Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (9): 1703-1711.doi: 10.3724/SP.J.1006.2021.04247

• RESEARCH PAPERS • Previous Articles     Next Articles

Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress

SHI Lei1,2(), MIAO Li-Juan1,2, HUANG Bing-Yan1,2, GAO Wei3, ZHANG Zong-Xin1,2, QI Fei-Yan1,2, LIU Juan3, DONG Wen-Zhao1,2, ZHANG Xin-You1,2,*()   

  1. 1Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences / Key Laboratory of Oil Crops in Huanghuaihai Plains, Ministry of Agriculture and Rural Affairs / Henan Provincial Key Laboratory for Oil Crops Improvement / National and Provincial Joint Engineering Laboratory for Peanut Genetic Improvement, Zhengzhou 450002, Henan, China
    2Henan Biological Breeding Center Co., Ltd., Zhengzhou 450002, Henan, China
    3Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2020-11-17 Accepted:2021-03-19 Online:2021-09-12 Published:2021-03-31
  • Contact: ZHANG Xin-You E-mail:leis100@163.com;haasz@126.com
  • Supported by:
    National Key Research and Development Program of China “Physiological Basis and Agronomic Management for High-quality and High-yield of Field Cash Crops”(2018YFD1000900);China Agriculture Research System(CARS-13);Henan Province Agriculture Research System(S2012-5)

Abstract:

Delta-12 fatty acid desaturase 2 (FAD2) catalyzes the conversion of oleic acid to linoleic acid and is the determination of the level of oleic to linoleic acid ratio (O/L) in peanut oil. Peanuts with high oleic acid content are more susceptible to cold stress than those with normal oleic acid content, suggesting that FAD2 plays important roles in response to cold stress. To explore the role ofFAD2s during the process of cold stress acclimation in peanut, the genomic structures of AhFAD2-1A/Bwere determined; the function of promoters, intron of AhFAD2-1A/Band their response to cold stress were characterized by using β-glucuronidase (GUS) gene reporter system in transgenic Arabidopsis. The results were as follows: AhFAD2-1A/B genes consisted of two exons and one intron within their 5'-UTR; promoter ofAhFAD2-1A was too weak to be detected and the promoter of AhFAD2-1B poorly activated the expression level of GUS in cotyledon tip of seedlings; the promoter of AhFAD2-1pseudogene activated GUS expression limited to cotyledon, hypocotyl, and seed. The intron of AhFAD2-1B demonstrated promoter-like activity which was restricted in cotyledon and hypocotyl, and not only enhanced the gene expression efficiency but also expanded gene expression range. Intron-mediated enhancement was an essential aspect of AhFAD2-1expression. Activities of 5'-flanking region of AhFAD2-1A/B were repressed by the cold stress.

Key words: peanut (Arachis hypogaea L.), Δ12-fatty acid desaturase gene (FAD2), promoter, intron-mediated enhancement, cold stress, GUS reporter gene

Table 1

Sequences of primers used in this study"

目的片段
Target fragment
上游引物
Forward primer (5°-3°)
下游引物
Reverse primer (5°-3°)
PAhFAD2-1A+intron ACGCGTCGA (Sal I) CTTCCGCCAGAATGAGGAACTAAA TCACAG GACATCTAGA (Xba I) GTTGTGTTGTTAAAGCT CCTGTTACCAATG
PAhFAD2-1B+intron CGGGGTACC (Kpn I) ATGTTTCATAGAATTTAAGCTCAGA CACG
PAhFAD2-1B(pseudo) ACGCGTCGA (Sal I) CACCAAGTAGCTTCTCAATGGCTCA GATTCG
AhFAD2-1B-intron ACGCGTCGA (Sal I) CATAGGAGAAGCACTCACTTCTCTT CTCTC
AhFAD2-1B-intron681 ACGCGTCGA (Sal I) CATAATGGCTTCTGGGCCCTCAC
AhFAD2-1B-intron363 ACGCGTCGA (Sal I) CATAATGGCTTCTGGGCCCTCAC GACATCTAGA (Xba I) TATCATGCCAAGTGACT AGTATGA
PAhFAD2-1A ACGCGTCGA (Sal I) CTTCCGCCAGAATGAGGAACTAAA TCACAG GACATCTAGA (Xba I) GATGAATCTCGCAGCCA CGTTT
PAhFAD2-1B CGGGGTACC (Kpn I) ATGTTTCATAGAATTTAAGCTCAGA CACG

Fig. 1

Comparison of FAD2-1A/B/pseudo promoters and genomic structures in peanut TSS: the transcription start site."

Fig. 2

Histochemical analyses of AhFAD2A/B/pseudo promoters and introns in transgenic Arabidopsis plants "

Fig. 3

GUS histochemical staining of transgenic Arabidopsis with PAhFAD2-1A+intron under cold stress A: PAhFAD2-1A+intron transgenic Arabidopsis plants; B: CaMV35S transgenic Arabidopsis plants. 1-day: one day after treating; 2-day: two days after treating; 4-day: four days after treating. "

Fig. 4

GUS histochemical staining of transgenic Arabidopsis with PAhFAD2-1B +intron under cold stress 1-day: one day after treating; 2-day: two days after treating; 4-day: four days after treating."

[1] 黄冰艳, 齐飞艳, 孙子淇, 苗利娟, 房元瑾, 郑峥, 石磊, 张忠信, 刘华, 董文召, 汤丰收, 张新友. 以分子标记辅助连续回交快速提高花生品种油酸含量及对其后代农艺性状的评价. 作物学报, 2019, 45:546-555.
Huang B Y, Qi F Y, Sun Z Q, Miao L J, Fang Y J, Zheng Z, Shi L, Zhang Z X, Liu H, Dong W Z, Tang F S, Zhang X Y. Acta Agron Sin, 2019, 45:546-555 (in Chinese with English abstract).
[2] Zhao Z, Shi A, Wang Q, Zhou J. High oleic acid peanut oil and extra virgin olive oil supplementation attenuate metabolic syndrome in rats by modulating the gut microbiota. Nutrients, 2019, 11:3005.
[3] Derbyshire E J. A review of the nutritional composition, organoleptic characteristics and biological effects of the high oleic peanut. Int J Food Sci Nutr, 2014, 65:1-10.
[4] Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J. ArabidopsisFAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell, 1994, 6:147-158.
[5] Jung S, Swift D, Sengoku E, Patel M, Teulé F, Powell G, Moore K, Abbott A. The high oleate trait in the cultivated peanut ( Arachis hypogaea L.): I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet, 2000, 5:796-805.
[6] Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A. High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet, 2004, 108:1492-1502.
[7] Sturtevant D, Horn P, Kennedy C, Hinze L, Percy R, Chapman K. Lipid metabolites in seeds of diverse Gossypium accessions: molecular identification of a high oleic mutant allele. Planta, 2017, 245:595-610.
[8] Long W, Hu M, Gao J, Chen S, Zhang J, Cheng L, Pu H. Identification and functional analysis of two new mutantBnFAD2 alleles that confer elevated oleic acid content in rapeseed. Front Genet, 2018, 9:399.
[9] Kulkarni K P, Patil G, Valliyodan B, Vuong T D, Shannon J G, Nguyen H T, Lee J D. Comparative genome analysis to identify SNPs associated with high oleic acid and elevated protein content in soybean. Genome, 2018, 61:217-222.
[10] Tian Y, Chen K, Li X, Zheng Y, Chen F. Design of high-oleic tobacco ( Nicotiana tabacum L.) seed oil by CRISPR-Cas9-mediated knockout of NtFAD2-2. BMC Plant Biol, 2020, 20:233.
[11] Jung J H, Kim H, Go YS, Lee S B, Hur C G, Kim H U, Suh M C. Identification of functional BrFAD2-1 gene encoding microsomal delta-12 fatty acid desaturase from Brassica rapa and development ofBrassica napus containing high oleic acid contents. Plant Cell Rep, 2011, 30:1881-1892.
[12] Do P T, Nguyen C X, Bui H T, Tran L T N, Stacey G, Gillman J D, Zhang Z J, Stacey M G. Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2-1A and GmFAD2-1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean. BMC Plant Biol, 2019, 19:311.
[13] Chen Y, Fu M, Li H, Wang L, Liu R, Liu Z, Zhang X, Jin S. High oleic acid content, nontransgenic allotetraploid cotton ( Gossypium hirsutum L.) generated by knockout of GhFAD2 genes with CRISPR/Cas9 system. Plant Biotechnol J, 2021, 19:424-426.
[14] Suito T, Nagao K, Takeuchi K, Juni N, Hara Y, Umeda M. Functional expression of Δ12 fatty acid desaturase modulates thermoregulatory behaviour in Drosophila. Sci Rep, 2020, 10:11798.
[15] Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou H E, Rajashekar C B, Williams T D, Wang X. Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing- induced lipid changes in Arabidopsis. J Biol Chem, 2002, 277:31994-32002.
[16] Heppard E P, Kinney A J, Stecca K L, Miao G H. Developmental and growth temperature regulation of two different microsomal omega-6 desaturase genes in soybeans. Plant Physiol, 1996, 110:311-319.
[17] Kargiotidou A, Deli D, Galanopoulou D, Tsaftaris A, Farmaki T. Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton ( Gossypium hirsutum). J Exp Bot, 2008, 59:2043-2056.
[18] Matteucci M, D’Angeli S, Errico S, Lamanna R, Perrotta G, Altamura M M. Cold affects the transcription of fatty acid desaturases and oil quality in the fruit of Olea europaea L. genotypes with different cold hardiness. J Exp Bot, 2011, 62:3403-3420.
[19] D’Angeli S, Altamura M M. Unsaturated lipids change in olive tree drupe and seed during fruit development and in response to cold-stress and acclimation. Int J Mol Sci, 2016, 17:1889.
[20] Los D A, Ray M K, Murata N. Differences in the control of the temperature-dependent expression of four genes for desaturases in Synechocystis sp. PCC 6803. Mol Microbiol, 1997, 25:1167-1175.
[21] 薛晓梦, 李建国, 白冬梅, 晏立英, 万丽云, 康彦平, 淮东欣, 雷永, 廖伯寿. 花生FAD2基因家族表达分析及其对低温胁迫的响应. 作物学报, 2019, 45:1586-1594.
Xue X M, Li J G, Bai D M, Yan L Y, Wan L Y, Kang Y P, Huai D X, Lei Y, Liao B S. Expression profiles of FAD2 genes and their responses to cold stress in peanut. Acta Agron Sin, 2019, 45:1586-1594 (in Chinese with English abstract).
[22] 周婧雯, 丁玉娇, 曾晓蓉 Ganesh K J, 刘宝林, 韩颖颖. 生菜种子低温处理后耐冻性和脂肪酸合成代谢的关系研究. 亚热带植物科学, 2020, 49:9-14.
Zhou J W, Ding Y J, Zeng X R, Ganesh K J, Liu B L, Han Y Y. Relationship between freezing tolerance and fatty acid biosynthesis in lettuce seeds after low temperature treatment. Subtrop Plant Sci, 2020, 49:9-14 (in Chinese with English abstract).
[23] Miquel M F, Browse J A. High-oleate oilseeds fail to develop at low temperature. Plant Physiol, 1994, 106:421-427.
[24] Zhang J, Liu H, Sun J, Li B, Zhu Q, Chen S, Zhang H. Arabidopsis fatty acid desaturase FAD2 is required for salt tolerance during seed germination and early seedling growth. PLoS One, 2012, 7:e30355.
[25] Feng T, Yang Y, Busta L, Cahoon E B, Wang H, Lyu S. FAD2 gene radiation and positive selection contributed to polyacetylene metabolism evolution in campanulids. Plant Physiol, 2019, 181:714-728.
[26] 张高华, 于树涛, 王鹤, 王旭达. 高油酸花生发芽期低温胁迫转录组及差异表达基因分析. 遗传, 2019, 41:1059-1073.
Zhang G H, Yu S T, Wang H, Wang X D. Transcriptome profiling of high oleic peanut under low temperatureduring germination. Hereditas, 2019, 41:1059-1073 (in Chinese with English abstract).
[27] 万书波. 中国花生栽培学. 上海: 上海科学技术出版社, 2003. pp 16-17.
Wan S B. Peanut Cultivation in China. Shanghai: Shanghai Scientific and Technical publishers, 2003. pp 16-17(in Chinese).
[28] Upchurch R G. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett, 2008, 30:967-977.
[29] 于明洋, 孙明明, 郭悦, 姜平平, 雷永, 黄冰艳, 冯素萍, 郭宝珠, 隋炯明, 王晶珊, 乔利仙. 利用回交法快速选育高油酸花生新品系. 作物学报, 2017, 43:855-861.
Yu M Y, Sun M M, Guo Y, Jiang P P, Lei Y, Huang B Y, Feng S P, Guo B Z, Sui J M, Wang J S, Qiao L S. Breeding new peanut line with high oleic acid content using backcross method. Acta Agron Sin, 2017, 43:855-861 (in Chinese with English abstract).
[30] 张照华, 王志慧, 淮东欣, 谭家壮, 陈剑洪, 晏立英, 王晓军, 万丽云, 陈傲, 康彦平, 姜慧芳, 雷永, 廖伯寿. 利用回交和标记辅助选择快速培育高油酸花生品种及其评价. 中国农业科学, 2018, 51:1641-1652.
Zhang Z H, Wang Z H, Huai D X, Tan J Z, Chen J H, Yan L Y, Wang X J, Wan L Y, Chen A, Kang Y P, Jiang H F, Lei Y, Liao B S. Fast development of high oleate peanut cultivars by using marker-assisted backcrossing and their evaluation. Sci Agric Sin, 2018, 51:1641-1652 (in Chinese with English abstract).
[31] Wang Y, Zhang X, Zhao Y, Prakash C S, He G, Yin D. Insights into the novel members of the FAD2 gene family involved in high-oleate fluxes in peanut. Genome, 2015, 58:375-383.
[32] Liu Q, Brubaker C L, Green A G, Marshall D R, Sharp P J, Singh S P. Evolution of the FAD2-1 fatty acid desaturase 5' UTR intron and the molecular systematics of Gossypium (Malvaceae). Am J Bot, 2001, 88:92-102.
[33] Zhang D, Pirtle I L, Park S J, Nampaisansuk M, Neogi P, Wanjie S W, Pirtle R M, Chapman K D. Identification and expression of a new delta-12 fatty acid desaturase ( FAD2-4) gene in upland cotton and its functional expression in yeast and Arabidopsis thaliana plants. Plant Physiol Biochem, 2009, 47:462-471.
[34] Yuan S, Wu X, Liu Z, Luo H, Huang R. Abiotic stresses and phytohormones regulate expression of FAD2 gene inArabidopsis thaliana. J Integr Agric, 2012, 11:62-72.
[35] Kim M J, Kim H, Shin J S, Chung C H, Ohlrogge J B, Suh M C. Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5'-UTR intron. Mol Genet Genomics, 2006, 276:351-368.
[36] Xiao G, Zhang Z Q, Yin C F, Liu R Y, Wu X M, Tan T L, Chen S Y, Lu C M, Guan C Y. Characterization of the promoter and 5'-UTR intron of oleic acid desaturase ( FAD2) gene in Brassica napus. Gene, 2014, 545:45-55.
[37] 刘睿洋, 刘芳, 张振乾, 官春云. 甘蓝型油菜BnFAD2-C5基因启动子及内含子在表达水平的功能分析. 作物学报, 2016, 42:1471-1478.
Liu R Y, Liu F, Zhang Z Q, Guan C Y. Functional analysis of BnFAD2-C5 promoter and intron at expression level in Brassica napus. Acta Agron Sin, 2016, 42:1471-1478 (in Chinese with English abstract).
[38] Harrison P M, Hegyi H, Balasubramanian S, Luscombe N M, Bertone P, Echols N, Johnson T, Gerstein M. Molecular fossils in the human genome: identification and analysis of the pseudogenes in chromosomes 21 and 22. Genome Res, 2002, 12:272-280.
[39] Xie J, Li Y, Liu X, Zhao Y, Li B, Ingvarsson P K, Zhang D. Evolutionary origins of pseudogenes and their association with regulatory sequences in plants. Plant Cell, 2019, 31:563-578.
[40] 肖钢, 张振乾, 邬贤梦, 谭太龙, 官春云. 六个甘蓝型油菜油酸脱氢酶(FAD2)假基因的克隆和分析. 作物学报, 2010, 36:435-441.
Xiao G, Zhang Z Q, Wu X M, Tan T L, Guan C Y. Cloning and characterization of six oleic acid desaturase pseudogenes of Brassica napus. Acta Agron Sin, 2010, 36:435-441 (in Chinese with English abstract).
[1] ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596.
[2] XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778.
[3] WANG Xiao-Chun, WANG Lu-Lu, ZHANG Zhi-Yong, QIN Bu-Tan, YU Mei-Qin, WEI Yi-Hao, MA Xin-Ming. Transcription characteristics of wheat glutamine synthetase isoforms and the sequence analysis of their promoters [J]. Acta Agronomica Sinica, 2021, 47(4): 761-769.
[4] LI Lan-Lan, MU Dan, YAN Xue, YANG Lu-Ke, LIN Wen-Xiong, FANG Chang-Xun. Effect of OsPAL2;3 in regulation of rice allopathic inhibition on barnyardgrass (Echinochloa crusgalli L.) [J]. Acta Agronomica Sinica, 2021, 47(2): 197-209.
[5] WANG Zhen, ZHANG Xiao-Li, MENG Xiao-Jing, YAO Meng-Nan, MIU Wen-Jie, YUAN Da-Shuang, ZHU Dong-Ming, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Identification of upstream regulators for mitogen-activated protein kinase 7 gene (BnMAPK7) in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2021, 47(12): 2379-2393.
[6] GAO Yun, ZHANG Yu-Xue, MA Quan, SU Sheng-Nan, LI Chun-Yan, DING Jin-Feng, ZHU Min, ZHU Xin-Kai, GUO Wen-Shan. Effects of low temperature in spring on fertility of pollen and formation of grain number in wheat [J]. Acta Agronomica Sinica, 2021, 47(1): 104-115.
[7] LI Na-Na, LIU Ying, ZHANG Hao-Jie, WANG Lu, HAO Xin-Yuan, ZHANG Wei-Fu, WANG Yu-Chun, XIONG Fei, YANG Ya-Jun, WANG Xin-Chao. Promoter cloning and expression analysis of the hexokinase gene CsHXK2 in tea plant (Camellia sinensis) [J]. Acta Agronomica Sinica, 2020, 46(10): 1628-1638.
[8] Mao-Ni CHAO,Hai-Yan HU,Run-Hao WANG,Yu CHEN,Li-Na FU,Qing-Qing LIU,Qing-Lian WANG. Cloning and functional analysis of promoter of potassium transporter gene GhHAK5 in upland cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2020, 46(01): 40-51.
[9] CHANG Jian-Zhong,DONG Chun-Lin,ZHANG Zheng,QIAO Lin-Yi,YANG Rui,JIANG Dan,ZHANG Yan-Qin,YANG Li-Li,WU Jia-Jie,JING Rui-Lian. Function analysis of 5′ untranslated region introns in drought-resistance gene TaSAP1 [J]. Acta Agronomica Sinica, 2019, 45(9): 1311-1318.
[10] LI Xu-Kai,LI Ren-Jian,ZHANG Bao-Jun. Identification of rice stress-related gene co-expression modules by WGCNA [J]. Acta Agronomica Sinica, 2019, 45(9): 1349-1364.
[11] HUANG Bing-Yan,QI Fei-Yan,SUN Zi-Qi,MIAO Li-Juan,FANG Yuan-Jin,ZHENG Zheng,SHI Lei,ZHANG Zhong-Xin,LIU Hua,DONG Wen-Zhao,TANG Feng-Shou,ZHANG Xin-You. Improvement of oleic acid content in peanut (Arachis hypogaea L.) by marker assisted successive backcross and agronomic evaluation of derived lines [J]. Acta Agronomica Sinica, 2019, 45(4): 546-555.
[12] Xiao-Hong ZHANG,Gen-Hai HU,Han-Tao WANG,Cong-Cong WANG,Heng-Ling WEI,Yuan-Zhi FU,Shu-Xun YU. Expression and promoter activity of GhTFL1a and GhTFL1c in Upland cotton [J]. Acta Agronomica Sinica, 2019, 45(3): 469-476.
[13] XUE Xiao-Meng,LI Jian-Guo,BAI Dong-Mei,YAN Li-Ying,WAN Li-Yun,KANG Yan-Ping,HUAI Dong-Xin,LEI Yong,LIAO Bo-Shou. Expression profiles of FAD2 genes and their responses to cold stress in peanut [J]. Acta Agronomica Sinica, 2019, 45(10): 1586-1594.
[14] Rui-Juan YANG,Jian-Rong BAI,Lei YAN,Liang SU,Xiu-Hong WANG,Rui LI,Cong-Zhuo ZHANG. Cloning and Expression Analysis of Strong Inducible Promoter P1502-ZmPHR1 Responding to Low Phosphorus Stress in Maize [J]. Acta Agronomica Sinica, 2018, 44(7): 1000-1009.
[15] Dao-Ping WANG,Jiang XU,Yong-Ying MU,Wen-Xiu YAN,Meng-Jie ZHAO,Bo MA,Qun LI,Li-Na ZHANG,Ying-Hong PAN. Proteomic Analysis of the Effect of 2,4-Epibrassinolide on Rice Seedlings Response to Cold Stress [J]. Acta Agronomica Sinica, 2018, 44(6): 897-908.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!