Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (3): 408-422.doi: 10.3724/SP.J.1006.2020.92027

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of methodical nitrogen-water distribution management on water and nitrogen use efficiency of rice

Zhi-Yuan YANG1,Na LI1,Peng MA1,Tian-Rong YAN1,Yan HE1,Ming-Jin JIANG1,Teng-Fei LYU1,Yu LI1,Xiang GUO2,Rong HU3,Chang-Chun GUO1,Yong-Jian SUN1,Jun MA1,*()   

  1. 1. Rice Research Institute, Sichuan Agricultural University / Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, Sichuan, China
    2. Sichuan Agro-meteorological Center, Chengdu 610072, Sichuan, China
    3. High Quality Seed Production Station of Sichuan Province, Chengdu 610210, Sichuan, China
  • Received:2019-05-10 Accepted:2019-09-26 Online:2020-03-12 Published:2019-10-11
  • Contact: Jun MA E-mail:majunp2002@163.com
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2017YFD0301701);This study was supported by the National Key Research and Development Program of China(2017YFD0301706);the Key Research Fund of the Education Department of Sichuan Province(18ZA0390)

Abstract:

This study included three split-plot designed experiments. Experiments 1 and 2 were conducted in two fields with varied soil fertility and consistent treatment. Two rice varieties (Dexiang 4103, high NUE; Yixiang 3724, low NUE) were set as main plot. The sub-plot contained six nitrogen-water management modes (farmer’s usual management, FU; nitrogen-water coupling management, NWC; methodical nitrogen-water distribution management, MNWD; and their respective nitrogen-free controls). The main plot of Exp.3 was two high NUE varieties (Dexiang 4103, Fyou 498) and two low NUE varieties (Yixiang 3724, Chuanyou 6203); FU, NWC, and MNWD assembled the sub-plot. MNWD adopted the method of increasing frequency and reducing quantity, thus the nitrogen application rate was reduced by 20% compared with NWC and FU, the irrigation water amount was reduced by 20% to 25% compared with NWC, and 42% to 48% compared with FU. The stem number of MNWD changed smoothly and its ear bearing tiller percentage was higher. Compared with NWC and FU, the photo assimilation before anthesis MNWD had less, dry matter transportation before anthesis and high accumulation of assimilate after anthesis. The grain yield of MNWD was similar to that of NWC, while 8.77%-14.18% higher than that of FU. Correlation analysis showed that the dry weight of roots in 10-20 cm and 20-30 cm soil layers were significantly and positively correlated with nitrogen recovery efficiency (NRE), nitrogen agronomy efficiency (NAE), irrigation water production efficiency (IWPE) and water production efficiency (WPE). MNWD had a large amount of root system distributed in the soil layer below 10 cm, which was conducive to the improvement of water and nitrogen utilization efficiency. Compared with NWC and FU, MNWD increased NRE by 8.07%-11.99% and 20.72%-30.78%, NAE by 17.44%-27.38% and 96.47%-101.42%, IWPE by 23.34%-36.67% and 76.54%-117.38%, WPE by 8.41%-17.66% and 32.23%-65.29%, respectively.

Key words: rice, methodical nitrogen-water distribution management, grain yield, water use efficiency, nitrogen use efficiency

Table 1

Meteorological conditions of the two experimental locations"

地点
Location
年份
Year
全生育期降雨量
Total rainfall of WGS
(mm)
全生育期日照时数
Total sunshine hours of WGS
(h)
全生育期日平均温度
Average diurnal temperature of WGS (℃)
温江 Wenjiang 2015 538.8 630.3 22.32
涪城 Fucheng 2017 426.0 757.3 23.88

Table 2

Average values for selected soil characteristics of composite topsoil samples (0-20 cm) from the experimental fields in 2015 and 2017"

试验
Experiment
有机质
Organic matter (g kg-1)
全氮
Total N (g kg-1)
速效氮
Available N (mg kg-1)
速效磷
Available P (mg kg-1)
速效钾
Available K (mg kg-1)
试验1 Exp.1 16.57 1.47 76.46 14.42 79.13
试验2 Exp.2 26.41 2.03 109.65 29.57 110.48
试验3 Exp.3 22.08 1.79 100.33 21.83 98.36

Table 3

Nitrogen-water management mode"

水氮管理模式
Nitrogen-water
management mode
氮肥管理
Nitrogen management
水分管理
Water management
农民习惯模式
FU
150 kg hm-2 N按m: m=7 : 3分别于移栽前1 d和移栽后7 d施用。
150 kg hm-2 of N fertilizer was applied according to the ratio of m (basal fertilizer) : m (tillering fertilizer) = 7 : 3, at 1 d before and 7 d after transplanting.
淹水灌溉: 水稻移栽后田面一直保持1~3 cm水层, 收获前1周自然落干。
Flood irrigation: after rice transplanting, a 1-3 cm water layer was always maintained above the surface of the paddy fields and dried naturally at 1 week before harvest.
农民习惯模式对照
CTF
水稻季不施 N。
No N was applied in rice season.
淹水灌溉。
Flood irrigation.
水肥耦合模式
NWC
150 kg hm-2 N按m:m:m=3 : 3 : 4分别于移栽前1 d、移栽后7 d、倒四叶及倒二叶期(穗肥分2次)施用。
150 kg hm-2 of N fertilizer was applied according to the ratio of m (base fertilizer) : m (tillering fertilizer) : m (panicle fertilizer) = 3 : 3 : 4, at 1 d before and 7 d after transplanting, and at the reciprocal 4th and 2nd leaf stages (panicle fertilizer was divided into 2 portions).
控制性灌溉: 浅水(1 cm左右)栽秧, 移栽后5~7 d田间保持2 cm水层确保秧苗返青成活, 之后至孕穗前田面不保持水层, 土壤含水量为饱和含水量的70%~80%, 无效分蘖期晒田; 孕穗期土表保持1~3 cm水层; 抽穗至成熟期采用灌透水、自然落干至土壤水势为-25 kPa时再灌水。
Controlled irrigation: transplanting was done in shallow water (~1 cm), a 2 cm water layer was maintained in the fields to 5-7 d after transplanting to ensure that the seedlings turned green and survival, after that, drained surface water and maintained a soil moisture of 70%-80% of saturated water content before booting stage, the fields were dried during the ineffective tillering stage, a 1-3 cm water layer was maintained above the soil surface during the booting stage, and performed alternate wetting and drying irrigation from heading to maturity (irrigated to 1-3 cm water and dried naturally to the soil water potential of -25 kPa).
水肥耦合模式对照
CTN
水稻季不施N。
No N was applied in rice season.
控制性灌溉。
Controlled irrigation.
水肥“三匀”模式
MNWD
15、15、30、15、15、15和 15 kg hm-2 (合计120 kg hm-2) N分别于移栽后 7、14、35、49、56、70和 77 d施用。
15, 15, 30, 15, 15, 15, and 15 kg hm-2 (total 120 kg hm-2) of N fertilizer were applied at 7, 14, 35, 49, 56, 70, and 77 d after transplanting.
“匀水”管理: 浅水(1 cm左右)栽秧, 随后利用水肥一体化设备将施肥与灌水同步进行, 若灌水施肥时田面有水层则灌水量以水面升高1 cm左右为宜, 若灌水施肥时田面无水层则灌水至土壤饱和即可; 非施肥时间段若田面裂口超过2 cm亦补灌至土壤饱和。
Uniform water management: transplanting was done in shallow water (~1 cm), nitrogen-water synchronization equipment was used to fertilize and irrigate the fields simultaneously, if there was already a water layer in the fields, the amount of irrigation water applied increased the layer by ~1 cm. If there was no existing water layer, irrigation was done until soil saturation, during non-fertilizing periods, irrigation water was replenished until soil saturation whenever the fields’ surface cracks larger than 2 cm appeared.
水肥“三匀”模式对照
CTM
水稻季不施 N。
No N was applied in rice season.
“匀水”管理。
Uniform water management.

Table 4

Effects of nitrogen-water management modes on yield and assimilate production and transportation of hybrid rice with different N use efficiencies (Wenjiang, 2015)"

试验Experiment 因素
Factor
处理
Treatment
花前干物质积累
DMBF
(kg hm-2)
花后干物质积累
DMAF
(kg hm-2)
总干物质积累
TDM
(kg hm-2)
花前物质转运
TDMBF
(kg hm-2)
收获指数
HI
(%)
产量
Yield
(kg hm-2)
试验1
Exp.1
(低肥力
土壤 Low fertility soil)
品种
Cultivar (C)
D4103 9730 a 4504 a 14234 a 2828 a 51.89 a 8476 a
Y3724 8352 b 4079 a 12431 b 2266 a 51.40 a 7335 b
氮肥管理
Nitrogen
management (N)
CTF 7169 d 4116 c 11285 c 1788 d 52.31 bc 6826 c
FU 10608 c 3870 cd 14478 b 3593 a 51.52 c 8627 b
CTN 7112 d 3471 d 10583 d 2267 c 54.19 a 6633 cd
NWC 11672 a 4880 b 16523 a 3321 a 49.56 d 9481 a
CTM 6425 e 4089 c 10514 d 1518 d 53.36 ab 6482 d
MNWD 11262 b 5322 a 16584 a 2795 b 48.94 d 9384 a
F
F-value
C 627.67** 7.50NS 109.66** 12.21* 0.39NS 1857.57**
N 709.04** 24.34** 619.84** 41.51** 14.19** 453.60**
N*C 4.63** 0.37NS 1.52NS 1.00NS 0.51NS 0.88 NS
试验2
Exp.2
(高肥力
土壤 High fertility soil)

品种
Cultivar (C)
D4103 10975 a 5605 a 16570 a 2697 a 51.41 a 9598 a
Y3724 9572 b 4760 b 14332 b 2575 a 50.42 a 8479 b
氮肥管理
Nitrogen
management (N)
CTF 8220 c 4542 d 12762 d 2103 c 52.18 a 7683 d
FU 11438 b 4376 d 15814 b 3666 a 50.88 ab 9297 b
CTN 8414 c 4690 cd 13104 cd 2170 bc 52.34 a 7930 c
NWC 12832 a 5811 b 18643 a 3383 a 49.35 bc 10629 a
CTM 8138 c 5199 c 13337 c 1789 c 52.42 a 8078 c
MNWD 12570 a 6477 a 19047 a 2705 b 48.30 c 10615 a
F
F-value
C 10239.23** 34.95* 274.65** 1.04NS 4.68NS 168.41**
N 551.69** 17.95** 403.04** 16.38** 9.54** 264.27**
N*C 1.93NS 1.80NS 4.26** 1.37NS 1.32NS 1.24NS

Table 5

Effects of nitrogen-water management modes on yield and dry matter production and transportation of hybrid rice with different N use efficiencies (Exp. 3: Fucheng, 2017)"

因素
Factor
处理
Treatment
花前干物质积累
DMBF
(kg hm-2)
花后干物质积累
DMAF
(kg hm-2)
总干物质积累
TDM
(kg hm-2)
花前物质转运
TDMBF
(kg hm-2)
收获指数
HI
(%)
产量
Yield
(kg hm-2)
品种
Cultivar (C)
D4103 12050 a 5682 a 17732 a 3457 a 51.57 a 10565 a
F498 12173 a 5668 a 17441 a 3513 a 52.72 a 10613 a
Y3724 10525 b 4733 b 15258 b 3264 a 52.47 a 9245 b
C6203 10437 b 4810 b 15247 b 3200 a 52.55 a 9261 b
氮肥管理
Nitrogen
management (N)
FU 10635 c 4297 c 14932 c 3579 a 52.78 a 9105 b
NWC 11811 a 5137 b 16948 b 3758 a 52.49 a 10283 a
MNWD 11443 b 5936 a 17389 a 3039 b 51.72 a 10375 a
F
F-value
C 21.36** 6.11** 23.52** 1.53NS 0.51NS 31.53**
N 39.40** 1.33NS 18.92** 0.85NS 0.37NS 28.11**
N*C 0.19NS 0.05NS 0.08NS 0.12NS 0.26NS 0.32NS

Fig. 1

Stem dynamics of hybrid rice with different N use efficiencies under varied nitrogen-water management modes (Wenjiang, 2015) Abbreviations are the same as those given in Table 4."

Fig. 2

Stem dynamics of hybrid rice with different N use efficiencies under varied nitrogen-water management modes (Fucheng, 2017) F498: Fyou 498; C6203: Chuanyou 6203. Abbreviations are the same as those given in Table 4."

Fig. 3

Root growth and distribution of hybrid rice with different N use efficiencies under varied nitrogen-water management modes (Wenjiang, 2015) Abbreviations are the same as those given in Table 4 and Fig. 2."

Fig. 4

Root growth and distribution of hybrid rice with different N use efficiencies under varied nitrogen-water management modes (Fucheng, 2017) Abbreviations are the same as those given in Table 4 and Figure 2."

Table 6

Effects of nitrogen-water management modes on N accumulation and N fertilizer utilization of hybrid rice with different N use efficiencies"

因素
Factor
处理
Treatment
试验1 Exp.1 试验2 Exp.2 试验3 Exp.3
总吸氮量
TNA
(kg hm-2)
氮肥回收
率 NRE
(%)
氮肥农学利
用率NAE
(kg kg-1)
总吸氮量
TNA
(kg hm-2)
氮肥回收
率 NRE
(%)
氮肥农学利
用率NAE
(kg kg-1)
总吸氮量
TNA
(kg hm-2)
品种
Cultivar (C)
D4103 150.65 a 51.56 a 19.07 a 171.06 a 48.60 a 17.40 a 202.35 a
F498 200.31 a
Y3724 140.71 b 48.53 a 17.72 a 158.77 b 42.94 a 15.87 a 173.82 b
C6203 173.11 b
氮肥管理
Nitrogen
management
(N)
CTF 108.42 d 126.39 d
FU 176.20 b 45.18 b 12.01 c 185.65 b 39.51 c 10.76 c 175.50 c
CTN 110.59 cd 135.39 d
NWC 186.25 a 50.44 a 18.99 b 204.64 a 46.14 b 18.00 b 196.73 a
CTM 113.60 c 137.67 c
MNWD 179.01 b 54.51 a 24.19 a 199.69 a 51.67 a 21.14 a 189.96 b
F
F-value
C 94.74** 4.67NS 3.94NS 408.63** 13.62NS 0.68NS 173.71**
N 39.00** 9.74** 85.00** 179.92** 14.72** 48.79** 60.55**
N*C 0.57NS 0.08NS 0.82NS 0.79NS 0.68NS 0.30NS 1.42NS

Fig. 5

Irrigation water rate and water use efficiency of hybrid rice with different N use efficiencies under varied nitrogen-water management modes (Wenjiang, 2015) Abbreviations are the same as those given in Table 4 and Fig. 2."

Fig. 6

Irrigation water rate and water use efficiency of hybrid rice with different N use efficiencies under varied nitrogen-water management modes (Fucheng, 2017) Abbreviations are the same as those given in Table 4 and Fig. 2."

Table 7

Correlation of dry weight of root at different soillayers with N accumulation, water and N utilizations"

试验
Experiment
时期
Stage
土层深度
DS
总吸氮量
TNA
氮肥回收率
NRE
氮肥农学利用率
NAE
灌溉水生产效率
IWPE
水分生产效率
WPE
试验1
Exp.1
拔节期
Jointing stage
0-10 cm 0.22NS 0.33NS 0.17NS 0.28NS 0.34NS
10-20 cm 0.25NS 0.77** 0.84** 0.85** 0.81**
20-30 cm 0.13NS 0.79** 0.96** 0.96** 0.88**
0-30 cm 0.27NS 0.62** 0.54* 0.64** 0.66**
抽穗期
Heading stage
0-10 cm 0.20NS 0.27NS 0.35NS 0.39NS 0.46NS
10-20 cm 0.30NS 0.65** 0.64** 0.71** 0.71**
20-30 cm 0.24NS 0.61** 0.76** 0.85** 0.80**
0-30 cm 0.29NS 0.52* 0.61** 0.68** 0.72**
试验2
Exp.2
拔节期
Jointing stage
0-10 cm 0.61** 0.52* 0.45NS 0.38NS 0.45NS
10-20 cm 0.70** 0.78** 0.86** 0.91** 0.92**
20-30 cm 0.51* 0.82** 0.86** 0.97** 0.91**
0-30 cm 0.73** 0.72** 0.69** 0.66** 0.71**
抽穗期
Heading stage
0-10 cm 0.63** 0.55* 0.39NS 0.48* 0.54*
10-20 cm 0.67** 0.72** 0.81** 0.80** 0.83**
20-30 cm 0.51* 0.70** 0.68** 0.83** 0.81**
0-30 cm 0.71** 0.67** 0.57* 0.66** 0.71**
试验3
Exp.3
拔节期
Jointing stage
0-10 cm 0.80** 0.54** 0.62**
10-20 cm 0.63** 0.88** 0.90**
20-30 cm 0.42* 0.98** 0.96**
0-30 cm 0.81** 0.73** 0.79**
抽穗期
Heading stage
0-10 cm 0.72** 0.63** 0.69**
10-20 cm 0.71** 0.81** 0.85**
20-30 cm 0.63** 0.85** 0.86**
0-30 cm 0.75** 0.73** 0.78**
[1] Deng N Y, Grassini P, Yang H S, Huang J L, Cassman K G, Peng S B . Closing yield gaps for rice self-sufficiency in China. Nat Commun, 2019,10:1725.
[2] 凌启鸿, 张洪程, 蔡建中, 苏祖芳, 凌励 . 水稻高产群体质量及其优化控制探讨. 中国农业科学, 1993,26(6):1-11.
Ling Q H, Zhang H C, Cai J Z, Su Z F, Ling L . Investigation on the population quality of high yield and its optimizing control programme in rice. Sci Agric Sin, 1993,26(6):1-11 (in Chinese with English abstract).
[3] 邹应斌, 黄见良, 屠乃美, 李合松, 黄升平, 张杨珠 . “旺壮重”栽培对双季杂交稻产量形成及生理特性的影响. 作物学报, 2001,27:343-350.
Zou Y B, Huang J L, Tu N M, Li H S, Huang S P, Zhang Y Z . Effects of the VSW cultural method on yield formation and physiological characteristics in double cropping hybrid rice. Acta Agron Sin, 2001,27:343-350 (in Chinese with English abstract).
[4] 蒋鹏, 黄敏, Md. Ibrahim, 曾燕, 夏冰, 施婉菊, 谢小兵, 邹应斌. “三定”栽培对双季超级稻养分吸收积累及氮肥利用率的影响. 作物学报, 2011,37:2194-2207.
Jiang P, Huang M, Ibrahim M, Zeng Y, Xia B, Shi W J, Xie X B, Zou Y B . Effects of “sanding” cultivation method on nutrient uptake and nitrogen use efficiency in double cropping super rice. Acta Agron Sin, 2011,37:2194-2207 (in Chinese with English abstract).
[5] 张洪程, 郭保卫, 陈厚存, 周兴涛, 张军, 朱聪聪, 陈京都, 李桂云, 吴中华, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉, 杨雄 . 水稻有序摆、抛栽的生理生态特征及超高产形成机制. 中国农业科学, 2013,46:463-475.
Zhang H C, Guo B W, Chen H C, Zhou X T, Zhang J, Zhu C C, Chen J D, Li G Y, Wu Z H, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H, Yang X . Eco-physiological characteristics and super high yield formation mechanism of ordered transplanting and optimized broadcasting rice. Sci Agric Sin, 2011,37:2194-2207 (in Chinese with English abstract).
[6] 汪仁全, 马均, 童平, 张荣萍, 李艳, 傅泰露, 吴合洲, 刘志彬 . 三角形强化栽培技术对水稻光合生理特性及产量形成的影响. 杂交水稻, 2006,21(6):60-65.
Wang R Q, Ma J, Tong P, Zhang R P, Li Y, Fu T L, Wu H Z, Liu Z B . Effects of planting method of triangle of system of rice intensification (TSRI) on photosynthetic characteristics and formation of grain yield. Hybrid Rice, 2006,21(6):60-65 (in Chinese with English abstract).
[7] 薛超, 周宏 . 污染排放约束下中国水稻生产用水效率与影响因素分析. 水资源保护, 2018,34(3):52-56.
Xue C, Zhou H . Analysis on rice production water use efficiency and its influencing factors in China under constraint of pollutant emission. Water Resour Prot, 2018,34(3):52-56 (in Chinese with English abstract).
[8] 王杰飞, 朱潇, 沈健林, 曾冠军, 王娟, 吴金水, 李勇 . 亚热带稻区大气氨/铵态氮污染特征及干湿沉降. 环境科学, 2017,38:2264-2272.
Wang J F, Zhu X, Shen J L, Zeng G J, Wang J, Wu J S, Li Y . Atmospheric ammonia/ammonium-nitrogen concentrations and wet and dry deposition rates in a double rice region in subtropical China. Environ Sci, 2017,38:2264-2272 (in Chinese with English abstract).
[9] Wang J, Fu P, Wang F, Fahad S, Mohapatra P K, Chen Y T, Zhang C D, Peng S B, Cui K H, Nie L X, Huang J L, . Optimizing nitrogen management to balance rice yield and environmental risk in the Yangtze River’s middle reaches. Environ Sci Pollut Res, 2019,26:4901-4912.
[10] 孙永健, 孙园园, 徐徽, 李玥, 严奉君, 蒋明金, 马均 . 水氮管理模式对不同氮效率水稻氮素利用特性及产量的影响. 作物学报, 2014,40:1639-1649.
Sun Y J, Sun Y Y, Xu H, Li Y, Yan F J, Jiang M J, Ma J . Effects of water-nitrogen management patterns on nitrogen utilization characteristics and yield in rice cultivars with different nitrogen use efficiencies. Acta Agron Sin, 2014,40:1639-1649 (in Chinese with English abstract).
[11] 彭玉, 孙永健, 蒋明金, 徐徽, 秦俭, 杨志远, 马均 . 不同水分条件下缓/控释氮肥对水稻干物质量和氮素吸收、运转及分配的影响. 作物学报, 2014,40:859-870.
Peng Y, Sun Y J, Jiang M J, Xu H, Qin J, Yang Z Y, Ma J . Effects of water management and slow/controlled release nitrogen fertilizer on biomass and nitrogen accumulation, translocation, and distribution in rice. Acta Agron Sin, 2014,40:859-870 (in Chinese with English abstract).
[12] 李娜, 杨志远, 代邹, 孙永健, 徐徽, 何艳, 蒋明金, 严田蓉, 郭长春, 马均 . 水氮管理对不同氮效率水稻根系性状、氮素吸收利用及产量的影响. 中国水稻科学, 2017,31:500-512.
Li N, Yang Z Y, Dai Z, Sun Y J, Xu H, He Y, Jiang M J, Yan T R, Guo C C, Ma J . Effects of water-nitrogen management on root traits, nitrogen accumulation and utilization and grain yield in rice with different nitrogen use efficiency. Chin J Rice Sci, 2017,31:500-512 (in Chinese with English abstract).
[13] Huang J, He F, Cui K, Buresh R J, Xu B, Gong W H, Peng S B . Determination of optimal nitrogen rate for rice varieties using a chlorophyll meter. Field Crops Res, 2008,105:70-80.
[14] Xiong D L, Chen J, Yu T T, Gao W L, Ling X X, Li Y, Peng S B, Huang J L . SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics. Sci Rep, 2015,5:13389.
[15] Miao Y, Stewart B A, Zhang F . Long-term experiments for sustainable nutrient management in China: a review. Agron Sustain Dev, 2011,31:397-414.
[16] Huang L Y, Yang D S, Li X X, Peng S B, Wang F . Coordination of high grain yield and high nitrogen use efficiency through large sink size and high post-heading source capacity in rice. Field Crops Res, 2019,233:49-58.
[17] 韦还和, 孟天瑶, 李超, 张洪程, 史天宇, 马荣荣, 王晓燕, 杨筠文, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫 . 甬优籼粳杂交稻花后干物质积累模型与特征分析. 作物学报, 2016,42:265-277.
Wei H H, Meng T Y, Li C, Zhang H C, Shi T Y, Ma R R, Wang X Y, Yang J W, Dai Q G, Huo Z Y, X K, Wei H Y, Guo B W . Dynamic model and its characteristics analysis for dry matter production after heading of indica/japonica hybrid rice of Yongyou series. Acta Agron Sin, 2016,42:265-277 (in Chinese with English abstract).
[18] 许轲, 郭保卫, 张洪程, 周兴涛, 陈厚存, 张军, 陈京都, 朱聪聪, 李桂云, 吴中华, 戴其根, 霍中洋, 魏海燕, 高辉, 曹利强, 李明银 . 有序摆抛栽对超级稻超高产与光合生产力的影响及水稻超高产模式探索. 作物学报, 2013,39:1652-1667.
Xu K, Guo B W, Zhang H C, Zhou X T, Chen H C, Zhang J, Chen J D, Zhu C C, Li G Y, Wu Z H, Dai Q G, Huo Z Y, Wei H Y, Gao H, Cao L Q, Li M Y . Effect of ordered transplanting and optimized broadcasting on super high yield and photosynthetic productivity and exploration of rice super high yield model. Acta Agron Sin, 2013,39:1652-1667 (in Chinese with English abstract).
[19] 杨志远, 胡蓉, 孙永健, 徐徽, 许远明, 马均 . 三角形强化栽培模式下氮肥运筹对II优498产量及氮肥利用的影响. 作物学报, 2012,38:1097-1106.
Yang Z Y, Hu R, Sun Y J, Xu H, Xu Y M, Ma J . Effects of nitrogen fertilizer management on yield and nitrogen use efficiency of Eryou 498 in triangle-planted system of rice intensification. Acta Agron Sin, 2012,38:1097-1106 (in Chinese with English abstract).
[20] 凌启鸿, 苏祖芳, 张海泉 . 水稻成穗率与群体质量的关系及其影响因素的研究. 作物学报, 1995,21:463-469.
Ling Q H, Su Z F, Zhang H Q . Relationship between earbearing tiller percentage and population quality and its influential factors in rice. Acta Agron Sin, 1995,21:463-469 (in Chinese with English abstract).
[21] 蒋彭炎, 洪晓富, 冯来定, 马跃芳, 史济林, 倪竹如, 刘智宏 . 水稻中期群体成穗率与后期群体光合效率的关系. 中国农业科学, 1994,27(6):8-14.
Jiang P Y, Hong X F, Feng D L, Ma Y F, Shi J L, Ni Z R, Liu Z H . Relation between percentage of ear-bearing of colony in the middle phase and photosynthesis efficiency in the late in rice. Sci Agric Sin, 1994,27(6):8-14 (in Chinese with English abstract).
[22] 王晓燕, 韦还和, 张洪程, 孙健, 张建民, 李超, 陆惠斌, 杨筠文, 马荣荣, 许久夫, 王珏, 许跃进, 孙玉海 . 水稻甬优12产量13.5 t hm -2以上超高产群体的生育特征 . 作物学报, 2014,40:2149-2159.
Wang X Y, Wei H H, Zhang H C, Sun J, Zhang J M, Li C, Lu H B, Yang J W, Ma R R, Xu J F, Wang J, Xu Y J, Sun Y H . Population characteristics for super-high yielding hybrid rice Yongyou 12 ( >13.5 t ha -1 ) . Acta Agron Sin, 2014,40:2149-2159 (in Chinese with English abstract).
[23] 张洪程, 吴桂成, 李德剑, 肖跃成, 龚金龙, 李杰, 戴其根, 霍中洋, 许轲, 高辉, 魏海燕, 沙安勤, 周有炎, 王宝金, 吴爱国 . 杂交粳稻13.5 t hm -2超高产群体动态特征及形成机制的探讨 . 作物学报, 2010,36:1547-1558.
Zhang H C Wu G C, Li D J, Xiao Y C, Gong J L, Li J, Dai Q G, Huo Z Y, Xu K, Gao H, Wei H Y, Sha A Q, Zhou Y Y, Wang B J, Wu A G . Population characteristeristics and formation mechanism for super-high-yielding hybrid japonica rice (13.5 t ha -1). Acta Agron Sin , 2010,36:1547-1558 (in Chinese with English abstract).
[24] 徐云姬, 许阳东, 李银银, 钱希旸, 王志琴, 杨建昌 . 干湿交替灌溉对水稻花后同化物转运和籽粒灌浆的影响. 作物学报, 2018,44:554-568.
Xu Y J, Xu Y D, Li Y Y, Qian X Y, Wang Z Q, Yang J C . Effect of alternate wetting and drying irrigation on post-anthesis remobilization of assimilates and grain filling of rice. Acta Agron Sin, 2018,44:554-568 (in Chinese with English abstract).
[25] 徐国伟, 陆大克, 孙会忠, 王贺正, 李友军 . 干湿交替灌溉与施氮耦合对水稻根际环境的影响. 农业工程学报, 2017,33:186-194.
Xu G W, Lu D K, Sun H Z, Wang H Z, Li Y J,. Effect of alternative wetting and drying irrigation and nitrogen coupling on rhizosphere environment of rice. Trans CSAE, 2017,33:186-194 (in Chinese with English abstract).
[26] 褚光, 展明飞, 朱宽宇, 王志琴, 杨建昌 . 干湿交替灌溉对水稻产量与水分利用效率的影响. 作物学报, 2016,42:1026-1036.
Chu G, Zhan M F, Zhu K Y, Wang Z Q, Yang J C . Effects of alternate wetting and drying irrigation on yield and water use efficiency of rice. Acta Agron Sin, 2016,42:1026-1036 (in Chinese with English abstract).
[27] 曹娜, 王睿, 廖婷婷, 陈诺, 郑循华, 姚志生, 张海, Klaus B B. 厌氧条件下砂壤水稻土N2、N2O、NO、CO2和CH4排放特征. 环境科学, 2015,36:3373-3382.
Cao N, Wang R, Liao T T, Chen N, Zheng X H, Yao Z S, Zhang H, Klaus B B . Characteristics of N2, N2O, NO, CO2 and CH4 emissions in anaerobic condition from sandy loam paddy soil. Environ Sci, 2015,36:3373-3382 (in Chinese with English abstract).
[28] Tan X Z, Shao D G, Gu W Q . Effects of temperature and soil moisture on gross nitrification and denitrification rates of a Chinese lowland paddy field soil. Paddy Water Environ, 2018,16:687-698.
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[15] QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!