Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (8): 1511-1521.doi: 10.3724/SP.J.1006.2021.01082

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of seedling resistance to stripe rust in wheat-Thinopyrum intermedium translocation line and its potential application in breeding

WANG Yin1(), FENG Zhi-Wei3, GE Chuan3, ZHAO Jia-Jia2, QIAO Ling2, WU Bang-Bang2, YAN Su-Xian2, ZHENG Jun2,3,*(), ZHENG Xing-Wei2,3,*()   

  1. 1Department of Natural Sciences, Shanxi Normal University, Linfen 041000, Shanxi, China
    2Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, Shanxi, China
    3College of Agriculture, Shanxi Agricultural University/Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, Taiyuan 030000, Shanxi, China
  • Received:2020-10-22 Accepted:2021-01-13 Online:2021-08-12 Published:2021-03-02
  • Contact: ZHENG Jun,ZHENG Xing-Wei E-mail:wangyinstar@163.com;sxnkyzj@126.com;smilezxw@126.com
  • Supported by:
    China Postdoctoral Science Foundation(2020M670701);Key Research and Development Program in Shanxi Province(201903D221074);Key Research and Development Program in Shanxi Province(201903D221075);Shanxi Key Laboratory Program(201705D111008-22)

Abstract:

There are abundant disease resistance resources in relative genus of wheat. The translocation line ZH811 derived from progeny of wheat and Th. intermedium hybrids, was selected for evaluation of stripe rust resistance. A series of stripe rust races such as CYR29, CYR31, CYR32, CYR33, CYR34, Suwon-4, Suwon-5, and Suwon-7 were used to record stripe responses at seedling stage. Agronomical traits, quality traits, and molecular cytogenetic analysis were also performed. Moreover, specific molecular markers located on alien segment was developed by RAPD method. The results indicated that ZH811 was highly resistant to all tested races at seedling stage. And it further proved that the resistance was conferred by a small-fragment-translocation from the Ee genome on 5DS chromosome. The SCAR markers and black awn traits could be used to trace the translocation fragment. ZH811 possessed similar agronomic traits with the commercial cultivars in the Yellow-Huaihe-Haihe Rivers region of wheat. The translocation fragment may be associated with the increase of grain number. The components of the Glu-1 were good-quality subunits, including 1, 17+18, and 5+10, and each quality index met the standard of moderate gluten. The alien chromosomal fragment had no obvious linkage drag to grain quality performance. Based on these findings, ZH811 could be used as a potential material for wheat breeding in high yield, disease resistance, and high quality.

Key words: stripe rust, translocation line, in situ hybridization, molecular marker

Table 1

Plant materials used in this study"

材料名称
Plant materials
材料信息
Information of plant materials
ZH811, ZH577 F5 (中国春/中间偃麦草)//晋麦33///临4133组合F3中选育
Deriving from F3 [F5(CS/Z1141)//Jinmai 33///Lin 4133]
ZH811×ZH577正反交F2群体
ZH811×ZH577 reciprocal F2 populations
ZH811和ZH577进行杂交获得的正反交F2群体
F2 populations generated from reciprocal crosses between ZH811 and ZH577
ZH811×ZH577 BC1群体
ZH811×ZH577 BC1 populations
ZH811×ZH577回交一代群体
The first backcross generations of ZH811 and ZH577
ZH811×ZH577 DH群体
ZH811×ZH577 DH populations
以ZH811和ZH577为亲本构建的双单倍体群体
Double haploid population of a cross between ZH811 and ZH577
中国春、晋麦33、临4133
Chines Spring, Jinmai 33, Lin 4133
易位系的亲本
Parent materials of the translocation line
铭贤169
Mingxian 169
感病对照
Susceptible control variety
良星99
Liangxing 99
品质性状对照
Quality traits control
师栾02-1、烟农19
Shiluan 02-1, Yannong 19
高分子量麦谷蛋白亚基对照
High-Molecular-Weight Glutenin Subunits (HWM-GS) control varieties
Z1141 六倍体中间偃麦草
Th. intermedium (2n = 42, StStEeEeEbEb)
PI98526 二倍体长穗偃麦草
Th. elongatum (2n = 14, EeEe)
PI531712 百萨偃麦草
Th. bessarabicum (2n = 14, EbEb)
PI313960 拟鹅观草
Pseudoroegneria strigose (2n = 14, StSt)

Fig. 1

Stripe rust infection types at seedling stage"

Table 2

Segregation ratios of infection types in cross derived from ZH811 and ZH577"

群体世代
Generation
不同抗病类型的株系数量
No. of plants with different infection type
理论比
Expected ratio
χ2 P
抗病Resistant 感病Susceptible
正交F2 Direct cross F2 133 47 3:1 0.12 0.73
反交F2 Reciprocal cross F2 112 38 3:1 0.01 0.93
BC1 54 46 1:1 0.64 0.42

Fig. 2

GISH/FISH analysis of the chromosomes of ZH811 (A, B), Jinmai 33 (C, D), and Lin 4133 (E, F) A, C, E: GISH using genomic DNA of Thinopyrum intermedium as probe, genomic DNA of Chinese Spring as block. B, D, F: FISH using probes pAs1 (green signal) and pSc119.2 (red signal). Arrows show the wheat-Thinopyrum intermedium chromosome translocations (A) or chromosome 5D (B-F). Bar = 10 μm."

Fig. 3

Identification of different materials A: RAPD analysis of ZH811 and ZH577 (The corresponding lanes from left to right are DL2000 marker, ZH811 and ZH577 with Tm at 46℃, ZH811 and ZH577 with Tm at 50℃, ZH811 and ZH577 with Tm at 54℃; Arrows show the differential band amplified between ZH811 and ZH577; B: PCR patterns of SCAR marker (The corresponding lanes from left to right are DL2000 marker, ZH811, ZH577, CS, Lin 4133, Jinmai 33, Th. intermedium ZH1141, Th. elongatum PI98526, Th. bessarabicum PI531712, Pseudoroegneria strigose PI313960, ddH2O)."

Fig. 4

Infection type and SCAR profile of some DH lines derived from ZH811×ZH577"

Fig. 5

Plant morphologies of ZH811 and ZH577"

Fig. 6

Main agronomic performances of translocation and non-translocation lines *, P < 0.05"

Fig. 7

HMW-GS analysis of the material tested by SDS-PAGE The corresponding lanes from left to right are Shiluan 02-1 (SL02-1), ZH811, Yannong 19 (YN19), Jinmai 33 (JM33), and Chinese Spring (CS). The numbers in this figure indicate the types of HMW-GS represented by each band."

Table 3

Quality traits of the materials tested"

品种
Cultivar
蛋白质含量
Protein content (%)
沉降值
Zeleny
(mL)
湿面筋含量
Wet gluten
content (%)
形成时间
Formation time (min)
稳定时间
Dough stability time stability time (min)
最大拉伸阻力
Max resistance to drag (E.U.)
拉伸面积
Stretch area (cm2)
ZH811
ZH577
14.57±1.53 a 30.25±2.75 ab 32.87±2.32 a 5.82±0.41 a 7.88±0.23 a 368.00±12.37 a 88.00±3.12 a
14.96±1.87 a 32.84±2.11 a 32.26±2.88 a 5.75±0.33 a 8.15±0.17 a 342.00±13.59 a 89.00±4.69 a
良星99
Liangxing 99
13.32±0.84 b 26.81±1.26 b 30.61±1.82 b 2.10±0.44 b 2.70±0.23 b 193.00±15.27 b 42.00±3.72 b
[1] 康振生, 王晓杰, 赵杰, 汤春蕾, 黄丽丽. 小麦条锈菌致病性及其变异研究进展. 中国农业科学, 2015,48:3439-3453.
Kang Z S, Wang X J, Zhao J, Tang C L, Huang L L. Advances in research of pathogenicity and virulence variation of the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Sci Agric Sin, 2015,48:3439-3453 (in Chinese with English abstract).
[2] 陈万权, 康振生, 马占鸿, 徐世昌, 金社林, 姜玉英. 中国小麦条锈病综合治理理论与实践. 中国农业科学, 2013,46:4254-4262.
Chen W Q, Kang Z S, Ma Z H, Xu S C, Jin S L, Jiang Y Y. Integrated management of wheat stripe rust caused by Puccinia striiformis f. sp. tritici in China. Sci Agric Sin, 2013,46:4254-4262 (in Chinese with English abstract).
[3] 李振岐, 曾士迈. 中国小麦锈病. 北京: 中国农业出版社, 2002.
Li Z Q, Zeng S M. Wheat Rusts in China. Beijing: China Agriculture Press, 2002 (in Chinese).
[4] 韩德俊, 康振生. 中国小麦品种抗条锈病现状及存在问题与对策. 植物保护, 2018,44(5):6-17.
Han D J, Kang Z S. Current status and future strategy in breeding wheat for resistance to stripe rust in China. Plant Prot, 2018,44(5):6-17 (in Chinese with English abstract).
[5] McIntosh R, Mu J M, Han D J, Kang Z S. Wheat stripe rust resistance gene Yr24/Yr26: a retrospective review. Crop J, 2018,6:321-329.
doi: 10.1016/j.cj.2018.02.001
[6] Cruz C D, Peterson G L, Bockus W W, Kankanala P, Dubcovsky J, Jordan K W, Akhunov E, Chumley F, Baldelomar F D, Valent B. The 2NS translocation from Aegilops ventricosa confers resistance to the Triticum pathotype of Magnaporthe oryzae. Crop Sci, 2016,56:990-1000
pmid: 27814405
[7] 董玉琛. 小麦的基因源. 麦类作物学报, 2000,20(3):78-81.
Dong Y C. Gene pool of common wheat. J Triticeae Crops, 2000,20(3):78-81 (in Chinese with English abstract).
[8] 李振声, 容珊, 钟冠昌, 陈漱阳, 穆素梅. 小麦远缘杂交. 北京: 科学出版社, 1985.
Li Z S, Rong S, Zhong G C, Chen S Y, Mu S M. Wheat Wild Hybridization. Beijing: Science Press, 1985 (in Chinese).
[9] 李万隆, 李振声. 小麦品种小偃6号染色体结构变异的细胞学研究. 遗传学报, 1990,17:430-437.
Li W L, Li Z S. A cytological study of chromosomal structure changes in a common wheat variety, Xiaoyan No. 6. Acta Genet Sin, 1990,17:430-437 (in Chinese with English abstract).
[10] Guo J, Zhang X, Hou Y, Cai J, Kong L. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection. Theor Appl Genet, 2015,128:2301-2316.
doi: 10.1007/s00122-015-2586-x
[11] 李立会, 张锦鹏, 杨欣明, 刘伟华, 李秀全, 韩海明, 周升辉. 小麦与冰草属间远缘杂交及新种质创制研究进展. 见: 第十届全国小麦基因组学及分子育种大会摘要集, 2019. p 54.
Li L H, Zhang J P, Yang X M, Liu W H, Li X Q, Han H M, Zhou S H. Research progress of wheat-Agropyron cristatum wild hybridization and creation of new germplasms. In: The 10th National Conference on Wheat Genomics and Molecular Breeding, 2019. p 54. (in Chinese)
[12] Lupton F G H, Macer R C F. Inheritance of resistance to yellow rust (Puccinia glumarum Erikss. & Henn.) in seven varieties of wheat. Transact British Mycol Soc, 1962,45:21-45.
[13] Riley R, Chapman V, Johnson R. Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homeologous recombination. Nature, 1968,217:378-384.
doi: 10.1038/217378a0
[14] Chen X M, Jones S S, Line R F. Chromosomal location of genes for stripe rust resistance in spring wheat cultivar Compare, Fielder, Lee and Lemhi and interactions of aneuploid wheats with races of Puccinia striiformis. Phytopathology, 1995,143:19-26.
[15] Zeller F J. 1B/1R wheat-rye chromosome substitutions and translocations. In: Sears E R, Sears L M S, eds. Proceedings of the 4th International Wheat Genetics Symposium. Missouri Agricultural Experiment Station, University of Missouri, Columbia, 1973. pp 209-221.
[16] Bariana H S, Parry N, Barclay I R, Loughman R, McLean R J, Shankar M, Wilson R E, Willey N J, Francki M. Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theor Appl Genet, 2006,112:1143-1148.
pmid: 16435125
[17] Bariana H S, McIntosh R A. Cytogenetic studies in wheat: XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome, 1993, 36: 476-482.
pmid: 18470001
[18] Singh R P, Nelson J C, Sorrells M E. Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci, 2000,40:1148-1155.
doi: 10.2135/cropsci2000.4041148x
[19] Marais G F, McCallum B, Snyman J E, Pretorius Z A, Marais A S. Leaf rust and stripe rust resistance genes Lr54 and Yr37 transferred to wheat from Aegilops kotschyi. Plant Breed, 2005,124:538-541.
doi: 10.1111/pbr.2005.124.issue-6
[20] Marais G F, McCallum B, Marais A S. Leaf rust and stripe rust resistance genes derived from Aegilops sharonensis. Euphytica, 2006,149:373-380.
doi: 10.1007/s10681-006-9092-9
[21] Kuraparthy V, Chhuneja P, Dhaliwal H S, Kaur S, Bowden R L, Gill B S. Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet, 2007,114:1379-1389.
pmid: 17356867
[22] Marais F, Marais A, Mccallum B, Pretorius Z. Transfer of leaf rust and stripe rust resistance genes Lr62 and Yr42 from Aegilops neglecta Req. ex Bertol. to common wheat. Crop Sci, 2009,49:871-879.
doi: 10.2135/cropsci2008.06.0317
[23] 刘成. 小麦远缘杂交种质资源评价. 北京: 中国农业科学技术出版社, 2019. pp 185-279.
Liu C. Evaluation of Wheat Germplasm Derived from Distant Hybridization. Beijing: China Agricultural Science and Technology Press, 2019. pp 185-279(in Chinese).
[24] Friebe B, Jiang J, Knott D R, Gill B S. Compensation indices of radiation-induced wheat- Agropyron elongatum translocations conferring resistance to leaf rust and stem rust. Crop Sci, 1994,34:400-404.
doi: 10.2135/cropsci1994.0011183X003400020018x
[25] Zhan H X, Zhang X J, Li G R, Pan Z H, Hu J, Li X, Qiao L Y, Jia J Q, Guo H J, Chang Z J, Yang Z J. Molecular characterization of a new wheat- Thinopyrum intermedium translocation line with resistance to powdery mildew and stripe rust. Int J Mol Sci, 2015,16:2162-2173.
doi: 10.3390/ijms16012162
[26] Lang T, La M S, Li B, Yu Z H, Chen Q H, Li J B, Yang E N, Li G R, Yang Z J. Precise identification of wheat- Thinopyrum intermedium translocation chromosomes carrying resistance to wheat stripe rust in line Z4 and its derived progenies. Genome, 2018,61:177-185.
doi: 10.1139/gen-2017-0229 pmid: 29470932
[27] Han F P, Liu B, Fedak G, Liu Z H. Genomic constitution and variation in five partial amphiploids of wheat- Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor Appl Genet, 2004,109:1070-1076.
doi: 10.1007/s00122-004-1720-y
[28] Tang X Q, Shi D, Xu J, Li Y L, Li W J, Ren Z L, Fu T H. Molecular cytogenetic characteristics of a translocation line between common wheat and Thinopyrum intermedium with resistance to powdery mildew. Euphytica, 2014,197:201-210.
doi: 10.1007/s10681-013-1059-z
[29] Fedak G, Chen Q, Conner R L, Laroche A, Petroski R, Armstrong K W. Characterization of wheat- Thinopyrum partial amphiploids by meiotic analysis and genomic in situ hybridization. Genome, 2000,43:712-719.
pmid: 10984185
[30] Yang Z J, Li G R, Chang Z J, Zhou J P, Ren Z L. Characterization of a partial amphiploid between Triticum aestivum cv. Chinese Spring and Thinopyrum intermedium ssp. trichophorum. Euphytica, 2006,149:11-17.
doi: 10.1007/s10681-005-9010-6
[31] Chang Z J, Zhang X J, Yang Z J, Zhan H X, Li X, Liu C, Zhang C Z. Characterization of a partial wheat- Thinopyrum intermedium amphiploid and its reaction to fungal diseases of wheat. Hereditas, 2010,147:304-312.
doi: 10.1111/more.2010.147.issue-6
[32] Bao Y, Li X, Liu S, Cui F, Wang H. Molecular cytogenetic characterization of a new wheat- Thinopyrum intermedium partial amphiploid resistant to powdery mildew and stripe rust. Cytogenet Genome Res, 2009,126:390-395.
doi: 10.1159/000266169
[33] 杨敏娜, 徐智斌, 王美南, 宋建荣, 井金学, 李振岐. 小麦品种中梁22抗条锈病基因的遗传分析和分子作图. 作物学报, 2008,34:1280-1284.
Yang M N, Xu Z B, Wang M N, Song J R, Jing J X, Li Z Q. Genetic analysis and molecular mapping of stripe rust resistance gene in wheat cultivar Zhongliang 22. Acta Agron Sin, 2008,34:1280-1284 (in Chinese with English abstract).
[34] Liu J, Chang Z J, Zhang X J, Yang Z J, Li X, Jia J Q, Zhan H X, Guo H J, Wang J M. Putative Thinopyrum intermedium-derived stripe rust resistance gene Yr50 maps on wheat chromosome arm 4BL. Theor Appl Genet, 2013,126:265-274.
doi: 10.1007/s00122-012-1979-3
[35] Hou L, Jia J, Zhang X, Li X, Yang Z, Ma J, Guo H, Zhan H, Qiao L, Chang Z. Molecular mapping of the stripe rust resistance gene Yr69 on wheat chromosome 2AS. Plant Dis, 2016,100:1717-1724.
doi: 10.1094/PDIS-05-15-0555-RE
[36] 詹海仙, 畅志坚, 李光蓉, 贾举庆, 郭慧娟, 张晓军, 李欣, 乔麟轶, 杨足君. 小麦新抗源CH5383抗条锈病基因的遗传分析及分子定位. 生物技术通报, 2014,6:96-100.
Zhan H X, Chang Z J, Li G R, Jia J Q, Guo H J, Zhang X J, Li X, Qiao L Y, Yang Z J. Genetic analysis and molecular mapping of stripe rust resistance gene in wheat line CH5383. Biotech Bull, 2014,6:96-100 (in Chinese with English abstract).
[37] Huang Q, Li X, Chen WQ, Xiang Z P, Zhong S F, Chang Z J, Zhang M, Zhang H Y, Tan F Q, Ren Z L, Luo P G. Genetic mapping of a putative Thinopyrum intermedium-derived stripe rust resistance gene on wheat chromosome 1B. Theor Appl Genet, 2014,127:843-853.
doi: 10.1007/s00122-014-2261-7
[38] 侯丽媛, 乔麟轶, 张晓军, 李欣, 詹海仙, 畅志坚. 抗条锈病基因YrCH5026的遗传分析及分子定位. 华北农学报, 2015,30(5):7-15.
Hou L Y, Qiao L Y, Zhang X J, Li X, Zhan H X, Chang Z J. Genetic analysis and molecular mapping of a stripe rust resistance gene YrCH5026. Acta Agric Boreali-Sin, 2015,30(5):7-15 (in Chinese with English abstract).
[39] 吴建辉. 基于BSR-Seq和芯片技术的抗条锈基因Yr26候选基因分析及普通小麦成株期抗条锈QTL定位. 西北农林科技大学博士学位论文, 陕西杨凌, 2017.
Wu J H. QTL Mapping for Adult-plant Resistance to Stripe Rust in Common Wheat and Candidate Gene Analysis of Yr26 Based on BSR-seq and SNP Array. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2017 (in Chinese with English abstract).
[40] Line R F, Qayoum A. Virulence, aggressiveness, evolution and distribution of races of Puccinia striiformis (the cause of stripe of wheat) in North America, 1968-1987. U.S. Department of Agriculture Technical Bulletin No. 1788, 1992,44.
[41] 崔承齐, 王林生, 陈佩度. 普通小麦-大赖草易位系T7BS·7Lr#1S和T2AS·2AL-7Lr#1S的分子细胞遗传学鉴定. 作物学报, 2013,39:191-197.
Cui C Q, Wang L S, Chen P D. Molecular and cytogenetic identification of Triticum aestivum-Leymus racemosus translocation lines T7BS·7Lr#1S and T2AS·2AL-7Lr#1S. Acta Agron Sin, 2013,39:191-197 (in Chinese with English abstract).
[42] Zhang X Y, Dong Y S, Wang R R C. Characterization of genomes and chromosomes in partial amphiploids of the hybrid Triticum aestivum × Thinopyrum ponticum by in situ hybridization, isozyme analysis, and RAPD. Genome, 1996,39:1062-1071.
pmid: 18469955
[43] 赵佳佳, 乔玲, 郑兴卫, 李晓华, 曹勇, 马小飞, 杨斌, 姬虎太, 乔麟轶, 郑军, 张建诚. 山西小麦育成品种品质性状及HMW-GS组成演变分析. 植物遗传资源学报, 2018,19:1126-1137.
Zhao J J, Qiao L, Zheng X W, Li X H, Cao Y, Ma X F, Yang B, Ji H T, Qiao L Y, Zheng J, Zhang J C. Variation of quality-related traits and HMW-GS of wheat varieties in Shanxi province. J Plant Genet Resour, 2018,19:1126-1137 (in Chinese with English abstract).
[44] Hu L J, Li G R, Zeng Z X, Chang Z J, Liu C, Yang Z J. Molecular characterization of a wheat- Thinopyrum ponticum partial amphiploid and its derived substitution line for resistance to stripe rust. J Appl Genet, 2011,52:279-285.
doi: 10.1007/s13353-011-0038-0
[45] 郝薇薇, 汤才国, 李葆春, 郝晨阳, 张学勇. 小麦-十倍体长穗偃麦草广谱抗锈易位系的鉴定及分析. 中国农业科学, 2012,45:3240-3248.
Hao W W, Tang C G, Li B C, Hao C Y, Zhang X Y. Analysis of wheat- Thinopyrum ponticum translocation lines with broad spectrum resistance to stripe rusts. Sci Agri Sin, 2012,45:3240-3248 (in Chinese with English abstract).
[46] 李振声, 穆素梅, 蒋立训, 周汉平, 吴景科, 余玲. 蓝粒单体小麦研究(一). 遗传学报, 1982,9:431-439.
Li Z S, Mu S M, Jiang L X, Zhou H P, Wu J K, Yu L. A study on blue-grained monosomic wheat (I). Acta Genet Sin, 1982,9:431-439 (in Chinese with English abstract).
[47] Miller T E, Reader S M. A guide to the homoeology of chromosomes within the Triticeae. Theor Appl Genet, 1987,74:214-217.
doi: 10.1007/BF00289971 pmid: 24241567
[48] 李淑梅, 徐川梅, 周波, 陈佩度. 普通小麦-簇毛麦2V染色体端体异附加系的选育与鉴定. 南京农业大学学报, 2009,32(1):1-5.
Li S M, Xu C M, Zhou B, Chen P D. Development and identification of Triticum aestivum-Haynaldia villosa ditelosomic addition lines involving chromosome 2V of H. villosa. J Nanjing Agric Univ, 2009,32(1):1-5 (in Chinese with English abstract).
[49] Xin Z Y, Xu H J, Chen X. Research on introducing yellow dwarf resistance to common wheat using biotechnology. Sci China (Series B), 1991,21:36-42.
[50] McIntosh R A, Baker E P. Chromosome location and linkage studies involving the Pm3 locus for powdery mildew resistance in wheat. J Lumin, 1968,93:232-238.
[51] Hsam N B O, Kowalczyk K, Zeller F J, Hsam S L K. Characterization of powdery mildew resistance and linkage studies involving the Pm3 locus on chromosome 1A of common wheat (Triticum aestivum L.). J Appl Genet, 2015,56:37-44.
doi: 10.1007/s13353-014-0236-7
[52] Borner A, Schumann E, Furste A, Coster H, Leithold B, Roder M S, Weber W E. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 2002,105:921-936.
doi: 10.1007/s00122-002-0994-1
[53] Jing H C, Kornyukhin D, Kanyuka K, Orford S, Zlatska A, Mitrofanova O P, Koebner R, Hammond-Kosack K. Identification of variation in adaptively important traits and genome-wide analysis of trait-marker associations in Triticum monococcum. J Exp Bot, 2007,58:3749-3764.
doi: 10.1093/jxb/erm225
[54] Chai J F, Liu X, Jia J Z. Homoeologous cloning of omega-secalin gene family in a wheat 1BL/1RS translocation. Cell Res, 2005,15:658-664.
doi: 10.1038/sj.cr.7290335
[55] 杨芳萍, 刘金栋, 郭莹, 贾奥琳, 闻伟鄂, 巢凯翔, 伍玲, 岳维云, 董亚超, 夏先春. 普通小麦‘Holdfast’条锈病成株抗性QTL定位. 作物学报, 2019,45:1832-1840.
Yang F P, Liu J D, Guo Y, Jiao A L, Wen W E, Chao K X, Wu L, Yue W Y, Dong Y C, Xia X C. QTL mapping of adult-plant resistance to stripe rust in wheat variety holdfast. Acta Agron Sin, 2019,45:1832-1840 (in Chinese with English abstract).
[56] 张怀志, 谢菁忠, 陈永兴, 刘旭, 王勇, 闫素红, 杨兆生, 赵虹, 王西成, 贾联合, 曹廷杰, 刘志勇. 利用BSR-Seq定位小麦品种郑麦103抗条锈病基因YrZM103. 作物学报, 2017,43:1643-1649.
Zhang H Z, Xie J Z, Chen Y X, Liu X, Wang Y, Yan S H, Yang Z S, Zhao H, Wang X C, Jia L H, Cao L J, Liu Z Y. Mapping stripe rust resistance gene YrZM103 in wheat cultivar Zhengmai 103 by BSR-seq. Acta Agron Sin, 2017,43:1643-1649 (in Chinese with English abstract).
[1] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[2] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[3] MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758.
[4] XI Ling, WANG Yu-Qi, ZHU Wei, WANG Yi, CHEN Guo-Yue, PU Zong-Jun, ZHOU Yong-Hong, KANG Hou-Yang. Identification of resistance to wheat and molecular detection of resistance genes to wheat stripe rust of 78 wheat cultivars (lines) in Sichuan province [J]. Acta Agronomica Sinica, 2021, 47(7): 1309-1323.
[5] DUAN Ya-Mei, LUO Xian-Lei, CHEN Shi-Qiang, GAO Yong, CHEN Jian-Min, DAI Yi. Creation of disomic addition, substitution and translocation lines of durum wheat-Thinopyrum elongatum [J]. Acta Agronomica Sinica, 2021, 47(7): 1402-1414.
[6] HE Jun-Yu, YIN Shun-Qiong, CHEN Yun-Qiong, XIONG Jing-Lei, WANG Wei-Bin, ZHOU Hong-Bin, CHEN Mei, WANG Meng-Yue, CHEN Sheng-Wei. Identification of wheat dwarf mutants and analysis on association between the mutant traits of the dwarf plants [J]. Acta Agronomica Sinica, 2021, 47(5): 974-982.
[7] WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586.
[8] ZHANG Xue-Cui, SUN Su-Li, LU Wei-Guo, LI Hai-Chao, JIA Yan-Yan, DUAN Can-Xing, ZHU Zhen-Dong. Identification of resistance gene against phytophthora root rot in new soybean lines breeded in Henan province [J]. Acta Agronomica Sinica, 2021, 47(2): 275-284.
[9] HUANG Yi-Wen, DAI Xu-Ran, LIU Hong-Wei, YANG Li, MAI Chun-Yan, YU Li-Qiang, YU Guang-Jun, ZHANG Hong-Jun, LI Hong-Jie, ZHOU Yang. Relationship between the allelic variations at the Ppo-A1 and Ppo-D1 loci and pre-harvest sprouting resistance in wheat [J]. Acta Agronomica Sinica, 2021, 47(11): 2080-2090.
[10] GUO Qing-Qing, ZHOU Rong, CHEN Xue, CHEN Lei, LI Jia-Na, WANG Rui. Location and InDel markers for candidate interval of the orange petal gene in Brassica napus L. by next generation sequencing [J]. Acta Agronomica Sinica, 2021, 47(11): 2163-2172.
[11] ZHAO Xu-Yang, YAO Fang-Jie, LONG Li, WANG Yu-Qi, KANG Hou-Yang, JIANG Yun-Feng, LI Wei, DENG Mei, LI Hao, CHEN Guo-Yue. Evaluation of resistance to stripe rust and molecular detection of resistance genes of 93 wheat landraces from the Qinghai-Tibet spring and winter wheat zones [J]. Acta Agronomica Sinica, 2021, 47(10): 2053-2063.
[12] GUO Yan-Chun, ZHANG Li-Lan, CHEN Si-Yuan, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Lie-Mei, ZHANG Li-Wu. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.) [J]. Acta Agronomica Sinica, 2021, 47(1): 80-93.
[13] BAI Zong-Fan,JING Xia,ZHANG Teng,DONG Ying-Ying. Canopy SIF synergize with total spectral reflectance optimized by the MDBPSO algorithm to monitor wheat stripe rust [J]. Acta Agronomica Sinica, 2020, 46(8): 1248-1257.
[14] ZHENG Yan-Yan, HUANG De-Hua, LI Ji-Long, ZHANG Hui-Fei, BAO Yin-Guang, NI Fei, WU Jia-Jie. Analysis of the stripe rust resistance in a wheat line CB037 with high regeneration and transformation efficiency [J]. Acta Agronomica Sinica, 2020, 46(11): 1743-1749.
[15] Ping ZHANG,Yi-Mei JIANG,Peng-Hui CAO,Fu-Lin ZHANG,Hong-Ming WU,Meng-Ying CAI,Shi-Jia LIU,Yun-Lu TIAN,Ling JIANG,Jian-Min WAN. Introducing qSS-9 Kas into Ningjing 4 by molecular marker-assisted selection to improve its seed storage ability [J]. Acta Agronomica Sinica, 2019, 45(3): 335-343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!