Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (1): 129-139.doi: 10.3724/SP.J.1006.2023.24023

• CROP GENETICS & BREEDING ·GERMPLASM RESOURCES ·MOLECULAR GENETICS • Previous Articles     Next Articles

Functional identification of sucrose transporter protein IbSWEET15 in sweet potato

WU Xu-Li1,2(), WU Zheng-Dan1,2,4(), WAN Chuan-Fang1,2, DU Ye1,2, GAO Yan1,2, LI Ze-Xuan1, WANG Zhi-Qian1, TANG Dao-Bin1,2,3, WANG Ji-Chun1,2,3, ZHANG Kai1,2,3,*()   

  1. 1College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
    2Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400715, China
    3Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
    4Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, Guangxi, China
  • Received:2022-01-18 Accepted:2022-05-05 Online:2023-01-12 Published:2022-05-24
  • Contact: ZHANG Kai E-mail:shirleyswu@163.com;wudandan0905@163.com;zhangkai2010s@163.com
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    National Key Research and Development Program of China(2018YFD1000705);National Key Research and Development Program of China(2018YFD1000700);Fundamental Research Funds for the Central Universities(XDJK2020B032);Fundamental Research Funds for the Central Universities(XDJK2021F001);Key Project of Chongqing Technology Innovation and Application Development(cstc2021jscx-gksbX0022);Germplasm Creation Research Program of Southwest University

Abstract:

SWEET proteins play important regulatory roles in plant growth and development, stress response and sugar metabolism, but few research has been reported on SWEET proteins in sweet potato. It is of great theoretical and practical significance to carry out functional studies on sweet potato SWEET proteins to reveal their functions in sugar transport and starch and sugar metabolism. Based on the transcripts of SWEET encoding gene differentially expressed in sweet potato storage roots with different starch-related traits, specific primers were designed and the full-length cDNA sequence of IbSWEET15 was cloned using RACE method. IbSWEET15 bioinformatics was performed using online software, and its classification was clarified by phylogenetic tree analysis. The subcellular localization of the protein encoded by IbSWEET15 gene was identified by transient expression of IbSWEET15-GFP fusion protein in Nicotiana benthamiana, while yeast mutant complementation experiments were carried out to identify the sugar transport function of IbSWEET15 in yeast. The relative expression pattern of IbSWEET15 genes in various organs of sweet potato were analyzed by qRT-PCR. IbSWEET15 expression vector was constructed and transformed into Arabidopsis wild-type Col-0 by floral dip method to obtain IbSWEET15 heterologously expressed Arabidopsis lines, and the starch and sugar contents of the transgenic plants were measured and compared with those of wild-type Arabidopsis plants, and the function of IbSWEET15 in starch and sugar metabolism was identified. IbSWEET15, with an open reading frame of 879 bp, encoded a 292 amino acid sucrose transporter protein with two MtN3_slv conserved structural domains and seven transmembrane structural domains, and was a member of clade III of the SWEET protein family. The protein encoded by IbSWEET15 localized at the plasma membrane and did not transport sucrose and hexose in yeast mutant. IbSWEET15 gene had the highest expression in sweet potato branches, followed by stems and leaves, and the lowest expression in storage roots. The leaf soluble sugar contents of the IbSWEET15 heterologously expressed Arabidopsis lines were significantly decreased, while the seed soluble sugar and starch contents were higher than wild type. We proposed that IbSWEET15 played an important role in phloem loading during the source to sink transport of photosynthetic product as well as sugar and starch accumulation. This study provides the critical information for understanding the function of IbSWEET15 in starch and sugar metabolism, and formation of important quality traits in sweet potato.

Key words: sweet potato, IbSWEET15, soluble sugar, starch

Table 1

Primers used in this study"

引物名称
Primer name
引物序列
Primer sequences (5°-3°)
引物用途
Primer usage
15-5-1 TGCTCCCGAGAAAGGAAACCATGAGACC 5°-RACE特异引物5°-RACE specific primer
15-5-2 GAGTGGCGTTCTTCTTGATGAAAGC 5°-RACE巢扩引物5°-RACE nested amplification primer
15-3-1 TAGCCTTGTTGGTTGGATTTGCGTGGCT 3°-RACE特异引物3°-RACE specific primer
15-3-2 AATTGGTGCACCCTGTGGATTCA 3°-RACE巢扩引物3°-RACE nested amplification primer
C15-Fwd ATGAAAACTGAGTGTGCC 基因克隆
C15-Rev GGCATTAATAGAATTCATATATAACATGC Gene cloning
SC15-Fwd GAGCTCATGGCAATTCTAGATCTTCATCACC 亚细胞定位载体构建
SC15-Rev GGATCCGTTCTCCATCGCCGCCGG Subcellular localization vector construction
SI15-Fwd TCGACTAGTGGATCCATGGCAATTCTAGATCTTCA 酵母表达载体构建
SI15-Rev TCCAAAGCTGGATCCGTTCTCCATCGCCGCCGGCG Yeast expression vector construction
T15-Fwd CACCATGGCAATTCTAGATCTTCATCAC 植物表达载体构建
T15-Rev GTTCTCCATCGCCGCCGGCGGAG Plant expression vector construction
IbH2B-QF GTGCCGGAGACAAGAAGAAG 内参引物
IbH2B-QR CTTGCTGGAGATTCCGATGT Control primer
IbUBI-QF CTTGCTGGAGATTCCGATGT 内参引物
IbUBI-QR CTTGATCTTCTTCGGCTTGG Control primer
AtACTIN-QF ACACTGTGCCAATCTACGAGGGTT 内参引物
AtACTIN-QR ACAATTTCCCGCTCTGCTGTTGTG Control primer
IbSWEET15-QF TGGTGCACCCTGTGGATTCAGGGA qRT-PCR检测
IbSWEET15-QR TCACTTGATGGACTCAGCCGGCCA qRT-PCR detection
Fbar CGACATCCGCCGTGCCACCGA 转基因植株鉴定
Rbar GTACCGGCAGGCTGAAGTCCAGC Transgenic plant identification

Fig. 1

Characterization of protein encoded by IbSWEET15 A: the analysis of the conserved domain of IbSWEET15 (The red box represents the conserved MtN3_slv structural domain). VvSWEET15 (accession number: P0DKJ5.1): grape (Vitis vinifera) SWEET protein. AtSWEET15 (accession number: Q9FY94.1): Arabidopsis SWEET protein. OsSWEET15 (accession number: Q6K602.1): rice SWEET protein. B: phylogenetic tree of sweet potato IbSWEET15 and IbSWEET10 proteins with Arabidopsis SWEET protein family. C: the prediction of the transmembrane structural domain of IbSWEET15 protein. pCAMBIA1300-GFP (D) and pCAMBIA1300-IbSWEET15-GFP (E) the co-localized with the plasma membrane-located marker protein (red fluorescence). Bars: 20 μm or 10 μm."

Fig. 2

Function identification of Sucrose (A-C) and hexose (D) transport of IbSWEET15 1, 2, and 3 represent the SEY2102 strains that successfully transformed pDR196, pDR196-StSUT1, and pDR196-IbSWEET15 vectors, respectively. Growth of transformed SEY2102 strains in solid SD medium (A) and liquid (B) SD medium containing 2% sucrose and their cell density (OD600 value) (C). Growth of EBY.VW4000 strains transformed with pDR196-ScHXT5 (left), pDR196 (middle), and pDR196-IbSWEET15 (right) vectors on solid SD medium containing 2% maltose or different hexoses (glucose, fructose, mannose, and galactose), respectively. 1×, 20×, 1, 10, 100, and 1000 represent dilution times, respectively. ns: no significant difference. *** means significant difference at the 0.001 probability level. Bar: 0.5 cm."

Fig. 3

Relative expression level of IbSWEET15 genes of various organs in sweet potato XS22: Xushu 22. *** means significant difference at the 0.001 probability level."

Fig. 4

Heterologous expression of IbSWEET15 and morphology of transgenic plants A: the detection of the expression of IbSWEET15 in transgenic Arabidopsis; B: western blot detection of IbSWEET15 protein expression in transgenic plants; C: phenotypic observation of transgenic plants. 219, 246, 266, and 270 represent transgenic lines IbSWEET15-219, IbSWEET15-246, IbSWEET15-266, and IbSWEET15-270, respectively. *** means significant difference at the 0.001 probability level."

Fig. 5

Heterologous expression of IbSWEET15 alters the content of starch and soluble sugars in transgenic Arabidopsis plants * and ** mean significant difference at the 0.05 and 0.01 probability levels, respectively. 219, 246, and 270 represent transgenic lines IbSWEET15-219, IbSWEET15-246, and IbSWEET15-270, respectively."

[1] Wang Z Y, Fang B P, Chen J Y, Zhang X J, Luo Z X, Huang L F, Chen X L, Li Y J. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas). BMC Genomics, 2010, 11: 726.
doi: 10.1186/1471-2164-11-726
[2] Wang H L, Yang Q H, Ferdinand U, Gong X W, Qu Y, Gao W C, Ivanistau A, Feng B L, Liu M H. Isolation and characterization of starch from light yellow, orange, and purple sweet potatoes. Int J Biol Macromol, 2020, 160: 660-668.
doi: S0141-8130(20)33425-5 pmid: 32497669
[3] Montefusco A, Durante M, Grassi S, Piro G, Dalessandro G, Lenucci M S. Assessment of sweet potato [Ipomoea batatas (L.) Lam] for bioethanol production in southern Italy. Plant Biosyst, 2014, 148: 1117-1126.
doi: 10.1080/11263504.2014.965799
[4] Zhang K, Wu Z D, Tang D B, Luo K, Lu H X, Liu Y Y, Dong J, Wang X, Lyu C W, Wang J C, Lu K. Comparative transcriptome analysis reveals critical function of sucrose metabolism related-enzymes in starch accumulation in the storage root of sweet potato. Front Plant Sci, 2017, 8: 914.
doi: 10.3389/fpls.2017.00914 pmid: 28690616
[5] Yokoi H, Saitsu A, Uchida H, Hirose J, Hayashi S, Takasaki Y. Microbial hydrogen production from sweet potato starch residue. J Biosci Bioengin, 2001, 91: 58-63.
doi: 10.1016/S1389-1723(01)80112-2
[6] 沈升法, 项超, 吴列洪, 李兵, 罗志高. 甘薯块根可溶性糖组分特征及其与食味的关联分析. 中国农业科学, 2021, 54: 34-45.
Shen S F, Xiang C, Wu L H, Li B, Luo Z G. Analysis on the characteristics of soluble sugar components in sweetpotato storage root and its relationship with taste. Sci Agric Sin, 2021, 54: 34-45. (in Chinese with English abstract)
[7] Durand M, Mainson D, Porcheron B, Maurousset L, Lemoine R, Pourtau N. Carbon source-sink relationship in Arabidopsis thaliana: the role of sucrose transporters. Planta, 2018, 247: 587-611.
doi: 10.1007/s00425-017-2807-4
[8] Chen L Q. SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytol, 2014, 201: 1150-1155.
doi: 10.1111/nph.12445
[9] Xu Q Y, Yin S J, Ma Y, Song M, Song Y J, Mu S C, Li Y S, Liu X H, Ren Y J, Gao C, Chen S L, Liesche J. Carbon export from leaves is controlled via ubiquitination and phosphorylation of sucrose transporter SUC2. Proc Natl Acad Sci USA, 2020, 117: 6223-6230.
doi: 10.1073/pnas.1912754117
[10] Julius B T, Leach K A, Tran T M, Mertz R A, Braun D M. Sugar transporters in plants: new insights and discoveries. Plant Cell Physiol, 2017, 58: 1442-1460.
doi: 10.1093/pcp/pcx090 pmid: 28922744
[11] Ruan Y L. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu Rev Plant Biol, 2014, 65: 33-67.
doi: 10.1146/annurev-arplant-050213-040251
[12] Fernie A R, Bachem C W B, Helariutta Y, Neuhaus H E, Prat S, Ruan Y L, Stitt M, Sweetlove L J, Tegeder M, Wahl V, Sonnewald S, Sonnewald U. Synchronization of developmental, molecular and metabolic aspects of source-sink interactions. Nat Plants, 2020, 6: 55-66.
doi: 10.1038/s41477-020-0590-x pmid: 32042154
[13] Keller I, Rodrigues C M, Neuhaus H E, Pommerrenig B. Improved resource allocation and stabilization of yield under abiotic stress. J Plant Physiol, 2021, 257: 153336.
doi: 10.1016/j.jplph.2020.153336
[14] Chen L Q, Hou B H, Lalonde S, Takanaga H, Hartung M L, Qu X Q, Guo W J, Kim J G, Underwood W, Chaudhuri B, Chermak D, Antony G, White F F, Somerville S C, Mudgett M B, Frommer W B. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 2010, 468: 527-532.
doi: 10.1038/nature09606
[15] Yuan M, Zhao J, Huang R, Li X, Xiao J, Wang S. Rice MtN3_slv/SWEET gene family: evolution, expression profiling, and sugar transport. J Integr Plant Biol, 2014, 56: 559-570.
doi: 10.1111/jipb.12173
[16] Li X, Si W, Qin Q, Wu H, Jiang H. Deciphering evolutionary dynamics of SWEET genes in diverse plant lineages. Sci Rep, 2018, 8: 13440.
doi: 10.1038/s41598-018-31589-x
[17] Chen L Q, Qu X Q, Hou B H, Sosso D, Osorio S, Fernie A R, Frommer W B. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science, 2012, 335: 207-211.
doi: 10.1126/science.1213351
[18] Feng L, Frommer W B. Structure and function of semiSWEET and SWEET sugar transporters. Trends Biochem Sci, 2015, 40: 480-486.
doi: 10.1016/j.tibs.2015.05.005 pmid: 26071195
[19] Chen H Y, Huh J H, Yu Y C, Ho L H, Chen L Q, Tholl D, Frommer W B, Guo W J. The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection. Plant J, 2015, 83: 1046-1058.
doi: 10.1111/tpj.12948
[20] Anjali A, Fatima U, Manu M S, Ramasamy S, Senthil-Kumar M. Structure and regulation of SWEET transporters in plants: an update. Plant Physiol Biochem, 2020, 156: 1-6.
doi: 10.1016/j.plaphy.2020.08.043
[21] Jeena G S, Kumar S, Shukla R K. Structure, evolution and diverse physiological roles of SWEET sugar transporters in plants. Plant Mol Biol, 2019, 100: 351-365.
doi: 10.1007/s11103-019-00872-4
[22] Sun M X, Huang X Y, Yang J, Guan Y F, Yang Z N. Arabidopsis RPG1 is important for primexine deposition and functions redundantly with RPG2 for plant fertility at the late reproductive stage. Plant Reprod, 2013, 26: 83-91.
doi: 10.1007/s00497-012-0208-1
[23] Lin I W, Sosso D, Chen L Q, Gase K, Kim S G, Kessler D, Klinkenberg P M, Gorder M K, Hou B H, Qu X Q, Carter C J, Baldwin I T, Frommer W B. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature, 2014, 508: 546-549.
doi: 10.1038/nature13082
[24] Sosso D, Luo D P, Li Q B, Sasse J, Yang J L, Gendrot G, Suzuki M, Koch K E, McCarty D R, Chourey P S, Rogowsky P M, Ross-Ibarra J, Yang B, Frommer W B. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nat Genet, 2015, 47: 1489-1493.
doi: 10.1038/ng.3422 pmid: 26523777
[25] Ko H Y, Ho L H, Neuhaus H E, Guo W J. Transporter SlSWEET15 unloads sucrose from phloem and seed coat for fruit and seed development in tomato. Plant Physiol, 2021, 187: 2230-2245.
doi: 10.1093/plphys/kiab290
[26] Ge Y X, Angenent G C, Wittich P E, Peters J, Franken J, Busscher M, Zhang L M, Dahlhaus E, Kater M M, Wullems G J, Creemers-Molenaar T. NEC1, a novel gene, highly expressed in nectary tissue of Petunia hybrida. Plant J, 2000, 24: 725-734.
pmid: 11135107
[27] Hu Z, Tang Z, Zhang Y, Niu L, Yang F, Zhang D, Hu Y. Rice SUT and SWEET transporters. Int J Mol Sci, 2021, 22: 11198.
doi: 10.3390/ijms222011198
[28] Wang S D, Yokosho K, Guo R Z, Whelan J, Ruan Y L, Ma J F, Shou H X. The soybean sugar transporter GmSWEET15 mediates sucrose export from endosperm to early embryo. Plant Physiol, 2019, 180: 2133-2141.
doi: 10.1104/pp.19.00641 pmid: 31221732
[29] Wang P P, Wei P N, Niu F F, Liu X F, Zhang H L, Lyu M L, Yuan Y, Wu B H. Cloning and functional assessments of floral- expressed SWEET transporter genes from Jasminum sambac. Int J Mol Sci, 2019, 20: 4001.
doi: 10.3390/ijms20164001
[30] Zhao D, You Y, Fan H Y, Zhu X F, Wang Y Y, Duan Y X, Xuan Y H, Chen L J. The role of sugar transporter genes during early infection by root-knot nematodes. Int J Mol Sci, 2018, 19: 302.
doi: 10.3390/ijms19010302
[31] Zeng X, Luo Y F, Vu N T Q, Shen S J, Xia K F, Zhang M Y. CRISPR/Cas9-mediated mutation of OsSWEET14 in rice cv. Zhonghua 11 confers resistance to Xanthomonas oryzae pv. oryzae without yield penalty. BMC Plant Biol, 2020, 20: 313.
doi: 10.1186/s12870-020-02524-y
[32] Li Y, Wang Y N, Zhang H, Zhang Q, Zhai H, Liu Q C, He S Z. The plasma membrane-localized sucrose transporter IbSWEET10 contributes to the resistance of sweet potato to Fusarium oxysporum. Front Plant Sci, 2017, 8: 197.
[33] Chen L, Liu X, Huang X, Luo W, Long Y, Greiner S, Rausch T, Zhao H. Functional characterization of a drought-responsive invertase inhibitor from maize (Zea mays L.). Int J Mol Sci, 2019, 20: 4081.
doi: 10.3390/ijms20174081
[34] Park S C, Kim Y H, Ji C Y, Park S, Jeong J C, Lee H S, Kwak S S. Stable internal reference genes for the normalization of real-time PCR in different sweetpotato cultivars subjected to abiotic stress conditions. PLoS One, 2012, 7: e51502.
doi: 10.1371/journal.pone.0051502
[35] Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative C(T) method. Nat Protocols, 2008, 3: 1101-1108.
doi: 10.1038/nprot.2008.73
[36] Riesmeier J W, Hirner B, Frommer W B. Potato sucrose transporter expression in minor veins indicates a role in phloem loading. Plant Cell, 1993, 5: 1591-1598.
[37] 尚璐, 姚远, 王运林, 孙冲, 陆小花, 耿梦婷, 符少萍, 李瑞梅, 段瑞军, 刘姣, 胡新文, 郭建春. 木薯碱性/中性转化酶MeNINV4酵母功能互补. 分子植物育种, 2018, 16: 1073-1078.
Shang L, Yao Y, Wang Y L, Sun C, Lu X H, Geng M T, Fu S P, Li R M, Duan R J, Liu J, Hu X W, Guo J C. Functional complementation of cassava alkaline/neutral invertase MeNINV4 in yeast. Mol Plant Breed, 2018, 16: 1073-1078. (in Chinese with English abstract)
[38] Verwaal R, Paalman J W G, Hogenkamp A, Verkleij A J, Verrips C T, Boonstra J. HXT5 expression is determined by growth rates in Saccharomyces cerevisiae. Yeast, 2002, 19: 1029-1038.
pmid: 12210898
[39] Wieczorke R, Krampe S, Weierstall T, Freidel K, Hollenberg C P, Boles E. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett, 1999, 464: 123-128.
pmid: 10618490
[40] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735-743.
pmid: 10069079
[41] Kunz H H, Hausler R E, Fettke J, Herbst K, Niewiadomski P, Gierth M, Bell K, Steup M, Flugge U I, Schneider A. The role of plastidial glucose-6-phosphate/phosphate translocators in vegetative tissues of Arabidopsis thaliana mutants impaired in starch biosynthesis. Plant Biol, 2010, 12: 115-128.
doi: 10.1111/j.1438-8677.2010.00349.x
[42] Han L, Zhu Y P, Liu M, Zhou Y, Lu G Y, Lan L, Wang X P, Zhao Y F, Zhang X J C. Molecular mechanism of substrate recognition and transport by the AtSWEET13 sugar transporter. Proc Natl Acad Sci USA, 2017, 114: 10089-10094.
doi: 10.1073/pnas.1709241114
[43] 王丹丹, 柳洪鹃, 王红霞, 张鹏, 史春余. 甘薯蔗糖转运蛋白基因IbSUT3的克隆及功能分析. 作物学报, 2020, 46: 1120-1127.
doi: 10.3724/SP.J.1006.2020.94173
Wang D D, Liu H J, Wang H X, Zhang P, Shi C Y. Cloning and functional analysis of the sweet potato sucrose transporter IbSUT3. Acta Agron Sin, 2020, 46: 1120-1127. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94173
[44] Seo P J, Park J M, Kang S K, Kim S G, Park C M. An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta, 2011, 233: 189-200.
doi: 10.1007/s00425-010-1293-8
[45] Barker L, Kuhn C, Weise A, Schulz A, Gebhardt C, Hirner B, Hellmann H, Schulze W, Ward J M, Frommer W B. SUT2, a putative sucrose sensor in sieve elements. Plant Cell, 2000, 12: 1153-1164.
doi: 10.1105/tpc.12.7.1153
[46] Schneider S, Hulpke S, Schulz A, Yaron I, Holl J, Imlau A, Schmitt B, Batz S, Wolf S, Hedrich R, Sauer N. Vacuoles release sucrose via tonoplast-localised SUC4-type transporters. Plant Biol, 2012, 14: 325-336.
[47] Kanno Y, Oikawa T, Chiba Y, Ishimaru Y, Shimizu T, Sano N, Koshiba T, Kamiya Y, Ueda M, Seo M. AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes. Nat Commun, 2016, 7: 13245.
doi: 10.1038/ncomms13245 pmid: 27782132
[48] Zhou A, Ma H, Feng S, Gong S, Wang J. A novel sugar transporter from Dianthus spiculifolius, DsSWEET12, affects sugar metabolism and confers osmotic and oxidative stress tolerance in Arabidopsis. Int J Mol Sci, 2018, 19: 497.
doi: 10.3390/ijms19020497
[49] Ren R H, Yue X F, Li J N, Xie S, Guo S H, Zhang Z W. Coexpression of sucrose synthase and the SWEET transporter, which are associated with sugar hydrolysis and transport, respectively, increases the hexose content in Vitis vinifera L. grape berries. Front Plant Sci, 2020, 11: 321.
doi: 10.3389/fpls.2020.00321
[50] Bezrutczyk M, Hartwig T, Horschman M, Char S N, Yang J, Yang B, Frommer W B, Sosso D. Impaired phloem loading in zmsweet13a,b,c sucrose transporter triple knock-out mutants in Zea mays. New Phytol, 2018, 218: 594-603.
doi: 10.1111/nph.15021 pmid: 29451311
[51] Li P, Wang L H, Liu H B, Yuan M. Impaired SWEET-mediated sugar transportation impacts starch metabolism in developing rice seeds. Crop J, 2022, 10: 98-108.
doi: 10.1016/j.cj.2021.04.012
[52] Zhang Z, Zou L M, Ren C, Ren F R, Wang Y, Fan P G, Li S H, Liang Z C. VvSWEET10 mediates sugar accumulation in grapes. Genes, 2019, 10: 255.
doi: 10.3390/genes10040255
[53] Zhang X S, Feng C Y, Wang M N, Li T L, Liu X, Jiang J. Plasma membrane-localized SlSWEET7a and SlSWEET14 regulate sugar transport and storage in tomato fruits. Hortic Res, 2021, 8: 186.
doi: 10.1038/s41438-021-00624-w
[1] WANG Rui-Pu, DONG Zhen-Ying, GAO Yue-Xin, BAO Jian-Xi, YIN Fang-Bing, LI Jin-Ping, LONG Yan, WAN Xiang-Yuan. Genome-wide association study and candidate gene prediction of kernel starch content in maize [J]. Acta Agronomica Sinica, 2023, 49(1): 140-152.
[2] JIANG Yan, ZHAO Can, CHEN Yue, LIU Guang-Ming, ZHAO Ling-Tian, LIAO Ping-Qiang, WANG Wei-Ling, XU Ke, LI Guo-Hui, WU Wen-Ge, HUO Zhong-Yang. Effects of nitrogen panicle fertilizer application on physicochemical properties and fine structure of japonica rice starch and its relationship with eating quality [J]. Acta Agronomica Sinica, 2023, 49(1): 200-210.
[3] CAO Ji-Ling, ZENG Qing, ZHU Jian-Guo. Responses of photosynthetic characteristics and gene expression in different wheat cultivars to elevated ozone concentration at grain filling stage [J]. Acta Agronomica Sinica, 2022, 48(9): 2339-2350.
[4] XIE Li-Ming, JIANG Zhong-Yu, LIU Hong-Juan, HAN Jun-Jie, LIU Ben-Kui, WANG Xiao-Lu, SHI Chun-Yu. Suitable soil moisture promotes sugar supply and tuberization in sweet potato at root branching stage [J]. Acta Agronomica Sinica, 2022, 48(8): 2080-2087.
[5] LIU Yu-Ling, ZHANG Hong-Yan, TENG Chang-Cai, ZHOU Xian-Li, HOU Wan-Wei. Genetic diversity and its association analysis of SSR markers with starch content in faba bean (Vicia faba L.) [J]. Acta Agronomica Sinica, 2022, 48(11): 2786-2796.
[6] CHEN Yun, LIU Kun, ZHANG Hong-Lu, LI Si-Yu, ZHANG Ya-Jun, WEI Jia-Li, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of machine transplanting density and panicle nitrogen fertilizer reduction on grains starch synthesis in good taste rice cultivars [J]. Acta Agronomica Sinica, 2021, 47(8): 1540-1550.
[7] SONG Tian-Xiao, LIU Yi, RAO Li-Ping, Soviguidi Deka Reine Judesse, ZHU Guo-Peng, YANG Xin-Sun. Identification and expression analysis of cell wall invertase IbCWIN gene family members in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(7): 1297-1308.
[8] YANG Fan, ZHONG Xiao-Yuan, LI Qiu-Ping, LI Shu-Xian, LI Wu, ZHOU Tao, LI Bo, YUAN Yu-Jie, DENG Fei, CHEN Yong, REN Wan-Jun. Effects of delayed sowing and planting date on starch RVA profiles of different indica hybrid rice in the sub-suitable region of ratoon rice [J]. Acta Agronomica Sinica, 2021, 47(4): 701-713.
[9] WANG Cui-Juan, CHAI Sha-Sha, SHI Chun-Yu, ZHU Hong, TAN Zhong-Peng, JI Jie, REN Guo-Bo. Anatomy characteristics and IbEXP1 gene expression of tuberization under ammonia nitrogen treatment in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(2): 305-319.
[10] DONG Er-Wei, WANG Jin-Song, WU Ai-Lian, WANG Yuan, WANG Li-Ge, HAN Xiong, GUO Jun, JIAO Xiao-Yan. Effects of row space and plant density on characteristics of grain filling, starch and NPK accumulation of sorghum grain of different parts of panicle [J]. Acta Agronomica Sinica, 2021, 47(12): 2459-2470.
[11] HUANG Su-Hua, LIN Xi-Yue, LEI Zheng-Ping, DING Zai-Song, ZHAO Ming. Physiological characters of carbon, nitrogen, and hormones in ratooning rice cultivars with strong regeneration ability [J]. Acta Agronomica Sinica, 2021, 47(11): 2278-2289.
[12] Yong-Chen LIU,Cheng-Cheng SI,Hong-Juan LIU,Bin-Bin ZHANG,Chun-Yu SHI. Reason exploration for soil aeration promoting photosynthate transportation between sink and source in sweet potato [J]. Acta Agronomica Sinica, 2020, 46(3): 462-471.
[13] ZHANG Huan, YANG Nai-Ke, SHANG Li-Li, GAO Xiao-Ru, LIU Qing-Chang, ZHAI Hong, GAO Shao-Pei, HE Shao-Zhen. Cloning and functional analysis of a drought tolerance-related gene IbNAC72 in sweet potato [J]. Acta Agronomica Sinica, 2020, 46(11): 1649-1658.
[14] JIANG Zhong-Yu, TANG Li-Xue, LIU Hong-Juan, SHI Chun-Yu. Changes of endogenous hormones on storage root formation and its relationship with storage root number under different potassium application rates of sweet potato [J]. Acta Agronomica Sinica, 2020, 46(11): 1750-1759.
[15] ZHANG Hai-Yan, WANG Bao-Qing, FENG Xiang-Yang, LI Guang-Liang, XIE Bei-Tao, DONG Shun-Xu, DUAN Wen-Xue, ZHANG Li-Ming. Effects of drought treatments at different growth stages on growth and the activity of osmotic adjustment in sweet potato [Ipomoea batatas (L.) Lam.] [J]. Acta Agronomica Sinica, 2020, 46(11): 1760-1770.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[2] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[3] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[4] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[5] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[6] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[7] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[8] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[9] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[10] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .