Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (10): 2654-2664.doi: 10.3724/SP.J.1006.2023.24280

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Functional identification of Saccharum spontaneum transcription factor SsWRKY1 to improve drought tolerance in sugarcane

SHEN Qing-Qing1(), WANG Tian-Ju2, WANG Jun-Gang3, ZHANG Shu-Zhen3, ZHAO Xue-Ting1, HE Li-Lian1(), LI Fu-Sheng1,4()   

  1. 1College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
    2College of Resources Environment and Chemistry, Chuxiong Normal University, Chuxiong 675000, Yunnan, China
    3Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
    4Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming 650201, Yunnan, China
  • Received:2022-12-20 Accepted:2023-04-17 Online:2023-10-12 Published:2023-04-26
  • Contact: E-mail: lfs810@sina.com; E-mail: helilian905@sohu.com
  • Supported by:
    National Natural Science Foundation of China(31960451);National Key Research and Development Program of China(2018YFD1000503);Special Projects of the Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province(202105AG070007);Major Science and Technology Projects in Yunnan Province(202202AE090021);Scientific Research Fund Project of Department of Education Yunnan Province(2020Y203)

Abstract:

SsWRKY1 is a member gene of the WRKY family in Saccharum spontaneum. The functional analysis provides valuable information for studying the molecular mechanism of SsWRKY1 involved in drought regulation. In this study, SsWRKY1 overexpression lines and RNAi interference expression lines were obtained by Agrobacterium-mediated transformation technology. The results showed that overexpression lines were significantly less damaged by drought stress than non-transgenic plants, while the interference expression lines showed severe drought stress damage with PEG to simulate drought stress. The content of proline in the overexpression lines increased significantly, the content of malondialdehyde decreased significantly, and the activities of antioxidant enzymes such as superoxide dismutase, peroxidase, and catalase increased to varying degrees. The relative expression levels of MAPK Cascade signal transduction gene MAPK, ABA biosynthesis gene NCED, proline biosynthesis gene P5CS, ROS scavenging system gene SOD, POD, and CAT were significantly increased, indicating that SsWRKY1 overexpression could improve the ability of sugarcane to cope with drought stress. In conclusion, SsWRKY1 enhanced the drought resistance of sugarcane by activating the antioxidant system and regulating stress response genes and could be used as an important gene resource for genetic improvement of sugarcane resistance.

Key words: WRKY transcription factors, transgenic sugarcane, drought tolerance, functional identification

Fig. 1

Schematic representation of SsWRKY1 overexpression vector and RNAi interference expression vector A: SsWRKY1 overexpression vector. B: SsWRKY1 RNAi interference expression vector."

Table 1

Primers for stress responsive genes by qRT-PCR"

引物名称
Primer name
引物序列
Primer sequences (5'-3')
SOD-F
SOD-R
GTGAAGGCTGTTGCTGTGCTT
CGGTTCTCATCTTCTGGTGCT
POD-F
POD-R
AATCGGAGAAGTCCTCGTCCCATAG
TTCTACCACAACAACCTCGCCAAG
CAT-F
CAT-R
CATCCCACTCAACTACAGGCACATG
TCACACCACAAGTAGGCTTCCAATG
P5CS-F
P5CS-R
TTTGGATTGGGTGCTGAGGTTGG
ATCCTTGTCACCGTTCACCACTTG
MAPK-F
MAPK-R
GGTCTTCCTCTCCTCCGTCGTC
TCCTCCGCTCATCGTCTTCTTCC
NCED-F
NCED-R
CTTCCACGGCACCTTCATCACTG
GGCTCCTCTGTTCCTCCTCCAAG

Fig. 2

Molecular detection of SsWRKY1 overexpression vector and RNAi interference expression vector A: restriction enzyme digestion identification of SsWRKY1 overexpression vector. B: bacterial solution detection of SsWRKY1 RNAi interference expression vector."

Fig. 3

Genetic transformation of sugarcane mediated by Agrobacterium-tumefaciens A: embryogenic callus. B: callus began to differentiate into seedlings. C: the first Basta resistance screening. D: the second Basta resistance screening. E: rooting of individual plant and seedling refining. F: transgenic plant in a pot."

Fig. 4

Molecular detection of SsWRKY1 transgenic sugarcane A: PCR detection of the target gene. M: DNA marker DL2000. +: positive contrast. -: negative contrast. 1-10: transgenic sugarcane. B: paper test detection of detection Bar gene. -: negative contrast. 1-5: transgenic sugarcane. C: the target gene was used by qRT-PCR detection in overexpression lines. WT: non-transformed sugarcane lines. OE4, OE5, and OE8 stands for different overexpression lines. D: the target gene was used by qRT-PCR detection in RNAi interference expression lines. WT: non-transformed sugarcane lines. R1, R2, and R5 stands for different RNAi interference expression lines. APRT gene expression is used as an internal control. The significant difference is evaluated by the Student's t-test. *: P < 0.05; **: P < 0.01."

Fig. 5

Drought resistance identification of SsWRKY1 overexpression lines A: phenotypic changes of overexpression lines under drought stress. WT: non-transformed sugarcane lines. OE4, OE5, and OE8 stands for different overexpression lines. The significant difference is evaluated by the Student's t-test. *: P < 0.05; **: P < 0.01."

Fig. 6

Drought resistance identification of SsWRKY1 interference expression lines A: phenotypic changes of interference expression lines under drought stress. WT: non-transformed sugarcane lines. R1, R2, and R5 stands for different RNAi interference expression lines. The significant difference is evaluated by the Student's t-test. *: P< 0.05; **: P < 0.01."

Fig. 7

Relative expression profile of drought stress response genes in SsWRKY1 overexpression lines WT: non-transformed sugarcane lines. OE4, OE5, and OE8 stands for different overexpression lines. The significant difference is evaluated by the Student's t-test. *: P < 0.05; **: P < 0.01."

Fig. 8

Relative expression profile of drought stress response genes in SsWRKY1 interference expression lines WT: non-transformed sugarcane lines. R1, R2, and R5 stands for different RNAi interference expression lines. The significant difference is evaluated by the Student's t-test. *: P < 0.05; **: P < 0.01."

[1] Grivet L, Arruda P. Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr Opin Plant Biol, 2002, 5: 122-127.
doi: 10.1016/s1369-5266(02)00234-0 pmid: 11856607
[2] Lam E, Shine J, Silva J D, Lawton M, Bonos S, Calvino M, Carrer H, Silva-Filho M C, Glynn N, Helsel Z. Improving sugarcane for biofuel: engineering for an even better feedstock. GCB Bioenergy, 2009, 3: 251-255.
[3] Zhang J, Arro J, Chen Y, Ming R. Haplotype analysis of sucrose synthase gene family in three Saccharum species. BMC Genomics, 2013, 14: 314.
doi: 10.1186/1471-2164-14-314
[4] Manoj V M, Anunanthini P, Swathik P C, Dharshini S, Ashwin Narayan J, Manickavasagam M, Sathishkumar R, Suresha G S, Hemaprabha G, Ram B, Appunu C. Comparative analysis of glyoxalase pathway genes in Erianthus arundinaceus and commercial sugarcane hybrid under salinity and drought conditions. BMC Genomics, 2019, 19: 986.
doi: 10.1186/s12864-018-5349-7
[5] 陈如凯, 张木清, 陆裔波. 干旱胁迫对甘蔗生理影响的研究. 甘蔗, 1995, 2(1): 1-6.
Chen R K, Zhang M Q, Lu Y B. Studies on the effect of water deficits on physiology in sugarcane (Saccharum officinarum L.). Sugarcane, 1995, 2(1): 1-6. (in Chinese with English abstract)
[6] Yang Z, Chi X, Guo F, Jin X, Luo H, Hawar A, Chen Y, Feng K, Wang B, Qi J, Yang Y, Sun B. SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress-responsive gene, SbRD19, in sorghum. J Plant Physiol, 2020, 246/247: 153142.
doi: 10.1016/j.jplph.2020.153142
[7] Garsmeur O, Droc G, Antonise R, Grimwood J, Potier B, Aitken K, Jenkins J, Martin G, Charron C, Hervouet C, Costet L, Yahiaoui N, Healey A, Sims D, Cherukuri Y, Sreedasyam A, Kilian A, Chan A, Sluys M V, Swaminathan K, Town C, Bergès H, Simmons B, Glaszmann J C, Vossen E, Henry R, Schmutz J, D'Hont A. A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat Commun, 2018, 9: 2638.
doi: 10.1038/s41467-018-05051-5 pmid: 29980662
[8] Yang H, Wang T, Yu X, Yang Y, Wang C, Yang Q, Wang X. Enhanced sugar accumulation and regulated plant hormone signaling genes contribute to cold tolerance in hypoploid Saccharum spontaneum. BMC Genomics, 2020, 21: 507.
doi: 10.1186/s12864-020-06917-z
[9] D'Hont A, Grivet L, Feldmann P, Glaszmann J C, Rao S, Berding N. Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol Gen Genet, 1996, 250: 405-413.
[10] Rushton P J, Somssich I E, Ringler P, Shen Q J. WRKY transcription factors. Trends Plant Sci, 2010, 15: 247-258.
doi: 10.1016/j.tplants.2010.02.006 pmid: 20304701
[11] Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato. Mol Gene Genet, 1994, 244: 563-571.
[12] Chen H, Lai Z, Shi J, Xiao Y, Chen Z, Xu X. Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol, 2010, 10: 281.
doi: 10.1186/1471-2229-10-281 pmid: 21167067
[13] Song Y, Ai C R, Jing S J, Yu D Q. Research progress on function analysis of rice WRKY gene. Rice Sci, 2010, 17: 60-72.
doi: 10.1016/S1672-6308(08)60105-5
[14] 王瑞, 吴华玲, 王会芳, 黄珂, 霍春艳, 倪中福, 孙其信. 小麦TaWRKY44基因的克隆、表达分析及功能鉴定. 作物学报, 2013, 39: 1944-1951.
doi: 10.3724/SP.J.1006.2013.01944
Wang R, Wu H L, Wang H F, Huang K, Huo C Y, Ni Z F, Sun Q X. Cloning, characterization, and functional analysis of TaWRKY44 gene from wheat. Acta Agron Sin, 2013, 39: 1944-1951 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2013.01944
[15] 刘佼佼, 王学敏, 马琳, 崔苗苗, 曹晓宇, 赵威. 紫花苜蓿MsWRKY42的分离、鉴定及其对非生物胁迫的响应. 中国农业科学, 2020, 53: 3455-3466.
doi: 10.3864/j.issn.0578-1752.2020.17.004
Liu J J, Wang X M, Ma L, Cui M M, Cao X Y, Zhao W. Isolation, identification, and response to abiotic stress of MsWRKY42 gene from Medicago sativa L. Sci Agric Sin, 2020, 53: 3455-3466. (in Chinese with English abstract)
[16] 王婷婷, 丛亚辉, 柳聚阁, 王宁, 帅琴, 李艳, 盖钧镒. 大豆中一个WRKY28-like基因的克隆与功能分析. 作物学报, 2016, 42: 469-481.
Wang T T, Cong Y H, Liu J G, Wang N, Shuai Q, Li Y, Gai J Y. Cloning and functional analysis of a WRKY28-like gene in soybean. Acta Agron Sin, 2016, 42: 469-481. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00469
[17] Li Z, Hua X, Zhong W, Yuan Y, Wang Y, Wang Z, Ming R, Zhang J. Genome-wide identification and expression profile analysis of WRKY family genes in the autopolyploid Saccharum spontaneum. Plant Cell Physiol, 2020, 61: 616-630.
doi: 10.1093/pcp/pcz227
[18] 徐荣, 吴清莲, 孟玉, 陈疏影, 王先宏, 何丽莲, 李富生. 割手密SsWRKY1基因的克隆与表达分析. 分子植物育种, 2020, 18: 866-872.
Xu R, Wu Q L, Meng Y, Chen S Y, Wang X H, He L L, Li F S. Cloning and expression analysis of the SsWRKY1 gene in Saccharum spontaneum. Mol Plant Breed, 2020, 18: 866-872. (in Chinese with English abstract)
[19] 王玲, 刘峰, 戴明剑, 孙婷婷, 苏炜华, 王春风, 张旭, 毛花英, 苏亚春, 阙友雄. 甘蔗ScWRKY4基因的克隆与表达特性分析. 作物学报, 2018, 44: 1367-1379.
doi: 10.3724/SP.J.1006.2018.01367
Wang L, Liu F, Dai M J, Sun T T, Su W H, Wang C F, Zhang X, Mao H Y, Su Y C, Que Y X. Cloning and expression characteristic analysis of ScWRKY4 gene in sugarcane. Acta Agron Sin, 2018, 44: 1367-1379. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.01367
[20] Wang L, Liu F, Zhang X, Wang W, Sun T, Chen Y, Dai M, Yu S, Xu L, Su Y, Que Y. Expression characteristics and functional analysis of the ScWRKY3 gene from sugarcane. Int J Mol Sci, 2018, 19: 4059.
doi: 10.3390/ijms19124059
[21] Wang D, Wang L, Su W, Ren Y, You C, Zhang C, Que Y, Su Y. A class III WRKY transcription factor in sugarcane was involved in biotic and abiotic stress responses. Sci Rep, 2020, 10: 20964.
doi: 10.1038/s41598-020-78007-9 pmid: 33262418
[22] 张旭, 凌辉, 刘峰, 黄宁, 王玲, 毛花英, 李聪娜, 汤翰臣, 苏炜华, 苏亚春, 阙友雄. 一个甘蔗IId类WRKY转录因子基因的克隆和表达分析. 中国农业科学, 2018, 51: 4409-4423.
doi: 10.3864/j.issn.0578-1752.2018.23.002
Zhang X, Ling H, Liu F, Huang N, Wang L, Mao H Y, Li C N, Tang H C, Su W H, Su Y C, Que Y X. Cloning and expression analysis of a IId sub-group WRKY transcription factor gene from sugarcane. Sci Agric Sin, 2018, 51: 4409-4423. (in Chinese with English abstract)
[23] 喻时周, 张树珍, 杨本鹏, 蔡文伟, 罗遵喜, 顾丽红. 甘蔗锌指蛋白ShZP基因正义反义植物表达载体的构建及转化烟草. 热带作物学报, 2009, 30: 1330-1336.
Yu S Z, Zhang S Z, Yang B P, Cai W W, Lu Z X, Gu L H. Construction of plant expression vectors for sense and anti-sense zinc finger proteins gene of sugarcane and transformation of these genes into tobacco. Chin J Trop Crops, 2009, 30: 1330-1336. (in Chinese with English abstract)
[24] 王文治, 杨志坚, 杨本鹏, 熊国如, 蔡文伟, 冯翠莲, 王俊刚, 伍苏然, 张树珍. 高效快速甘蔗转基因方法探索. 热带作物学报, 2012, 33: 1619-1624.
Wang W Z, Yang Z J, Yang B P, Xiong G R, Cai W W, Feng C L, Wang J G, Wu S R, Zhang S Z. A fast and efficient gene transformation method for sugarcane. Chin J Trop Crops, 2012, 33: 1619-1624. (in Chinese with English abstract)
[25] Casu R E, Selivanova A, Perroux J M. High-throughput assessment of transgene copy number in sugarcane using real-time quantitative PCR. Plant Cell Rep, 2012, 31: 167-177.
doi: 10.1007/s00299-011-1150-7 pmid: 21953330
[26] Xue B, Guo J, Que Y, Fu Z, Wu L, Xu L. Selection of suitable endogenous reference genes for relative copy number detection in sugarcane. Int J Mol Sci, 2014, 15: 8846-8862.
doi: 10.3390/ijms15058846 pmid: 24857916
[27] 王天菊, 王先宏, 杨清辉. 26份割手密种质材料的抗旱性差异评价. 热带作物学报, 2017, 38: 1645-1652.
Wang T J, Wang X H, Yang Q H. Comprehensive evaluation on drought resistance difference of twenty-six Saccharum spontaneum L. accessions. Chin J Trop Crops, 2017, 38: 1645-1652. (in Chinese with English abstract)
[28] Gerszberg A, Hnatuszko-Konka K. Tomato tolerance to abiotic stress: a review of most often engineered target sequences. Plant Growth Regul, 2017, 83: 175-198.
doi: 10.1007/s10725-017-0251-x
[29] Ashrafi-Dehkordi E, Alemzadeh A, Tanaka N, Razi H. Meta- analysis of transcriptomic responses to biotic and abiotic stress in tomato. PeerJ, 2018, 17: e4631.
[30] Gao Y F, Liu J K, Yang F M, Zhang G Y, Wang D, Zhang L, Ou Y B, Yao Y A. The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum. Physiol Plant, 2020, 168: 98-117.
doi: 10.1111/ppl.v168.1
[31] El-Esawi M A, Al-Ghamdi A A, Ali H M, Ahmad M. Overexpression of AtWRKY30 transcription factor enhances heat and drought stress tolerance in wheat (Triticum aestivum L.). Genes, 2019, 10: 163.
doi: 10.3390/genes10020163
[32] Wei W, Liang D W, Bian X H, Shen M, Xiao J H, Zhang W K, Ma B, Lin Q, Lyu J, Chen X, Chen S Y, Zhang J S. GmWRKY54 improves drought tolerance through activating genes in abscisic acid and Ca2+ signaling pathways in transgenic soybean. Plant J, 2019, 100: 384-398.
doi: 10.1111/tpj.14449
[33] Shi W Y, Du Y T, Ma J, Min D H, Jin L G, Chen J, Chen M, Zhou Y B, Ma Y Z, Xu Z S, Zhang X H. The WRKY transcription factor GmWRKY12 confers drought and salt tolerance in soybean. Int J Mol Sci, 2018, 19: 4087.
doi: 10.3390/ijms19124087
[34] Gao F, Yao H, Zhao H, Zhou J, Luo X, Huang Y, Li C, Chen H, Wu Q. Tartary buckwheat FtMYB10 encodes an R2R3-MYB transcription factor that acts as a novel negative regulator of salt and drought response in transgenic Arabidopsis. Plant Physiol Biochem, 2016, 109: 387-396.
doi: 10.1016/j.plaphy.2016.10.022
[35] Lata C, Prasad M. Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot, 2011, 62: 4731-4748.
doi: 10.1093/jxb/err210 pmid: 21737415
[36] Sharma P, Jha A B, Dubey R S, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot, 2012, 2012: 217037.
[37] Sairam R, Deshmukh P, Saxena D. Role of antioxidant systems in wheat genotypes tolerance to water stress. Biol Plant, 1998, 3: 387-394.
[38] Ullah A, Sun H, Hakim, Yang X, Zhang X. A novel cotton WRKY gene, GhWRKY6-like, improves salt tolerance by activating the ABA signaling pathway and scavenging of reactive oxygen species. Physiol Plant, 2018, 162: 439-454.
doi: 10.1111/ppl.12651 pmid: 29027659
[39] 魏鑫, 王寒涛, 魏恒玲, 付小康, 马亮, 芦建华, 王省芬, 喻树迅. 陆地棉GhWRKY33的克隆及抗旱功能分析. 中国农业科学, 2020, 53: 4537-4549.
doi: 10.3864/j.issn.0578-1752.2020.22.002
Wei X, Wang H T, Wei H L, Fu X K, Ma L, Lu J H, Wang S F, Yu S X. Cloning and drought resistance analysis of GhWRKY33 in upland cotton. Sci Agric Sin, 2020, 53: 4537-4549. (in Chinese with English abstract)
[40] Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview. Arch Biochem Biophys, 2005, 444: 139-158.
doi: 10.1016/j.abb.2005.10.018 pmid: 16309626
[41] Couée I, Sulmon C, Gouesbet G, El Amrani A. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot, 2006, 57: 449-459.
pmid: 16397003
[42] Waseem M, Rong X, Li Z. Dissecting the role of a basic Helix-Loop-Helix transcription factor, SlbHLH22, under salt and drought stresses in transgenic Solanum lycopersicum L. Front Plant Sci, 2019, 10: 734.
doi: 10.3389/fpls.2019.00734
[43] Guo X Y, Zhang L, Wang X Z, Zhang M H, Xi Y X, Wang A Y, Zhu J B. Overexpression of Saussurea involucrata dehydrin gene SiDHN promotes cold and drought tolerance in transgenic tomato plants. PLoS One, 2019, 14: e0225090.
doi: 10.1371/journal.pone.0225090
[44] Kiranmai K, Lokanadha Rao G, Pandurangaiah M, Nareshkumar A, Amaranatha Reddy V, Lokesh U, Venkatesh B, Anthony Johnson A M, Sudhakar C. A novel WRKY transcription factor, MuWRKY3 (Macrotyloma uniflorum Lam. Verdc.) enhances drought stress tolerance in transgenic groundnut (Arachis hypogaea L.) plants. Front Plant Sci, 2018, 9: 346.
doi: 10.3389/fpls.2018.00346 pmid: 29616059
[45] Liu G Y, Li B, Li X, Wei Y X, He C Z, Shi H T. MaWRKY80 positively regulates plant drought stress resistance through modulation of abscisic acid and redox metabolism. Plant Physiol Biochem, 2020, 156: 155-166.
doi: 10.1016/j.plaphy.2020.09.015
[46] Gao H, Wang Y, Xu P, Zhang Z. Overexpression of a WRKY transcription factor TaWRKY2 enhances drought stress tolerance in transgenic wheat. Front Plant Sci, 2018, 9: 997.
doi: 10.3389/fpls.2018.00997
[47] Ma Q, Xia Z, Cai Z, Li L, Cheng Y, Liu J, Nian H. GmWRKY16 enhances drought and salt tolerance through an ABA-mediated pathway in Arabidopsis thaliana. Front Plant Sci, 2019, 9: 1979.
doi: 10.3389/fpls.2018.01979
[48] Yan J W, Li J, Zhang H P, Liu Y, Zhang A Y. ZmWRKY104 positively regulates salt tolerance by modulating ZmSOD4 expression in maize. Crop J, 2022, 10: 555-564.
doi: 10.1016/j.cj.2021.05.010
[1] YUAN Da-Shuang, ZHANG Xiao-Li, ZHU Dong-Ming, YANG You-Hong, YAO Meng-Nan, LIANG Ying. Effects of BnMAPK2 on drought tolerance in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(6): 1518-1531.
[2] GONG Hui-Ling, LIN Hong-Xia, REN Xiao-Li, LI Tong, WANG Chen-Xia, BAI Jiang-Ping. StvacINV1 negatively regulates drought tolerance in potato [J]. Acta Agronomica Sinica, 2023, 49(11): 3007-3016.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471.
[5] Shan-Bin CHEN, Si-Fan SUN, Nan NIE, Bing DU, Shao-Zhen HE, Qing-Chang LIU, Hong ZHAI. Cloning of IbCAF1 and identification on tolerance to salt and drought stress in sweetpotato [J]. Acta Agronomica Sinica, 2020, 46(12): 1862-1869.
[6] ZHANG Huan, YANG Nai-Ke, SHANG Li-Li, GAO Xiao-Ru, LIU Qing-Chang, ZHAI Hong, GAO Shao-Pei, HE Shao-Zhen. Cloning and functional analysis of a drought tolerance-related gene IbNAC72 in sweet potato [J]. Acta Agronomica Sinica, 2020, 46(11): 1649-1658.
[7] Long LI,Xin-Guo MAO,Jing-Yi WANG,Xiao-Ping CHANG,Yu-Ping LIU,Rui-Lian JING. Drought Tolerance Evaluation of Wheat Germplasm Resources [J]. Acta Agronomica Sinica, 2018, 44(7): 988-999.
[8] Bin YU,Hong-Yu YANG,Li WANG,Yu-Hui LIU,Jiang-Ping BAI,Feng ZHANG,Di WANG,Jun-Lian ZHANG. Relationship between Potato Canopy-air Temperature Difference and Drought Tolerance [J]. Acta Agronomica Sinica, 2018, 44(7): 1086-1094.
[9] Jian-Wei WANG,Xiao-Lan HE,Wen-Xu LI,Xin-Hong CHEN. Molecular Cloning and Functional Analysis of 1-FFT in Wheat Relatives [J]. Acta Agronomica Sinica, 2018, 44(6): 814-823.
[10] Li-Li WAN, Zhuan-Rong WANG, Qiang XIN, Fa-Ming DONG, Deng-Feng HONG, Guang-Sheng YANG. Enhanced Accumulation of BnA7HSP70 Molecular Chaperone Binding Protein Improves Tolerance to Drought Stress in Transgenic Brassica napus [J]. Acta Agronomica Sinica, 2018, 44(04): 483-492.
[11] Pin LYU, Hai-Feng YU, Jian-Hua HOU. QTL Mapping of Yield Traits Using Drought Tolerance Selected Backcrossing Introgression Lines in Sunflower [J]. Acta Agronomica Sinica, 2018, 44(03): 385-396.
[12] Ying ZHU, Shan-Shan CHU, Pei-Pei ZHANG, Hao CHENG, De-Yue YU, Jiao WANG. An R2R3-MYB Transcription Factor GmMYB184 Regulates Soybean Isoflavone Synthesis [J]. Acta Agronomica Sinica, 2018, 44(02): 185-196.
[13] LYU Pin,YU Hai-Feng,YU Zhi-Xian,ZHANG Yong-Hu,ZHANG Yan-Fang,WANG Ting-Ting,HOU Jian-Hua. Construction of High-density Genetic Map and QTL Mapping for Seed Germination Traits in Sunflower under Two Water Conditions [J]. Acta Agron Sin, 2017, 43(01): 19-30.
[14] LI Dong-Hua,LIU Wen-Ping,ZHANG Yan-Xin,WANG Lin-Hai,WEI Wen-Liang,GAO Yuan,DING Xia,WANG Lei,ZHANG Xiu-Rong. Identification Method of Drought Tolerance and Association Mapping for Sesame (Sesamum indicum L.) [J]. Acta Agron Sin, 2013, 39(08): 1425-1433.
[15] CHEN Yu-Liang,SHI You-Tai,LUO Jun-Jie,WANG Di,HOU Yi-Qing,LI Zhong-Wang,ZHANG Bing-Xian. Screening of Drought Tolerant Agronomic Trait Indices of Colored Cotton Varieties (Lines) in Gansu Province [J]. Acta Agron Sin, 2012, 38(09): 1680-1687.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[3] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[4] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[5] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[6] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[7] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[8] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .
[9] Wang Yiqun. Infection of Rhizobia to Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 32 -35 .
[10] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .