Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (6): 1463-1475.doi: 10.3724/SP.J.1006.2022.12027

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Different responses of rice cultivars to salt stress and the underlying mechanisms

YAN Jia-Qian1,2(), GU Yi-Biao1,2, XUE Zhang-Yi1,2, ZHOU Tian-Yang1,2, GE Qian-Qian1,2, ZHANG Hao1,2, LIU Li-Jun1,2, WANG Zhi-Qin1,2, GU Jun-Fei1,2,*(), YANG Jian-Chang1,2, ZHOU Zhen-Ling3, XU Da-Yong3   

  1. 1Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225009, Jiangsu, China
    2Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
    3Lianyungang Academy of Agricultural Sciences / Jiangsu Collaborative Innovation Center of Modern Crop Production, Lianyungang 222006, Jiangsu, China
  • Received:2021-04-15 Accepted:2021-09-09 Online:2022-06-12 Published:2021-10-18
  • Contact: GU Jun-Fei E-mail:952800394@qq.com;gujf@yzu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31872853);National Key Research and Development Program of China(2017YFD0200107);Jiangsu Agriculture Science and Technology Innovation Fund(cx183007);Natural Science Foundation of Jiangsu Province(BK20181455)

Abstract:

The objective of this study is to elucidate the responses of physiological traits and yield with different salt stress to salt-tolerant and salt-susceptible rice cultivars. Five salt-tolerant rice cultivars and two salt-susceptible rice cultivars were grown in pots with five different salt concentration levels including 0, 1, 2, 2.5, and 3 g kg-1 of per pot for two years. Results showed that the yields of salt-tolerant cultivars were less reduced than that of salt-susceptible cultivars, and salt-tolerant cultivars was able to tolerate higher salt concentration of 2.5 g kg-1. Salt-tolerant varieties produced higher grain yield mainly due to the greater total spikelets per area and higher filled grain percentage under salt stress. Salt-tolerant rice cultivars also had higher activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), higher contents of osmotic substances such as fructose, trehalose, and sorbitol, and higher K+/Na+ ratio from mid-tillering to heading. The crop growth rate from tillering to jointing and from heading to maturity, and photosynthetic rate at heading stage were higher in salt-tolerant cultivars than in salt-susceptible cultivars. The above results revealed that the differences in grain yields between salt-tolerant and salt-susceptible rice varieties were mainly due to the performances of physiological traits at mid-tillering, panicle initiation, and heading stages. These growth stages were the key stages that determined the number of panicles, spikelets per panicle, and the percentage of filled grains. The better physiological traits in the salt-tolerant rice varieties during key stages were the basis for higher grain yield. The results of this study could be helpful for the physiological researches and the breeding of salt-tolerant rice.

Key words: rice, salt stress, grain yield, osmotic regulation, photosynthetic rate

Table 1

Salt content and soil conductivity of top 20 cm soil layer pot during the main growth period in 2020"

生育时期
Growth stage
处理
Treatment
土壤盐度
Soil salinity (g kg-1)
电导率
Conductivity (μS cm-1)
分蘖中期 Mid-tillering 0.1% 1.01±0.03 485.66±3.49
0.2% 2.02±0.07 609.33±5.77
0.25% 2.53±0.07 671.99±8.33
穗分化期 Panicle initiation 0.1% 0.99±0.04 482.60±4.47
0.2% 1.98±0.07 604.89±8.40
0.25% 2.52±0.06 670.22±6.80
抽穗期 Heading time 0.1% 0.98±0.03 481.34±3.86
0.2% 1.95±0.04 600.29±4.79
0.25% 2.42±0.07 658.92±8.04

Table 2

Effects of salt stress on yield and yield components of different rice varieties in 2019"

品种
Variety
处理
Treatment
每盆穗数
No. of
panicles pot-1
每穗粒数
Spikelets
per panicle
总颖花数
Total number of spikelets
结实率
Filled grains (%)
千粒重
1000-grain weight (g)
产量
Yield
(g pot-1)
减产率
Yield reduction rate (%)
连鉴5号
Lianjian 5
0 22.3 a 168 a 3.73×103 a 82.9 a 23.5 a 72.6 a
0.1% 21.8 a 153 b 3.32×103 b 80.2 a 23.2 a 61.8 b 14.9 a
0.2% 17.0 b 139 c 2.35×103 c 79.1 a 22.6 b 42.1 c 42.1 b
0.3%
连鉴6号
Lianjian 6
0 19.3 a 155 a 2.98×103 a 82.9 a 27.9 a 68.6 a
0.1% 18.3 ab 136 b 2.47×103 b 80.3 ab 26.7 a 53.1 b 22.6 a
0.2% 16.5 b 121 c 1.99 ×103 c 77.7 b 24.2 b 37.3 c 45.7 b
0.3%
连鉴7号
Lianjian 7
0 21.0 a 124 a 2.59×103 a 81.2 a 28.5 a 60.1 a
0.1% 20.0 a 112 b 2.23×103 b 81.0 a 27.5 a 49.7 b 17.2 a
0.2% 16.3 b 103 c 1.67×103 c 81.0 a 25.9 b 35.1 c 41.5 b
0.3%
盐稻16Z28
Yandao 16Z28
0 20.0 a 132 a 2.64×103 a 84.0 a 26.6 a 59.1 a
0.1% 16.8 b 123 a 2.05×103 b 82.5 a 25.7 b 43.4 b 26.5 a
0.2% 14.8 c 107 b 1.58×103 c 82.5 a 22.9 c 29.7 c 49.7 b
0.3%
连粳7号
Lianjing 7
0 23.5 a 154 a 3.62×103 a 79.7 a 25.8 a 74.5 a
0.1% 20.8 b 134 b 2.78×103 b 66.1 b 25.1 ab 47.3 b 36.5 a
0.2% 15.0 c 122 b 1.83×103 c 56.2 c 24.9 b 25.6 c 65.7 b
0.3%
武运粳30
Wuyunjing 30
0 22.8 a 151 a 3.43×103 a 76.3 a 27.3 a 72.4 a
0.1% 16.5 b 130 b 2.15×103 b 61.9 b 26.5 ab 35.6 b 50.9 a
0.2% 14.0 c 112 c 1.57×103 c 51.0 c 25.5 b 20.5 c 71.7 b
0.3%

Table 3

Effects of salt stress on yield and yield components of different rice varieties in 2020"

品种
Variety
处理
Treatment
每盆穗数
No. of
panicles pot-1
每穗粒数
Spikelets
per panicle
总颖花数
Total number of spikelets
结实率
Filled grains (%)
千粒重
1000-grain weight (g)
产量
Yield
(g pot-1)
减产率
Yield reduction rate (%)
连鉴5号
Lianjian 5
0 21.3 a 170 a 3.63×103 a 70.2 a 24.5 a 62.4 a
0.1% 20.7 a 142 b 2.94×103 b 69.5 a 24.5 a 49.8 b 20.0 a
0.2% 20.3 a 119 c 2.42×103 c 69.5 a 24.3 a 40.9 c 34.5 b
0.25% 15.3 b 109 d 1.78×103 d 67.7 a 23.2 b 27.9 d 55.3 c
连鉴6号
Lianjian 6
0 19.3 a 176 a 3.40×103 a 64.7 a 26.1 a 57.2 a
0.1% 18.7 a 141 b 2.62×103 b 62.9 a 27.2 a 44.8 b 21.7 a
0.2% 15.7 b 133 bc 2.09×103 c 62.8 a 27.2 b 35.7 c 37.7 b
0.25% 14.7 b 128 c 1.87×103 c 62.2 a 25.5 b 29.6 d 48.1 c
品种
Variety
处理
Treatment
每盆穗数
No. of
panicles pot-1
每穗粒数
Spikelets
per panicle
总颖花数
Total number of spikelets
结实率
Filled grains (%)
千粒重
1000-grain weight (g)
产量
Yield
(g pot-1)
减产率
Yield reduction rate (%)
连鉴7号
Lianjian 7
0 18.3 a 164 a 3.01×103 a 71.0 a 27.4 a 58.6 a
0.1% 16.7 b 157 a 2.61×103 b 69.4 b 26.8 b 48.7 b 16.7 a
0.2% 15.0 c 130 b 1.95×103 c 69.1 b 26.6 b 36.3 c 37.9 b
0.25% 13.7 c 117 c 1.60×103 d 67.5 c 26.6 b 28.7 d 50.8 c
连鉴9号 0 18.7 a 147 a 2.74×103 a 86.5 a 24.2 a 57.3 a
Lianjian 9 0.1% 18.3 a 145 a 2.66×103 a 81.6 b 24.1 a 52.4 b 8.5 a
0.2% 16.3 b 127 b 2.07×103 b 75.4 c 22.8 b 35.6 c 37.9 b
0.25% 16.3 b 100 c 1.64×103 c 70.1 d 22.6 b 25.8 d 54.9 c
连粳7号 0 21.0 a 175 a 3.65×103 a 73.8 a 27.3 a 73.6 a
Lianjing 7 0.1% 17.7 b 164 a 2.90×103 b 60.3 b 27.2 b 47.6 b 35.3 a
0.2% 11.7 c 105 b 1.23×103 c 57.5 b 27.1 b 19.1 c 74.1 b
0.25%
武运粳30号 0 20.7 a 191 a 3.93×103 a 79.1 a 27.2 a 84.5 a
Wuyunjing 30 0.1% 15.7 b 143 b 2.23×103 b 54.9 b 27.0 a 33.0 b 60.9 a
0.2% 12.7 c 122 c 1.55×103 c 48.5 c 26.7 b 20.0 c 76.3 b
0.25%

Table 4

Effects of salt stress on dry matter weight and crop growth rate of different rice varieties at different growth stages in 2019"

品种
Variety
处理
Treatment
干物质重Biomass (g pot-1) 作物生长速率CGR (g pot-1 d-1)
分蘖中期
Mid-tillering
(T)
拔节期Jointing
(J)
抽穗期Heading
(H)
成熟期Maturity
(M)
分蘖-拔节
T-J
拔节-抽穗
J-M
抽穗-成熟
H-M
连鉴5号
Lianjian 5
0 15.3 a 60.6 a 100 a 166 a 1.74 a 2.65 a 1.45 a
0.1% 14.7 b 53.1 b 79.6 b 136 b 1.48 b 1.77 b 1.26 b
0.2% 11.3 c 45.4 c 66.9 c 109 c 1.31 c 1.44 c 0.94 c
0.3% 10.9 c 38.0 d 51.1 d 1.04 d 0.88 d
连鉴6号
Lianjian 6
0 22.7 a 71.1 a 103 a 154 a 1.86 a 2.10 a 1.14 a
0.1% 17.8 b 60.1 b 87.9 b 129 b 1.63 b 1.85 b 0.91 b
0.2% 13.9 c 50.7 c 73.2 c 104 c 1.42 c 1.50 c 0.67 c
0.3% 11.9 d 40.2 d 61.0 d 1.09 d 1.38 d
连鉴7号
Lianjian 7
0 23.8 a 73.8 a 114 a 161 a 1.93 a 2.70 a 1.05 a
0.1% 14.8 b 60.4 b 90.0 b 135 b 1.76 b 1.97 b 1.00 b
0.2% 11.6 c 52.4 c 77.8 c 119 c 1.57 c 1.70 c 0.92 c
0.3% 10.8 d 44.3 d 66.7 d 1.29 d 1.49 d
盐稻16Z28
Yandao 16Z28
0 21.6 a 68.9 a 113 a 153 a 1.82 a 2.92 a 0.89 a
0.1% 16.5 b 58.5 b 81.2 b 114 b 1.62 b 1.51 b 0.74 b
0.2% 11.0 c 48.2 c 63.7 c 88.1 c 1.43 c 1.03 c 0.54 c
0.3% 9.4 d 41.5 d 56.1 d 1.23 d 0.98 d
连粳7号
Lianjing 7
0 16.4 a 65.8 a 116 a 179 a 1.90 a 3.33 a 1.41 a
0.1% 12.4 b 24.7 b 73.1 b 98.8 b 0.47 b 3.23 b 0.57 b
0.2% 6.54 c 20.5 c 43.5 c 65.6 c 0.54 c 1.53 c 0.49 c
0.3% 3.64 d 15.4 d 0.45 d
武运粳30
Wuyunjing 30
0 13.8 a 57.4 a 115 a 161 a 1.68 a 3.87 a 1.02 a
0.1% 7.11 b 26.6 b 76.7 b 112 b 0.75 b 3.34 b 0.77 b
0.2% 5.27 c 22.6 c 37.4 c 59.0 c 0.67 c 0.99 c 0.48 c
0.3% 3.70 d 13.3 d 0.37 d

Table 5

Effects of salt stress on dry matter weight and crop growth rate of different rice varieties at different growth stages in 2020"

品种
Variety
处理
Treatment
干物质重Biomass (g pot-1) 作物生长速率CGR (g pot-1 d-1)
分蘖中期
Mid-tillering
(T)
拔节期Jointing
(J)
抽穗期Heading
(H)
成熟期Maturity
(M)
分蘖-拔节
T-J
拔节-抽穗
J-M
抽穗-成熟
H-M
连鉴5号
Lianjian 5
0 16.2 a 56.6 a 97.5 a 142 a 1.55 a 2.72 a 0.98 a
0.1% 12.0 a 45.5 b 82.8 b 125 b 1.29 b 2.49 ab 0.94 a
0.2% 11.4 a 39.2 c 72.4 c 105 c 1.07 c 2.22 b 0.73 a
0.25% 6.23 b 30.2 d 50.5 d 82.1 d 0.92 c 1.35 c 0.70 a
连鉴6号
Lianjian 6
0 18.8 a 59.0 a 98.8 a 138 a 1.55 a 2.66 a 0.87 a
0.1% 14.3 b 47.8 b 85.9 b 123 b 1.29 ab 2.54 a 0.83 a
0.2% 12.0 b 39.6 c 69.0 c 104 c 1.06 b 1.95 b 0.77 ab
0.25% 11.0 b 26.4 d 53.9 d 84.1 d 0.60 c 1.83 b 0.67 a
连鉴7号
Lianjian 7
0 11.8 a 62.7 a 103 a 151 a 1.96 a 2.70 a 1.06 a
0.1% 10.5 ab 42.4 b 78.8 b 125 b 1.23 b 2.43 a 1.03 ab
0.2% 9.23 b 35.2 c 69.9 b 116 c 1.00 c 2.32 ab 1.01 ab
0.25% 6.07 c 22.6 d 48.9 c 80.8 d 0.63 d 1.76 b 0.71 b
品种
Variety
处理
Treatment
干物质重Biomass (g pot-1) 作物生长速率CGR (g pot-1 d-1)
分蘖中期
Mid-tillering
(T)
拔节期Jointing
(J)
抽穗期Heading
(H)
成熟期Maturity
(M)
分蘖-拔节
T-J
拔节-抽穗
J-M
抽穗-成熟
H-M
连鉴9号
Lianjian 9
0 13.5 a 64.9 a 104 a 147 a 1.98 a 2.60 a 0.96 a
0.1% 12.3 b 56.1 a 88.5 b 126 b 1.69 a 2.16 a 0.83 b
0.2% 11.1 c 42.9 b 75.2 c 111 c 1.23 b 2.15 a 0.80 b
0.25% 8.60 d 28.9 c 56.8 d 91.5 d 0.78 c 1.86 a 0.77 b
连粳7号
Lianjing 7
0 16.9 a 63.9 a 122 a 181 a 1.81 a 3.86 a 1.32 a
0.1% 11.8 b 27.6 b 72.8 b 96.4 b 0.61 b 3.01 b 0.53 ab
0.2% 6.72 c 20.7 b 36.4 c 57.8 c 0.54 b 1.04 c 0.47 b
0.25% 3.81 d 11.6 c 0.30 b
武运粳30
Wuyunjing 30
0 14.5 a 54.3 a 117 a 161 a 1.53 a 4.19 a 0.96 a
0.1% 7.36 b 29.9 b 74.5 b 113 b 0.87 b 2.97 a 0.86 ab
0.2% 5.16 c 21.1 b 34.8 c 53.5 c 0.61 bc 0.91 b 0.42 b
0.25% 3.31 c 11.3 c 0.31 c

Fig. 1

Effects of salt stress on activities of superoxide dismutase SOD (A, B, C), peroxidase POD (D, E, F), and catalase CAT (G, H, I) in rice leaves at main growth stages Different lowercase letters indicate the same treatment between different varieties at P = 0.05. J5: Lianjian 5; J6: Lianjian 6; J7: Lianjian 7; J9: Lianjian 9; L7: Lianjing 7; W30: Wuyunjing 30; MT: middle tillering stage; PI: panicle initiation stage; HD: heading stage."

Fig. 2

Effects of salt stress on the contents of fructose (A, B, C), trehalose (D, E, F), sorbitol (G, H, I), and proline (J, K, L) in rice leaves at main growth stages Different lowercase letters indicate the same treatment between different varieties at P = 0.05. J5: Lianjian 5; J6: Lianjian 6; J7: Lianjian 7; J9: Lianjian 9; L7: Lianjing 7; W30: Wuyunjing 30; MT: middle tillering stage; PI: panicle initiation stage; HD: heading stage."

Fig. 3

Effects of salt stress on K+ content (A, B, C), Na+ content (D, E, F), and K+/Na+ ratio (G, H, I) in rice leaves during main growth periods Different lowercase letters indicate the same treatment between different varieties at P = 0.05. J5: Lianjian 5; J6: Lianjian 6; J7: Lianjian 7; J9: Lianjian 9; L7: Lianjing 7; W30: Wuyunjing 30; MT: middle tillering stage; PI: panicle initiation stage; HD: heading stage."

Fig. 4

Effects of salt stress on photosynthetic rate (A), stomatal conductance (B), transpiration rate (C), and intercellular carbon dioxide concentration (D) of rice leaf at heading stage Different lowercase letters indicate the same treatment between different varieties at P = 0.05. J5: Lianjian 5; J6: Lianjian 6; J7: Lianjian 7; J9: Lianjian 9; L7: Lianjing 7; W30: Wuyunjing 30."

Table 6

Correlation analysis of osmotic regulatory substances contents, antioxidant enzyme activities, K+, Na+ contents, yields and their components under salt stress"

生理指标
Physiological index
产量
Yield
结实率
Filled grains
总颖花量
Total number of spikelets
超氧化物歧化酶(SOD)活性SOD activity 0.917* 0.918** 0.681
过氧化物酶(POD)活性POD activity 0.869* 0.862* 0.651
过氧化氢酶(CAT)活性CAT activity 0.891* 0.843* 0.651
果糖含量Fructose content 0.786* 0.927* 0.563
海藻糖含量Trehalose content 0.822* 0.827* 0.473
山梨醇含量Sorbitol content 0.991** 0.925* 0.806
脯氨酸含量Proline content 0.863* 0.930* 0.485
K+含量K+ content 0.690 0.707 0.645
Na+含量Na+ content -0.826* -0.807 -0.597
[1] 刘凯, 朱静雯, 宛柏杰, 代金英, 唐红生, 孙明法. 水稻耐盐性分子遗传研究进展. 植物遗传资源学报, 2021, 22: 881-889.
Liu K, Zhu J W, Wan B J, Dai J Y, Tang H S, Sun M F. Research progress on molecular genetics of rice salt tolerance. J Plant Genet Resour, 2021, 22: 881-889 (in Chinese with English abstract).
[2] 王才林, 张亚东, 赵凌, 路凯, 朱镇, 陈涛, 赵庆勇, 姚姝, 周丽慧, 赵春芳, 梁文化, 孙明法, 严国红. 耐盐碱水稻研究现状、问题与建议. 中国稻米, 2019, 25(1):1-6.
Wang C L, Zhang Y D, Zhao L, Lu K, Zhu Z, Chen T, Zhao Q Y, Yao S, Zhou L H, Zhao C F, Liang W H, Sun M F, Yan G H. Research status, problems and suggestions on salt-alkali tolerant rice. China Rice, 2019, 25(1):1-6 (in Chinese with English abstract).
[3] 李微. 盐胁迫对水稻种子萌发及幼苗生长的影响. 中国农业科学院硕士学位论文, 辽宁沈阳 2011.
Li W. Effect of Salt Stress on Seed Germination and Seeding Growth of Rice. MS Thesis of Chinese Academy of Agricultural Sciences, Shenyang, Liaoning, China, 2011 (in Chinese with English abstract).
[4] 代金英, 张桂云, 胡蕾, 孙红芹, 万林生, 韩配配, 倪正斌. 耐盐水稻产量与主要农艺性状的灰色关联度分析. 大麦与谷类科学, 2020, 37(6):9-13.
Dai J Y, Zhang G Y, Hu L, Sun H Q, Wan L S, Han P P, Ni Z B. Grey correlation analysis of the relationship between the yield and main agronomic characters of salt-tolerant rice varieties. Barl Cereal Sci, 2020, 37(6):9-13 (in Chinese with English abstract).
[5] 陈惠哲, Ladatko N, 朱德峰 林贤青 张玉屏 孙宗修 盐胁迫下水稻苗期Na+和K+吸收与分配规律的初步研究. 植物生态学报, 2007, 31: 937-945.
doi: 10.17521/cjpe.2007.0119
Chen H Z, Ladatko N, Zhu D F, Lin X Q, Zhang Y P, Sun Z X. Absorption and distribution of Na+ and K+ in rice seedling under salt stress. Chin J Plant Ecol, 2007, 31: 937-945 (in Chinese with English abstract).
[6] 梁正伟, 杨福, 王志春, 陈渊. 盐碱胁迫对水稻主要生育性状的影响. 生态环境, 2004, 13: 43-46.
Liang Z W, Yang F, Wang Z C, Chen Y. Effect of the main growth characteristics of rice under saline-alkali stress. Ecol Environ, 2004, 13: 43-46 (in Chinese with English abstract).
[7] 郑英杰. 盐胁迫对水稻的影响及水稻耐盐育种研究. 北方水稻, 2013, 43(5):71-74.
Zheng Y J. Effect of salt stress on rice and research on salt tolerant breeding. North Rice, 2013, 43(5):71-74 (in Chinese with English abstract).
[8] 石婧, 刘东洋, 张凤华. 棉花幼苗对盐胁迫的生理响应与耐盐机理. 浙江农业学报, 2020, 32: 1141-1148.
Shi J, Liu D Y, Zhang F H. Physiological response and salt tolerance mechanism of cotton seedlings to salt stress. Acta Agric Zhejiangensis, 2020, 32: 1141-1148 (in Chinese with English abstract).
[9] Yu D, Boughton B A, Hill C B, Feussner I, Rupasinghe T. Insights into oxidized lipid modification in barley roots as an adaptation mechanism to salinity stress. Front Plant Sci, 2020, 11: 1.
doi: 10.3389/fpls.2020.00001
[10] Szabados L, Savouré A, Proline: a multifunctional amino acid. Trends Plant Sci, 2010, 15: 89-97.
doi: 10.1016/j.tplants.2009.11.009 pmid: 20036181
[11] Abdallah M M S, Abdelgawad Z A, El-Bassiouny H M S. Alleviation of the adverse effects of salinity stress using trehalose in two rice varieties. South Afr J Bot, 2016, 103: 275-282.
doi: 10.1016/j.sajb.2015.09.019
[12] Cha-um A S, Charoenpanich S, Kirdmanee R C. Sugar accumulation, photosynthesis and growth of two indica rice varieties in response to salt stress. Acta Physiol Plant, 2009, 31: 477-486.
doi: 10.1007/s11738-008-0256-1
[13] 杨光, 李玲玉, 黄明丽, 杨凡昌, 张凤魁, 徐荣臣, 颜冬云. 山梨醇对植株抗逆性作用的研究进展. 土壤, 2018, 50: 446-454.
Yang G, Li L Y, Huang M L, Yang F C, Zhang F K, Xu R C, Yan D Y. Progresses in study on sorbitol effect on plants resistance. Soils, 2018, 50: 446-454 (in Chinese with English abstract).
[14] 许阳东, 朱宽宇, 章星传, 王志琴, 杨建昌. 绿色超级稻品种的农艺与生理性状分析. 作物学报, 2019, 45: 70-80.
doi: 10.3724/SP.J.1006.2019.82036
Xu Y D, Zhu K Y, Zhang X C, Wang Z Q, Yang J C. Analysis in agronomic and physiological traits of green super rice. Acta Agron Sin, 2019, 45: 70-80 (in Chinese with English abstract).
[15] 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006. pp 221-224.
Gao J F. Experimental Guide of Plant Physiology. Beijing: Higher Education Press, 2006. pp 221-224(in Chinese).
[16] 李合生. 植物生理生化实验原理与技术. 北京: 高等教育出版社, 2000. pp 164-168.
Li H S. Principles and Techniques of Plant Physiological and Biochemical Experiments. Beijing: Higher Education Press, 2000. pp 164-168(in Chinese).
[17] 汤章城. 现代植物生理学实验指南. 北京: 科学出版社, 1999. pp 303-304.
Tang Z C. Modern Laboratory Manual of Plant Physiology. Beijing: Science Press, 1999. pp 303-304(in Chinese).
[18] 许更文. 灌溉方式与施氮量对水稻产量影响的互作效应及其生理基础. 扬州大学硕士学位论文, 江苏扬州, 2017.
Xu G W. Interaction Between Irrigation Regimes and Nitrogen Rates on Grain Yield of Rice and Its Physiological Basis. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2017 (in Chinese with English abstract).
[19] 申勇, 谢昊, 潘竹栋, 朱宽宇, 王志琴, 杨建昌. 不同氮效率粳稻品种的冠层特征. 作物杂志, 2021, (1):90-97.
Shen Y, Xie H, Pan Z D, Zhu K Y, Wang Z Q, Yang J J. Canopy characteristics of the rice varieties differing in nitrogen use efficiency. Crops, 2021, (1):90-97 (in Chinese with English abstract).
[20] 谷娇娇. 盐胁迫对水稻氮代谢及产量的影响. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2019.
Gu J J. Effects of Salt Stress on Nitrogen Metabolism and Yield of Rice. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang, China, 2019 (in Chinese with English abstract).
[21] 栾金华. 盐胁迫对粳稻农艺性状的影响及耐盐品种筛选. 沈阳农业大学硕士学位论文, 辽宁沈阳, 2020.
Luan J H. Effects of Salt Stress on Agronomic Characters of Japonica Rice and Selection of Salt Tolerant Varieties. MS Thesis of Shen Yang Agricultural University, Shenyang, Liaoning, China, 2020 (in Chinese with English abstract).
[22] 荆培培. 水稻品种耐盐性及其生理特征的研究. 扬州大学硕士学位论文, 江苏扬州, 2018.
Jing P P. Studies on Salt Tolerance of Rice Verities and Its Related Physiological Traits. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2018 (in Chinese with English abstract).
[23] Xie Z Y, Wang C C, Zhu S B, Wang W S, Xu J L, Zhao X Q. Characterizing the metabolites related to rice salt tolerance with introgression lines exhibiting contrasting performances in response to saline conditions. Plant Growth Regul, 2020, 92: 157-176.
doi: 10.1007/s10725-020-00627-y
[24] Noctor G, Foyer C H. Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol, 1998, 49: 249-279.
[25] 董杰, 陈新新, 杨倩, 张怀渝, 陈洋尔. 高光、水分和盐胁迫下小麦光合特性和抗氧化酶系统的比较. 麦类作物学报, 2018, 38: 315-322.
Dong J, Chen X X, Yang Q, Zhang H Y, Chen Y E. Effect of high light, water and salt stress on photosynthetic characteristics and antioxidant enzyme system in wheat. J Triticeae Crops, 2018, 38: 315-322 (in Chinese with English abstract).
[26] 麻莹. 盐碱混合胁迫下抗碱盐生植物碱地肤的渗透调节及其离子平衡特点. 东北师范大学硕士学位论文, 吉林长春, 2007.
Ma Y. Solute Accumulation and Ion Balance Traits in Shoots of an Alkali-tolerant Halophyte Kochia Sieversiana under Salt-alkaline Mixed Stress. MS Thesis of Northeast Normal University, Changchun, Jilin, China, 2007 (in Chinese with English abstract).
[27] Nounjan N, Nghia P T, Theerakulpisut P. Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J Plant Physiol, 2012, 169: 596-604.
doi: 10.1016/j.jplph.2012.01.004
[28] Cha-Um S, Charoenpanich A, Roytrakul S, Kirdmanee C. Sugar accumulation, photosynthesis and growth of two indica rice varieties in response to salt stress. Acta Physiol Plant, 2009, 31: 477-486.
doi: 10.1007/s11738-008-0256-1
[29] 齐琪, 马书荣, 徐维东. 盐胁迫对植物生长的影响及耐盐生理机制研究进展. 分子植物育种, 2020, 18: 2741-2746.
Qi Q, Ma S R, Xu W D. Advances in the effects of salt stress on plant growth and physiological mechanisms of salt tolerance. Mol Plant Breed, 2020, 18: 2741-2746 (in Chinese with English abstract).
[30] Chinnusamy V, Jagendorf A, Zhu J K. Understanding and improving salt tolerance in plants. Crop Sci, 2005, 45: 437-448.
doi: 10.2135/cropsci2005.0437
[31] Harley P C, Loreto F, Di Marco G, Sharkey T D. Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol, 1992, 98: 1429-1436.
doi: 10.1104/pp.98.4.1429 pmid: 16668811
[32] Castro-Dıez P, Puyravaud J P, Cornelissen J H C. Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types. Oecologia, 2000, 124: 476-486.
doi: 10.1007/PL00008873 pmid: 28308386
[33] Xiong D, Yu T, Zhang T, Li Y, Peng S, Huang J. Leaf hydraulic conductance is coordinated with leaf morpho-anatomical traits and nitrogen status in the genus Oryza. J Exp Bot, 2015, 66: 741-748.
doi: 10.1093/jxb/eru434
[34] Xiong D, Wang D, Liu X, Peng S, Huang J, Li Y. Leaf density explains variation in leaf mass per area in rice between cultivars and nitrogen treatments. Ann Bot, 2016, 117: 963-971.
doi: 10.1093/aob/mcw022
[35] Gu J F, Zhou Z X, Li Z K, Chen Y, Wang Z Q, Zhang H, Yang J C. Photosynthetic properties and potentials for improvement of photosynthesis in pale green leaf rice under high light conditions. Front Plant Sci, 2017, 8: 1082.
doi: 10.3389/fpls.2017.01082
[36] 陈晨, 龚海青, 张敬智, 郜红建. 水稻根系形态与氮素吸收累积的相关性分析. 植物营养与肥料学报, 2017, 23: 333-341.
Chen C, Gong H Q, Zhang J Z, Gao H J. Correlation between root morphology and nitrogen uptake of rice. J Plant Nutr Fert, 2017, 23: 333-341 (in Chinese with English abstract).
[37] Zhu K Y, Zhou Q, Shen Y, Yan J Q, Xu Y J, Wang Z Q, Yang J C. Agronomic and physiological performance of an indica-japonica rice variety with a high yield and high nitrogen use efficiency. Crop Sci, 2020, 60: 1556-1568.
doi: 10.1002/csc2.v60.3
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[6] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[7] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[8] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[9] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[10] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[15] QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!