rate in Southwest China was analyzed. In 2018, the same machine and operator were used to carry out multi-variety, long-span and multi-harvest experiments to investigate the changes of grain broken rate, grain moisture content and grain mechanical strength in different harvest periods, and to analyze the relationship among grain moisture content, grain mechanical strength and broken rate. The broken rate of mechanically harvested grains was 0.54%-42.72% with the average of 8.34% in Southwest China. With the delayed mechanical grain harvesting, the moisture content of grains decreased, the crushing strength of grains increased, and the broken rate of grains decreased first and then increased. The relationship between broken rate (y) and grain moisture content (x) was in accordance with the equation y = 0.0329x 2- 1.3328x + 15.529 (R 2= 0.5467 **). The broken rate was the lowest when the moisture content of grains was 20.26%. The range of moisture content of the grains with a broken rate less than 5% was 10.76%-29.76%. The relationship between broken rate (y) and crushing strength of grain facade (xfacade) and side (xside) was in accordance with the equations of y = 0.0006xfacade 2 - 0.2692xfacade + 32.7030 (R 2 = 0.3138 **) and y = 0.0021xside 2 - 0.6092xside + 46.979 (R 2 = 0.3790 **), respectively. When the crushing strength of grain facade and side was 224.33 N and 145.05 N, the broken rate was the lowest. With delaying harvest time, the change of mechanical strength caused by the decrease of grain moisture content may be the main reason affecting the change of broken rate. Breeding and selecting varieties with strong standing pole ability and quick dehydration, making the moisture content of grain below 28%, is an important measure to reduce the broken rate of mechanical grain harvesting in Southwest China.

Key words: southwest maize, mechanical grain harvesting, broken rate, moisture content, mechanical strength

Table 1

Variety information of mechanical grain harvesting test (2017 and 2018) "

地点
Location
品种
Cultivar
收获机型
Harvester type
四川中江
Zhongjiang,
Sichuan
正红505, 中单808, 渝单8号, 荣玉1510, 瑞玉11, 渝单30, 丹玉336, 正红6号, 郑单958, 粒收1号, 渝豪单6号, 仲玉3号, 成单30, 正红211, 正红431, 先玉1171, 延科288, 国豪玉7号, 华试919, 蠡玉16, 奥玉3111, 联创808, 瑞玉16, 华凯2号
Zhenghong 505, Zhongdan 808, Yudan 8, Rongyu 1510, Ruiyu 11, Yudan 30, Danyu 336, Zhenghong 6, Zhengdan 958, Lishou 1, Yuhaodan 6, Zhongyu 3, Chengdan 30, Zhenghong 211, Zhenghong 431, Xianyu 1171, Yanke 288, Guohaoyu 7, Huashi 919, Liyu 16, Aoyu 3111,
Lianchuang 808, Ruiyu 16, Huakai 2
久保田4LZY-1.8B
Kubota 4LZY-1.8B
四川南充
Nanchong,
Sichuan
仲玉3号, 正红505, 众望玉88, 郑单958, 粒收1号, 先玉1171, 正红431, 渝单8号, 中玉335, 正红6号, 渝单30
Zhongyu 3, Zhenghong 505, Zhongwangyu 88, Zhengdan 958, Lishou 1, Xianyu 1171, Zhenghong 431, Yudan 8, Zhongyu 335, Zhenghong 6, Yudan 30
艾禾4LZT-4.0ZB
Aihe 4LZT-4.0ZB
重庆潼南
Tongnan,
Chongqing
迪卡M9, 粒收1号, 渝单8号, 先玉1171, 正红6号, 正红431, 荣玉1510, 仲玉3号, 渝单30, 成单30, 正红505, 渝豪单6号, 中单808, 渝单50, 必胜118, 金穗33, 贵单8号, 黔1403, 帮豪58, 新玉503, 资玉6号, 郑单958, 中玉335, 中单901
DikaM9, Lishou 1, Yudan 8, Xianyu 1171, Zhenghong 6, Zhenghong 431, Rongyu 1510, Zhongyu 3, Yudan 30, Chengdan 30, Zhonghong 505, Yuhaodan 6, Zhongdan 808, Yudan 50, Bisheng 118, Jinsui 33, Guidan 8, Qian 1403, Banghao 58, Xinyu 503, Ziyu 6, Zhengdan 958, Zhongyu 335, Zhongdan 901
沃德4LZ-3.0E
Wode 4LZ-3.0E
贵州安顺
Anshun,
Guizhou
先玉1171, 渝单8号, 正红6号, 筑黄127/S02, 珍禾99, 爱农001, 正红431, 金玉932, 靖丰18, 荣玉1510, 仲玉3号, 靖单15, 粒收1号, 金玉306, 筑黄99M/21, 黔单16, 靖单12, 靖玉1号, 郑单958, 金玉838, 新中玉801, 靖单14, 宣黄单17, 金玉579
Xianyu 1171, Yudan 8, Zhenghong 6, Zhuhuang 127/S02, Zhenhe 99, Ainong 001, Zhenghong 431, Jinyu 932, Jingfeng 18, Rongyu 1510, Zhongyu 3, Jingdan15, Lishou 1, Jinyu 306, Zhuhuang 99M/21, Qiandan 16, Jingdan 12, Jingyu 1, Zhengdan 958, Jinyu 838, Xinzhongyu 801, Jingdan 14, Xuanhuangdan 17, Jinyu 579
雷沃4LZ-4G1
Lovol 4LZ-4G1
云南红河
Honghe,
Yunnan
粒收1号, 郑单958, 先玉1171, 渝单8号, 正红431, 中玉335, 靖单14, 靖单15, 新中玉801, 宣黄单17, 宝玉9号, 佛单7号, 华兴单88, 金粒1号, 金玉99, 靖单12,
靖丰18, 五谷3861, 先玉696, 雅玉69, 正大619
Lishou 1, Zhengdan 958, Xianyu 1171, Yudan 8, Zhenghong 431, Zhongyu 335, Jingdan 14, Jingdan 15, Xinzhongyu 801, Xuanhuangdan 17, Baoyu 9, Fodan 7, Huaxingdan 88, Jinli 1,
Jinyu 99, Jingdan 12, Jingfeng 18, Wugu 3861, Xianyu 696, Yayu 69, Zhengda 619
久保田4LZY-1.8B
Kubota 4LZY-1.8B

Table 2

Variety information in different harvest dates (Zhongjiang, Sichuan, 2018) "

类型
Type
品种个数
Number of varieties
品种
Cultivar
收获次数
Number of harvests
春玉米
Spring maize
4 正红6号, 仲玉3号, 先玉1171, 成单30
Zhenghong 6, Zhongyu 3, Xianyu 1171, Chengdan 30
6
夏玉米
Summer maize
15 正红431, 奥玉3111, 先玉1171, 正红505, 粒收1号, 正红6号, 中玉335, 延科288, 联创808, 丹玉336, 仲玉3号, 渝单8号, 渝单30, 荣玉1510, 郑单958
Zhenghong 431, Aoyu 3111, Xianyu 1171, Zhenghong 505, Lishou 1, Zhenghong 6, Zhongyu 335, Yanke 288, Lianchuang 808, Danyu 336, Zhongyu 3, Yudan 8, Yudan 30, Rongyu 1510, Zhengdan 958
2

Fig. 1

Grains mechanical strength stress diagram"

Fig. 2

Current status of broken rate of mechanical grain harvesting of maize in southwest (2017 and 2018) "

Fig. 3

Changes of maize grain broken rate, moisture content and mechanical strength in different harvest dates (2018) The box part in the box diagram represents the distribution area of 50% (25%-75%) samples, which is a quadrant interval (IQR). The solid line in the box body is the median line, “?” is the abnormal point, “+” is the average. Different lowercase letters above boxes show significant differences at the 0.05 probability level in different periods."

Fig. 4

Relation among grain broken rate, moisture content and mechanical strength (Zhongjiang spring maize, 2018)"

Table 3

Differences in broken rate of mechanical grain collection among different varieties (Zhongjiang, Sichuan, 2018) "

分组编号
Group number
收获时间
Harvest time
(month
/day)
品种
Cultivar
籽粒类型
Grain type
收获机型
Harvester type
含水率
Moisture content (%)
籽粒力学强度
Grain mechanical strength (N)
破碎率
Broken rate (%)
立面Facade 侧面Side
1 7/31 先玉1171
Xianyu 1171
硬粒型
Flint corn
久保田4 LZY-1.8B 34.15 a 140.01 a 106.32 a 5.87 B
成单30
Chengdan 30
半马齿型
Semident corn
Kubota 4 LZY-1.8B 34.83 a 146.85 a 103.66 a 13.88 A
2 9/8 中玉335
Zhongyu 335
半马齿型
Semident corn
久保田4 LZY-1.8B 26.53 a 207.13 a 143.35 a 7.11 B
渝单30
Yudan 30
马齿型
Dent corn
Kubota 4 LZY-1.8B 26.49 a 181.40 a 130.16 a 4.26 B
荣玉1510
Rongyu 1510
半马齿型
Semident corn
26.48 a 188.12 a 132.90 a 13.25 A
3 9/16 荣玉1510
Rongyu 1510
半马齿型
Semident corn
久保田4 LZY-1.8B 23.86 a 182.44 a 102.14 a 8.21 a
郑单958
Zhengdan 958
半马齿型
Semident corn
Kubota 4 LZY-1.8B 23.84 a 186.14 a 114.58 a 4.13 c
渝单8号
Yudan 8
半马齿型
Semident corn
23.75 a 214.72 a 130.29 a 6.53 b
4 9/8 粒收1号
Lishou 1
马齿型
Dent corn
久保田4 LZY-1.8B 22.22 B 208.33 a 114.22 b 6.25 a
渝单8号
Yudan 8
半马齿型
Semident corn
Kubota 4 LZY-1.8B 28.30 A 206.91 a 128.21 a 6.85 a
5 9/8 正红431
Zhenghong 431
马齿型
Dent corn
久保田4 LZY-1.8B 30.33 A 172.69 a 104.79 a 11.60 a
先玉1171
Xianyu 1171
硬粒型
Flint corn
Kubota 4 LZY-1.8B 25.77 B 171.03a 104.41 a 12.63 a
渝单30
Yudan 30
马齿型
Dent corn
23.78 a 189.04 a 122.94 a 3.78 c
6 8/13 正红6号 Zhenghong 6 马齿型
Dent corn
久保田4 LZY-1.8B 23.03 a 190.92 a 146.94 a 2.62 b
9/8 正红6号 Zhenghong 6 马齿型
Dent corn
Kubota 4 LZY-1.8B 22.63 a 195.50 a 125.13 a 5.93 a
[1] 钟耕臣, 安艳玲 . 西南丘陵地区玉米机械化收获的现状及发展建议. 吉林农业, 2018,16:32-33.
Zhong G C, An Y L . Present situation and development suggestions of maize mechanized harvesting in southwest hilly areas. Agric Jilin, 2018,16:32-33 (in Chinese with English abstract).
[2] 李高科, 潘光堂 . 西南玉米区种质利用现状及研究进展. 玉米科学, 2005,13(2):3-7.
Li G K, Pan G T . The utilization present situation and study advances of the germplasm in southwest maize zone. J Maize Sci, 2005,13(2):3-7 (in Chinese with English abstract).
[3] 柴宗文, 王克如, 郭银巧, 谢瑞芝, 李璐璐, 明博, 侯鹏, 刘朝巍, 初振东, 张万旭, 张国强, 刘广周, 李少昆 . 玉米机械粒收质量现状及其与含水率的关系. 中国农业科学, 2017,50:2036-2043.
doi: 10.3864/j.issn.0578-1752.2017.11.009
Chai Z W, Wang K R, Guo Y Q, Xie R Z, Li L L, Ming B, Hou P, Liu Z W, Chu Z D, Zhang W X, Zhang G Q, Liu G Z, Li S K . Current status of maize mechanical grain harvesting and its relationship with grain moisture content. Sci Agric Sin, 2017,50:2036-2043 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.11.009
[4] 《玉米科学》编辑部. 加强机械粒收研究推动玉米生产方式转型. 玉米科学, 2018,26(4):62.
Editorial Department of Journal of Maize Sciences. Strengthen the research of mechanical grain harvesting and promote the transformation of maize production mode. J Maize Sci, 2018,26(4):62 (in Chinese with English abstract).
[5] 李少昆 . 我国玉米机械粒收质量影响因素及粒收技术的发展方向. 石河子大学学报: 自然科学版, 2017,35:265-272.
Li S K . Factors affecting the quality of maize grain mechanical harvest and the development trend of grain harvest technology. J Shihezi Univ (Nat Sci), 2017,35:265-272 (in Chinese with English abstract).
[6] 国家质量监督检验检疫总局和国家标准化委员会. 玉米收获机械: 技术条件. GB/T 21962-2008, 2008.
National Standard of People’s Republic of China. Technical Requirements for Maize Combine Harvester. GB/T 21962-2008, 2008 (in Chinese).
[7] 王克如, 李少昆 . 玉米机械粒收破碎率研究进展. 中国农业科学, 2017,50:2018-2026.
doi: 10.3864/j.issn.0578-1752.2017.11.007
Wang K R, Li S K . Progresses in research on grain broken rate by mechanical grain harvesting. Sci Agric Sin, 2017,50:2018-2026 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.11.007
[8] 张向前, 王瑞, 张瑞霞, 郭晓霞, 鉴军帅, 程玉臣, 吴慧, 孙峰成 . 内蒙古适宜籽粒机械化收获春玉米品种筛选. 北方农业学报, 2018,46(1):25-29.
Zhang X Q, Wang R, Zhang R X, Guo X X, Jian J S, Cheng Y C, Wu H, Sun F C . Screening varieties suitable for mechanical harvesting of spring maize kernel in Inner Mongolia. J Northern Agric, 2018,46(1):25-29 (in Chinese with English abstract).
[9] 薛军, 李璐璐, 张万旭, 王群, 谢瑞芝, 王克如, 明博, 侯鹏, 李少昆 . 玉米穗轴机械强度及其对机械粒收籽粒破碎率的影响. 中国农业科学, 2018,51:1868-1877.
doi: 10.3864/j.issn.0578-1752.2018.10.006
Xue J, Li L L, Zhang W X, Wang Q, Xie R Z, Wang K R, Ming B, Hou P, Li S K . Maize cob mechanical strength and its influence on kernel broken rate. Sci Agric Sin, 2018,51:1868-1877 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.10.006
[10] 王克如, 李少昆 . 玉米籽粒脱水速率影响因素分析. 中国农业科学, 2017,50:2027-2035.
doi: 10.3864/j.issn.0578-1752.2017.11.008
Wang K R, Li S K . Analysis of influencing factors on kernel dehydration rate of maize hybrids. Sci Agric Sin, 2017,50:2027-2035 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.11.008
[11] 李璐璐, 雷晓鹏, 谢瑞芝, 王克如, 侯鹏, 张凤路, 李少昆 . 夏玉米机械粒收质量影响因素分析. 中国农业科学, 2017,50:2044-2051.
doi: 10.3864/j.issn.0578-1752.2017.11.010
Li L L, Lei X P, Xie R Z, Wang K R, Hou P, Zhang F L, Li S K . Analysis of influential factors on mechanical grain harvest quality of summer maize. Sci Agric Sin, 2017,50:2044-2051 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2017.11.010
[12] Ruan L, Wang J, Chen Y, Wang S, Zhang W, Zuo X, Chen H . Dry matter accumulation, moisture content in maize kernel and their influences on mechanical harvesting. Agric Sci Technol, 2011,12:1857-1860.
[13] 雷恩, 环建华, 王岳东, 杨永兵, 刘宝宏, 卢丙越, 刘艳红, 袁继超, 王璞 . 云南玉米宜机械收获性能和机收质量研究与评价. 农机化研究, 2018, (4):156-161.
Lei E, Huan J H, Wang Y D, Yang Y B, Liu B H, Lu B Y, Liu Y H, Yuan J C, Wang P . Research and evaluation of suitable for mechanized harvesting performance and mechanical harvesting quality for maize in the Yunnan area. J Agric Mech Res, 2018, (4):156-161 (in Chinese with English abstract).
[14] Filipenco A, Mandache V, Valsan G, Ivan F, Ciocazanu I . Inheritance of grain dry-down in corn (Zea mays L.). Bull UASMV Serie Agric, 2013,70:223-226.
[15] Johnson D Q, Russell W A . Genetic variability and relationships of physical grain-quality traits in the BSSS population of maize1. Crop Sci, 1982,22(4):805-809.
doi: 10.2135/cropsci1982.0011183X002200040025x
[16] Zhang L, Liang X G, Shen S, Yin H, Zhou L L, Gao Z, Lu X Y, Zhou S L . Increasing the abscisic acid level in maize grains induces precocious maturation by accelerating grain filling and dehydration. Plant Growth Regul, 2018,86(1):65-79.
doi: 10.1007/s10725-018-0411-7
[17] 李璐璐, 薛军, 谢瑞芝, 王克如, 明博, 侯鹏, 高尚, 李少昆 . 夏玉米籽粒含水率对机械粒收质量的影响. 作物学报, 2018,44:1747-1754.
doi: 10.3724/SP.J.1006.2018.01747
Li L L, Xue J, Xie R Z, Wang K R, Ming B, Hou P, Gao S, Li S K . Effects of grain moisture content on mechanical grain harvesting quality of summer maize. Acta Agron Sin, 2018,44:1747-1754 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.01747
[18] 蔡超杰, 陈志, 韩增德, 刘贵明, 张宗玲, 郝俊发 . 种子玉米生物力学特性与脱粒性能的关系研究. 农机化研究, 2017, (4):192-196.
Cai C J, Chen Z, Han Z D, Liu G M, Zhang Z L, Hao J F . Study on relationship of biomechanical characteristics of corn seed and threshing performance. J Agric Mech Res, 2017, (4):192-196 (in Chinese with English abstract).
[19] 李心平, 马义东, 金鑫, 高连兴 . 玉米种子仿生脱粒机设计与试验. 农业机械学报, 2015,46(7):97-101.
Li X P, Ma Y D, Jin X, Gao L X . Design and test of corn seed bionic thresher. Trans CSAM, 2015,46(7):97-101 (in Chinese with English abstract).
[20] 玉米遗传育种学编写组. 玉米遗传育种学. 北京: 科学出报社, 1979
Writing Group of Maize Genetics and Breeding. Maize Genetics and Breeding. Beijing: Science Press, 1979 (in Chinese).
[21] 柳枫贺, 王克如, 李健, 王喜梅, 孙亚玲, 陈永生, 王玉华, 韩冬生, 李少昆 . 影响玉米机械收粒质量因素的分析. 作物杂志, 2013, (4):116-119.
Liu F H, Wang K R, Li J, Wang X M, Sun Y L, Chen Y S, Wang Y H, Han D S, Li S K . Factors affecting corn mechanically harvesting grain quality. Crops, 2013, (4):116-119 (in Chinese with English abstract).
[22] 国家质量监督检验检疫总局和国家标准化委员会. 玉米收获机械: 试验方法. GB/T 21961-2008, 2008.
People’s Republic of China National Standard. Technical Requirements for Maize Combine Harvester. GB/T 21961-2008, 2008 (in Chinese).
[23] 国家质量监督检验检疫总局和国家标准化委员会. 玉米.GB1353-2009, 2009.
People’s Republic of China National Standard. GB1353-2009, 2009 (in Chinese).
[24] Waelti H . Physical Properties and Morphological Characteristics of Maize and Their Influence on Threshing Injury of Kernels. PhD Dissertation of Iowa State University, Iowa, America, 1967.
[25] 李璐璐, 明博, 高尚, 谢瑞芝, 侯鹏, 王克如, 李少昆 . 夏玉米籽粒脱水特性及与灌浆特性的关系. 中国农业科学, 2018,51:1878-1889.
doi: 10.3864/j.issn.0578-1752.2018.10.007
Li L L, Ming B, Gao S, Xie R Z, Hou P, Wang K R, Li S K . Study on grain dehydration characters of summer maize and its relationship with grain filling. Sci Agric Sin, 2018,51:1878-1889 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.10.007
[26] Jennings M V . Genotypic Variability in Grain Quality of Corn Zea mays L. PhD Dissertation of Iowa State University, Iowa, America, 1974.
[27] Vyn T J, Moes J . Breakage susceptibility of corn kernels in relation to crop management under long growing season conditions. Agron J, 1988,80:915-920.
doi: 10.2134/agronj1988.00021962008000060015x
[28] Chowdhury M H, Buchele W F . Effects of the operating parameters of the rubber roller sheller. Trans ASABE, 1975,18:482-486.
doi: 10.13031/2013.36614
[29] Gunasekaran S, Paulsen M R . Breakage susceptibility of corn as a function of drying rates. Trans ASABE, 1985,28:2071-2076.
[30] Bauer P J, Carter P R . Effect of seeding date, plant density, moisture availability, and soil nitrogen fertility on maize kernel breakage susceptibility. Crop Sci, 1986,26:1220-1226.
doi: 10.2135/cropsci1986.0011183X002600060030x
[31] Plett S . Corn kernel breakage as a function of grain moisture at harvest in a prairie environment. Can J Plant Sci, 1994,74:543-544.
doi: 10.4141/cjps94-097
[32] 郭庆辰, 康浩冉, 王丽娥, 刘洪泉, 陈艳花, 白光红, 窦秉德 . 黄淮区籽粒机收玉米标准及育种模式探讨. 农业科技通讯, 2016, (1):159-162.
Guo Q C, Kang H R, Wang L E, Liu H Q, Chen Y H, Bai G H, Dou B D . The standard of corn grain mechanical harvest and breeding mode in Huang-Huai region. Bull Agric Sci Technol, 2016, (1):159-162 (in Chinese).
[33] 高连兴, 李飞, 张新伟, 张永丽, 刘新, 焦维鹏 . 含水率对种子玉米脱粒性能的影响机理. 农业机械学报, 2011,42(12):92-97.
Gao L X, Li F, Zhang X W, Zhang Y L, Liu X, Jiao W P . Mechanism of moisture content effect on corn seed threshing. Trans CSAM, 2011,42(12):92-97 (in Chinese with English abstract).
[34] 张永丽, 高连兴, 刘红力, 李心平 . 玉米籽粒剪切破碎的试验研究. 农机化研究, 2007, (5):136-138.
Zhang Y L, Gao L X, Liu H L, Li X P . Experimental study on corn kernel shear crash. J Agric Mech Res, 2007, (5):136-138 (in Chinese).
[35] Martin C R, Converse H H, Czuchajowska Z, Lai F S, Pomeranz Y . Breakage susceptibility and hardness of corn kernels of various sizes and shapes. Appl Eng Agric, 1987,3(1):104-113.
doi: 10.13031/2013.26655
[36] 李心平 . 种子玉米脱粒损伤机理及 5TYZ-1 型定向喂入式脱粒机研究. 沈阳农业大学博士学位论文, 辽宁沈阳, 2007.
Li X P . Study on Threshing Damage Mechanism of Seed Corn and Study on 5TYZ-1 Directional Feed Thresher. PhD Dissertation of Shenyang Agricultural University, Shenyang, Liaoning, China, 2007 (in Chinese with English abstract).
[37] 袁月明, 栾玉振 . 玉米籽粒力学性质的试验研究. 吉林农业大学学报, 1996,18(4):75-78.
Yuan Y M, Luan Y Z . Experimental investigation of mechanical properties for corn kernels. J Jinlin Agric Univ, 1996,18(4):75-78 (in Chinese with English abstract).
[38] 李心平, 高连兴, 马福丽 . 玉米种子脱粒特性的试验研究. 农机化研究, 2007, (2):156-158.
Li X P, Gao L X, Ma F L . Experimental research of seed corn on the threshing property. J Agric Mech Res, 2007, (2):156-158 (in Chinese).
[1] ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26.
[2] WANG Ke-Ru, LI Lu-Lu, GAO Shang, WANG Yi-Zhou, HUANG Zhao-Fu, XIE Rui-Zhi, MING Bo, HOU Peng, XUE Jun, ZHANG Guo-Qiang, HOU Liang-Yu, LI Shao-Kun. Analysis of main quality index of corn harvesting with combine in China [J]. Acta Agronomica Sinica, 2021, 47(12): 2440-2449.
[3] ZHAO Song-Chao,LI Yi-Fan,LIU Bo-Yuan,ZHAO Ming-Qin. Effects of air drying density on membranous lipid peroxidation and quality of cigar tobacco leaf [J]. Acta Agronomica Sinica, 2019, 45(7): 1090-1098.
[4] Zhao-Fu HUANG,Bo MING,Ke-Ru WANG,Rui-Zhi XIE,Fei YANG,Zhi-Gang WANG,Chun-Hua XIAO,Shao-Kun LI. Characteristics of maize grain dehydration and prediction of suitable harvest period in Liao River Basin [J]. Acta Agronomica Sinica, 2019, 45(6): 922-931.
[5] Ting-Lu FAN,Shu-Ying WANG,Chuang-Ye XU,Shang-Zhong LI,Jia-Xi WANG,Ke-Ru WANG,Gang ZHAO,Wan-Li CHENG,Jian-Jun ZHANG,Lei WANG,Yi DANG. Relationship between Grain Moisture and Maize Mechanical Harvesting Qualities in Dry Highland of Loess Plateau [J]. Acta Agronomica Sinica, 2018, 44(9): 1411-1429.
[6] Lu-Lu LI,Bo MING,Rui-Zhi XIE,Ke-Ru WANG,Peng HOU,Shao-Kun LI. Grain Dehydration Types and Establishment of Mechanical Grain Harvesting Time for Summer Maize in the Yellow-Huai-Hai Rivers Plain [J]. Acta Agronomica Sinica, 2018, 44(12): 1764-1773.
[7] Jun XUE,Qun WANG,Lu-Lu LI,Wan-Xu ZHANG,Rui-Zhi XIE,Ke-Ru WANG,Bo MING,Peng HOU,Shao-Kun LI. Changes of Maize Lodging after Physiological Maturity and Its Influencing Factors [J]. Acta Agronomica Sinica, 2018, 44(12): 1782-1792.
[8] Lu-Lu LI,Jun XUE,Rui-Zhi XIE,Ke-Ru WANG,Bo MING,Peng HOU,Shang GAO,Shao-Kun LI. Effects of Grain Moisture Content on Mechanical Grain Harvesting Quality of Summer Maize [J]. Acta Agronomica Sinica, 2018, 44(12): 1747-1754.
[9] Shang GAO,Bo MING,Lu-Lu LI,Rui-Zhi XIE,Jun XUE,Peng HOU,Ke-Ru WANG,Shao-Kun LI. Relationship between Grain Dehydration and Meteorological Factors in the Yellow-Huai-Hai Rivers Summer Maize [J]. Acta Agronomica Sinica, 2018, 44(12): 1755-1763.
[10] Jun-Peng AN, Cong-Feng LI, Hua QI, Peng-Xiang SUI, Wen-Ke ZHANG, Ping TIAN, De-Bao YOU, Nan MEI, Jing XING. Effects of Straw Strip Returning on Spring Maize Yield, Soil Moisture, Nitrogen Contents and Root Distribution in Northeast China [J]. Acta Agronomica Sinica, 2018, 44(05): 774-782.
[11] GUO Zeng-Jiang,YU Zhen-Wen,SHI Yu,ZHAO Jun-Ye,ZHANG Yong-Li,WANG Dong. Photosynthesis Characteristics of Flag Leaf and Dry Matter Accumulation and Allocation in Winter Wheat under Supplemental Irrigation after Measuring Moisture Content in Different Soil Layers [J]. Acta Agron Sin, 2014, 40(04): 731-738.
[12] HU Qun-Wen,XIN Xia,CHEN Xiao-Ling,LIU Xu,LU Xin-Xiong. Optimal Moisture Content and Physiological Bases of Rice Seeds Storage at Room Temperature [J]. Acta Agron Sin, 2012, 38(09): 1665-1671.
[13] HAN Zhan-Jiang,YU Zhen-Wen,WANG Dong,ZHANG Yong-Li. Effects of Supplemental Irrigation Based on Testing Soil Moisture on Dry Matter Accumulation and distribution and Water Use Efficiency in Winter Wheat [J]. Acta Agron Sin, 2010, 36(3): 457-465.
[14] Nan Zhibiao;M.J.Hill; A.C.P.Chu. Analysis of Factors Causing Germination Deterioration in Corn Seeds [J]. Acta Agron Sin, 1989, 15(01): 80-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!