Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (9): 2221-2227.doi: 10.3724/SP.J.1006.2022.11085

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Breeding of FHB-resistant wheat line Bainong 4299 by gene pyramiding

ZHANG Yi-Duo1(), LI Guo-Qiang1, KONG Zhong-Xin1, WANG Yu-Quan2, LI Xiao-Li2, RU Zhen-Gang2, JIA Hai-Yan1,*(), MA Zheng-Qiang1   

  1. 1. Crop Genomics and Bioinformatics Center, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
    2. Center of Wheat Research, Henan Institute of Science and Technology, Xinxiang 450003, Henan, China
  • Received:2021-09-29 Accepted:2021-11-29 Online:2022-09-12 Published:2022-12-27
  • Contact: JIA Hai-Yan E-mail:2014201043@njau.edu.cn;hyjia@njau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2016YFD0101802);National Natural Science Foundation of China(31930081);National Natural Science Foundation of China(30430440);Collaborative Innovation Initiative for Modern Crop Production

Abstract:

Fusarium head blight (FHB) is a devastating fungal disease in wheat production. Wheat FHB resistance is controlled by multiple genes and has complicated resistance mechanisms. Type I (resistance to invasion) and type II (resistance to expansion) are two main resistance types of wheat against FHB. Combining both types of FHB resistance in breeding is vitally important for the resistance durability and stability of cultivars. In fine mapping and cloning of type I resistance QTL Fhb4 and Fhb5 and type II resistance QTL Fhb1 in wheat landrace Wangshuibai, functional/tightly-linked molecular markers for them had been obtained. In this study, a new wheat line named Bainong 4299 was bred after introduction of these QTL from NMAS022 with the help of these markers and using modern wheat variety Bainong 4199 as the recipient parent. Compared with Bainong 4199, Bainong 4299 increased type I resistance by at least 73% to 74% and type II resistance by 83% to 88% increase (in terms of the number of diseased spikelets per spike) in two field trials. Moreover, its yield potential had moderate elevation. In conclusion, this study provided another successful illustration of marker-assisted selection and pyramiding of FHB QTL in improving wheat FHB resistance. Bainong 4299 had the potential to become a new FHB resistance cultivar.

Key words: wheat, Fusarium head blight, pyramiding of resistance genes, MAS, Bainong 4299

Fig. 1

Detection of Fhb1, Fhb4, and Fhb5 in Bainong 4199, NMAS022, and Bainong 4299 M: DNA marker. Band sizes are on the left of each picture (unit: bp); 1: Bainong 4199; 2: NMAS022; 3: Bainong 4299. The target bands of Wangshuibai type are marked with arrows respectively, and primer names are at the bottom of each picture."

Fig 2

Breeding process of Bainong 4299 (a) and its donor parent NMAS022 (b) n: population size; The picture (b) was taken on May 4, 2020 in Huai’an, Jiangsu province, China."

Table 1

FHB resistance identification of Bainong 4299 and its recurrent parent"

环境
Environment
材料
Material
赤霉病严重度
FHB severity
病穗率
Percentage of infected spikes (%)
病小穗数
Number of diseased spikelets
病轴长
Length of diseased rachides (cm)
2019-2020淮安
2019-2020 Huai’an
百农4199 Bainong 4199 2.23±0.11 38.5±1.8 5.8±0.6 4.1±0.5
百农4299 Bainong 4299 0.10±0.02** 10.2±2.2** 1.0±0.0** 0.8±0.1**
2020-2021南京
2020-2021 Nanjing
百农4199 Bainong 4199 3.44±0.14 42.3±2.1 8.2±0.1 4.1±0.1
百农4299 Bainong 4299 0.11±0.01** 11.5±1.3** 1.0±0.0** 0.6±0.0**

Fig. 3

Fusarium head blight symptom illustration of Bainong 4299 (left) and its recurrent parent Bainong 4199 (right) in the field under natural condition"

Table 2

Agronomic traits and yield identification of Bainong 4299 and its recurrent parent"

环境
Environment
材料
Material
株高
Plant height (cm)
穗粒数
No. of kernels per spike
单株穗数
No. of spikes per plant
千粒重
1000-kernel weight (g)
1 m2产量
Yield per square meter (g)
2019-2020淮安
2019-2020 Huai’an
百农4199 Bainong 4199 80.2±1.2 54.4±1.8 12.1±0.6 44.2±0.4 984.5±3.5
百农4299 Bainong 4299 84.2±0.9** 55.0±1.9 12.0±0.9 48.4±0.5** 1002.0±4.2*
2020-2021淮安
2020-2021 Huai’an
百农4199 Bainong 4199 82.0±1.2 42.3±1.6 4.4±0.8 46.3±0.4 845.9±5.8
百农4299 Bainong 4299 86.9±1.7** 39.0±1.6** 5.3±1.2 44.7±0.2** 874.8±3.4*
2020-2021南京
2020-2021 Nanjing
百农4199 Bainong 4199 72.6±1.8 42.5±0.8 3.8±0.1 41.5±0.2 490±5.2
百农4299 Bainong 4299 72.0±1.2 37.1±1.1** 4.6±0.3 42.8±0.2** 520±4.7*
[1] Ma Z, Xie Q, Li G, Jia H, Zhou J, Kong Z, Li N, Yuan Y. Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight. Theor Appl Genet, 2020, 133: 1541-1568.
doi: 10.1007/s00122-019-03525-8
[2] Gilbert J, Tekauz A. Review: recent developments in research on Fusarium head blight of wheat in Canada. Can J Plant Pathol, 2000, 22: 1-8.
doi: 10.1080/07060660009501155
[3] 程顺和, 张勇, 别同德, 高德荣, 张伯桥. 中国小麦赤霉病的危害及抗性遗传改良. 江苏农业学报, 2012, 28: 938-942.
Cheng S H, Zhang Y, Bie T D, Gao D R, Zhang B Q. Damage of wheat Fusarium head blight (FHB) epidemics and genetic improvement of wheat for scab resistance in China. Jiangsu J Agric Sci, 2012, 28: 938-942. (in Chinese with English abstract)
[4] 张爱民, 阳文龙, 李欣, 孙家柱. 小麦抗赤霉病研究现状与展望. 遗传, 2018, 40: 858-873.
Zhang A M, Yang W L, Li X, Sun J Z. Current status and perspective on research against Fusarium head blight in wheat. Hereditas (Beijing), 2018, 40: 858-873. (in Chinese with English abstract)
[5] Schroeder H W, Christensen J J. Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology, 1963, 53: 831-838.
[6] Miller J D, Young J C, Sampson D R. Deoxynivalenol and Fusarium head blight resistance in spring cereals. J Phytopathol, 1985, 113: 359-367
doi: 10.1111/j.1439-0434.1985.tb04837.x
[7] Mesterházy A. Types and components of resistance to Fusarium head blight of wheat. Plant Breed, 1995, 114: 377-386.
doi: 10.1111/j.1439-0523.1995.tb00816.x
[8] Cuthbert P A, Somers D J, Thomas J, Cloutier S, Brulé-Babel A. Fine mapping Fhb1, a major gene controlling Fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2006, 112: 1465-1472.
doi: 10.1007/s00122-006-0249-7
[9] Cuthbert P A, Somers D J, Brulé-Babel A. Mapping of Fhb2on chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2007, 114: 429-437.
doi: 10.1007/s00122-006-0439-3
[10] Qi L L, Pumphrey M O, Friebe B, Chen P D, Gill B S. Molecular cytogenetic characterization of alien introgressions with gene Fhb3for resistance to Fusarium head blight disease of wheat. Theor Appl Genet, 2008, 117: 1155-1166.
doi: 10.1007/s00122-008-0853-9 pmid: 18712343
[11] Xue S, Li G, Jia H, Xu F, Lin F, Tang M, Wang Y, An X, Xu H, Zhang L, Kong Z, Ma Z. Fine mapping Fhb4, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2010, 121: 147-156.
doi: 10.1007/s00122-010-1298-5
[12] Xue S, Xu F, Tang M, Zhou Y, Li G, An X, Lin F, Xu H, Jia H, Zhang L, Kong Z, Ma Z. Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2011, 123: 1055-1063.
doi: 10.1007/s00122-011-1647-z
[13] Cainong J C, Bockus W W, Feng Y, Chen P, Qi L, Sehgal S K, Danilova T V, Koo D, Friebe B, Gill B S. Chromosome engineering, mapping, and transferring of resistance to Fusarium head blight disease from Elymus tsukushiensis into wheat. Theor Appl Genet, 2015, 128: 1019-1027.
doi: 10.1007/s00122-015-2485-1 pmid: 25726000
[14] Guo J, Zhang X, Hou Y, Cai J, Shen X, Zhou T, Xu H, Ohm H W, Wang H, Li A, Han F, Wang H, Kong L. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection. Theor Appl Genet, 2015, 128: 2301-2316.
doi: 10.1007/s00122-015-2586-x
[15] Somers D J, Fedak G, Savard M. Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome, 2003, 46: 555-564.
pmid: 12897863
[16] Jiang G, Dong Y, Shi J, Ward R W. QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ9306: II. Resistance to deoxynivalenol accumulation and grain yield loss. Theor Appl Genet, 2007, 115: 1043-1052.
doi: 10.1007/s00122-007-0630-1
[17] Jiang G, Shi J, Ward R W. QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ 9306: I. Resistance to fungal spread. Theor Appl Genet, 2007, 116: 3-13.
doi: 10.1007/s00122-007-0641-y
[18] Li C, Zhu H, Zhang C, Lin F, Xue S, Cao Y, Zhang Z, Zhang L, Ma Z. Mapping QTLs associated with Fusarium-damaged kernels in the Nanda 2419 × Wangshuibai population. Euphytica, 2008, 163: 185-191.
doi: 10.1007/s10681-007-9626-9
[19] Bonin C M, Kolb F L. Resistance to Fusarium head blight and kernel damage in a winter wheat recombinant inbred line population. Crop Sci, 2009, 49: 1304-1312.
doi: 10.2135/cropsci2008.08.0459
[20] Jayatilake D V, Bai G H, Dong Y H. A novel quantitative trait locus for Fusarium head blight resistance in chromosome 7A of wheat. Theor Appl Genet, 2011, 122: 1189-1198.
doi: 10.1007/s00122-010-1523-2 pmid: 21221526
[21] Szabó-Hevér Á, Lehoczki-Krsjak S, Varga M, Purnhauser L, Pauk J, Lantos C, Mesterházy Á. Differential influence of QTL linked to Fusarium head blight, Fusarium-damaged kernel, deoxynivalenol contents and associated morphological traits in a Fontana-derived wheat population. Euphytica, 2014, 200: 9-26.
doi: 10.1007/s10681-014-1124-2
[22] Wang H, Sun S, Ge W, Zhao L, Hou B, Wang K, Lyu Z, Chen L, Xu S, Guo J, Li M, Su P, Li X, Wang G, Bo C, Fang X, Zhuang W, Chen X, Wu J, Dong L, Chen W, Li W, Xian G, Zhao J, Hao Y, Xu Y, Gao Y, Liu W, Liu Y, Yin H, Li J, Li X, Zhao Y, Wang X, Ni F, Ma X, Li A, Xu S S, Bai G, Nevo E, Cao C, Ohm H, Kong L. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science, 2020, 368: eaba5435.
[23] 张宏军, 宿振起, 柏贵华, 张旭, 马鸿翔, 李腾, 邓云, 买春艳, 于立强, 刘宏伟, 杨丽, 李洪杰, 周阳. 利用Fhb1基因功能标记选择提高黄淮冬麦区小麦品种对赤霉病的抗性. 作物学报, 2018, 44: 505-511.
Zhang H J, Su Z Q, Bai G H, Zhang X, Ma H X, Li T, Deng Y, Mai C Y, Yu L Q, Liu H W, Yang L, Li H J, Zhou Y. Improvement of resistance of wheat cultivars to Fusarium head blight in the Yellow-Huai rivers valley winter wheat zone with functional marker selection of Fhb1 gene. Acta Agron Sin, 2018, 44: 505-511. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00505
[24] Li G, Zhou J, Jia H, Gao Z, Fan M, Luo Y, Zhao P, Xue S, Li N, Yuan Y, Ma S, Kong Z, Jia L, An X, Jiang G, Liu W, Cao W, Zhang R, Fan J, Xu X, Liu Y, Kong Q, Zheng S, Wang Y, Qin B, Cao S, Ding Y, Shi J, Yan H, Wang X, Ran C, Ma Z. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nat Genet, 2019, 51: 1106-1112.
doi: 10.1038/s41588-019-0426-7
[25] Jia H, Zhou J, Xue S, Li G, Yan H, Ran C, Zhang Y, Shi J, Wang X, Luo J, Ma Z. A journey to understand wheat Fusarium head blight resistance in the Chinese wheat landrace Wangshuibai. Crop J, 2018, 6: 48-59.
doi: 10.1016/j.cj.2017.09.006
[26] Xue S, Li G, Jia H, Lin F, Cao Y, Xu F, Tang M, Wang Y, Wu X, Zhang Z, Zhang L, Kong Z, Ma Z. Marker-assisted development and evaluation of near-isogenic lines for scab resistance QTLs of wheat. Mol Breed, 2010, 25: 397-405.
doi: 10.1007/s11032-009-9339-y
[27] Zhang Y, Yang Z, Ma H, Huang L, Ding F, Du Y, Jia H, Li G, Kong Z, Ran C, Gu Z, Ma Z. Pyramiding of Fusarium head blight resistance quantitative trait loci, Fhb1, Fhb4, and Fhb5, in modern Chinese wheat cultivars. Front Plant Sci, 2021, 12: 694023.
[28] Ma Z Q, Sorrells M E. Genetic analysis of fertility restoration in wheat using restriction fragment length polymorphisms. Crop Sci, 1995, 35: 1137-1143.
doi: 10.2135/cropsci1995.0011183X003500040037x
[29] Bassam B J, Caetano-Anollés G, Gresshoff P M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem, 1991, 196: 80-83.
pmid: 1716076
[30] 许峰, 李文阳, 闫素辉, 张从宇, 郑甲成, 杜军丽, 张子学, 时侠清. 小麦抗赤霉病主效QTL的聚合效应分析. 麦类作物学报, 2017, 37: 585-593.
Xu F, Li W Y, Yan S H, Zhang C Y, Zheng J C, Du J L, Zhang Z X, Shi X Q. Analysis of pyramiding effect of major QTLs for resistance to scab in wheat. J Triticeae Crops, 2017, 37: 585-593. (in Chinese with English abstract)
[31] 李静静, 史娜溶, 杨孟于, 王金鹏, 孙道杰, 冯毅, 张玲丽. 抗赤霉病小麦优异新种质的分子标记辅助选择. 麦类作物学报, 2020, 40: 261-269.
Li J J, Shi N R, Yang M Y, Wang J P, Sun D J, Feng Y, Zhang L L. Marker-assisted selection for Fusarium head blight resistance of wheat germplasms with excellent agronomy traits and seed quality. J Triticeae Crops, 2020, 40: 261-269 (in Chinese with English abstract)
[32] 刘建军, 李豪圣, 陈雪燕, 贾海燕, 翟胜男, 郭军, 程敦公, 刘成, 曹新有, 刘爱峰, 宋健民, 刘佳, 楚秀生, 马正强. 利用分子标记辅助选择创制抗赤霉病小麦新品系. 山东农业科学, 2021, 53: 74-79.
Liu J J, Li H S, Chen X Y, Jia H Y, Zhai S N, Guo J, Cheng D G, Liu C, Cao X Y, Liu A F, Song J M, Liu J, Chu X S, Ma Z Q. Creation of new wheat lines with Fusarium head blight resistance through molecular marker-assisted selection. Shandong Agric Sci, 2021, 53(3): 74-79. (in Chinese with English abstract)
[1] KE Hui-Feng, ZHANG Zhen, GU Qi-Shen, ZHAO Yan, LI Pei-Yu, ZHANG Dong-Mei, CUI Yan-Ru, WANG Xing-Fen, WU Li-Qiang, ZHANG Gui-Yin, MA Zhi-Ying, SUN Zheng-Wen. Genome-wide association study of root biomass related traits at seeding stage under low phosphorus stress in cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2022, 48(9): 2168-2179.
[2] TAN Zhao-Guo, YUAN Shao-Hua, LI Yan-Mei, BAI Jian-Fang, YUE Jie-Ru, LIU Zi-Han, ZHANG Tian-Bao, ZHAO Fu-Yong, ZHAO Chang-Ping, XU Ben-Bo, ZHANG Sheng-Quan, PANG Bin-Shuang, ZHNAG Li-Ping. Cloning of TaPIP1 gene and its potential function in anther dehiscence in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2242-2254.
[3] FENG Zi-Heng, LI Xiao, DUAN Jian-Zhao, GAO Fei, HE Li, YANG Tian-Chong, RONG Ya-Si, SONG Li, YIN Fei, FENG Wei. Hyperspectral remote sensing monitoring of wheat powdery mildew based on feature band selection and machine learning [J]. Acta Agronomica Sinica, 2022, 48(9): 2300-2314.
[4] CAO Ji-Ling, ZENG Qing, ZHU Jian-Guo. Responses of photosynthetic characteristics and gene expression in different wheat cultivars to elevated ozone concentration at grain filling stage [J]. Acta Agronomica Sinica, 2022, 48(9): 2339-2350.
[5] LI Yong-Bo, CUI De-Zhou, HUANG Chen, SUI Xin-Xia, FAN Qing-Qi, CHU Xiu-Sheng. Preparation of highly specific wheat ATG8 antibody and its application in the detection of autophagy [J]. Acta Agronomica Sinica, 2022, 48(9): 2390-2399.
[6] WANG Yun-Qi, GAO Fu-Li, LI Ao, GUO Tong-Ji, QI Liu-Ran, ZENG Huan-Yu, ZHAO Jian-Yun, WANG Xiao-Ge, GAO Guo-Ying, YANG Jia-Peng, BAI Jin-Ze, MA Ya-Huan, LIANG Yue-Xin, ZHANG Rui. Variation of ear temperature after anthesis and its relationship with yield in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2400-2408.
[7] DU Qi-Di, GUO Hui-Jun, XIONG Hong-Chun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, SONG Xi-Yun, LIU Lu-Xiang. Gene mapping of apical spikelet degeneration mutant asd1 in wheat [J]. Acta Agronomica Sinica, 2022, 48(8): 1905-1913.
[8] LI Xin, WANG Jian, LI Ya-Bing, HAN Ying-Chun, WANG Zhan-Biao, FENG Lu, WANG Guo-Ping, XIONG Shi-Wu, LI Cun-Dong, LI Xiao-Fei. Effects of different intercropping systems on cotton yield, biomass accumulation, and allocation [J]. Acta Agronomica Sinica, 2022, 48(8): 2041-2052.
[9] FENG Ya-Juan, LI Ting-Xuan, PU Yong, ZHANG Xi-Zhou. Characteristics of cadmium accumulation and distribution in different organs of wheat with different cadmium-accumulating type [J]. Acta Agronomica Sinica, 2022, 48(7): 1761-1770.
[10] LIU A-Kang, MA Rui-Qi, WANG De-Mei, WANG Yan-Jie, YANG Yu-Shuang, ZHAO Guang-Cai, CHANG Xu-Hong. Effects of filming and supplemental nitrogen fertilizer application on plant growth and population quality of late sowing winter wheat before winter [J]. Acta Agronomica Sinica, 2022, 48(7): 1771-1786.
[11] WANG Juan, LIU Yi, YAO Dan-Yu, ZOU Jing-Wei, XIAO Shi-He, SUN Guo-Zhong. Identification on sensitivity of wheat to low temperature at reproductive stages [J]. Acta Agronomica Sinica, 2022, 48(7): 1721-1729.
[12] ZHANG Shao-Hua, DUAN Jian-Zhao, HE Li, JING Yu-Hang, Urs Christoph Schulthess, Azam Lashkari, GUO Tian-Cai, WANG Yong-Hua, FENG Wei. Wheat yield estimation from UAV platform based on multi-modal remote sensing data fusion [J]. Acta Agronomica Sinica, 2022, 48(7): 1746-1760.
[13] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[14] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[15] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!