Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (7): 2002-2011.doi: 10.3724/SP.J.1006.2023.24179

• RESEARCH NOTES • Previous Articles     Next Articles

Effects of application of nitrogen on seed yield and quality of winter oilseed rape (Brassica napus L.)

SONG Yi(), LI Jing, GU He-He, LU Zhi-Feng, LIAO Shi-Peng, LI Xiao-Kun, CONG Ri-Huan, REN Tao*(), LU Jian-Wei   

  1. College of Resources and Environment, Huazhong Agricultural University / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs / Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2022-08-03 Accepted:2022-11-28 Online:2023-07-12 Published:2022-12-06
  • Contact: *E-mail: rentao@mail.hzau.edu.cn E-mail:songyi2020@webmail.hzau.edu.cn;rentao@mail.hzau.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(31872173);The China Agriculture Research System of MOF and MARA(CARS-12);The Hubei Province Agriculture Research System(HBHZD-ZB-2020-005);The Fundamental Research Funds for the Central Universities(2662020ZHPY005)

Abstract:

To explore the effects of N fertilizer rates on seed yield and quality of winter rapeseed, field experiments were carried out in Wuxue County, Hubei Province during 2019/2020 and 2020/2021 seasons. The experiments were set at five nitrogen application levels of 0, 90, 180, 270, and 360 kg N hm-2. Rapeseed yield, N concentration, and rapeseed quality indexes were measured at maturity stage. The results showed that N application significantly increased rapeseed yield and N content. Compared with the zero N application, the average yield increase after N application was 1548 kg N hm-2, and the average yield increase rate was up to 32.9%. Within the range of N application rate of 0-270 kg N hm-2, rapeseed yield increased significantly with the application of N fertilizer. If N application was continued, rapeseed yield did not change significantly or had a downward trend. N application mainly improved rapeseed yield by increasing the number of pods per plant. N application significantly increased protein content in rapeseed. When the N application rate was 270 kg N hm-2, the protein content was the highest. N application significantly reduced the seed oil content. For every 100 kg N hm-2 increase in nitrogen application, the seed oil content decreased by 1.6%. With the increase of N fertilizer application rate, glucosinolate, oleic acid, linolenic acid, erucic acid, and saturated fatty acids (palmitic acid and stearic acid) increased, while linoleic acid decreased in rapeseed. Rapeseed quality decreased as a whole. In conclusion, to pursue high-quality edible oil and take into account rapeseed yield, the application rate of N fertilizer was 180 kg N hm-2. The optimal application rate of N fertilizer was 270 kg N hm-2 when rapeseed yield and rapeseed cake were taken into account.

Key words: nitrogen fertilizer rate, winter oilseed rape (Brassica napus L.), quality, oil content, protein yield

Table 1

Effects of N fertilizer rates on rapeseed yield during 2019/2020 and 2020/2021 season"

氮肥用量
N fertilizer rate
(kg N hm-2)
年份Year 平均
Average (kg hm-2)
2019/2020 2020/2021
0 560±75 d 855±165 d 707
90 2051±240 c 1523±60 c 1787
180 2617±299 b 1889±161 b 2253
270 3077±269 a 2371±62 a 2724
360 3140±182 a 2111±208 b 2626
方差分析 ANOVA F F-value
氮肥 Nitrogen (N) 167.0**
年份 Year (Y) 90.0**
N×Y 15.4**

Table 2

Effects of N application rates on yield components of rapeseed during 2019/2020 and 2020/2021 season"

氮肥用量
N fertilizer rate
(kg N hm-2)
单株角果数
Number of pods per plant
(No. plant-1)
角粒数
Seed number
(No. pod-1)
千粒重
1000-seed weight
(g)
2019/2020 2020/2021 2020/2021 2020/2021 2019/2020 2020/2021
0 126±36 d 125±31 b 21.4±0.7 c 20.0±0.4 c 4.24±0.27 b 4.86±0.52 b
90 244±9 c 201±28 a 21.2±0.3 c 20.0±0.4 c 4.32±0.02 b 4.95±0.47 b
180 341±7 b 274±23 a 21.8±0.4 bc 21.3±0.6 b 4.65±0.18 a 5.29±0.21 a
270 409±12 a 263±64 a 22.5±0.1 b 22.7±0.2 a 4.98±0.05 a 5.94±0.22 a
360 447±35 a 249±3 a 23.3±0.4 a 21.2±0.3 b 4.80±0.17 a 5.87±0.43 a
方差分析ANOVA FF-value
氮肥 Nitrogen (N) 54.9** 24.5** 11.7**
年份Year (Y) 65.2** 39.1** 54.8**
N×Y 10.0** 6.2* 0.8 ns

Fig. 1

Effects of N application rates on nitrogen content in rapeseed seeds in 2019/2020 and 2020/2021 season N0, N90, N180, N270, and N360 indicate that the N application rate are 0, 90, 180, 270, and 360 kg N hm-2, respectively. Lowercase letters in the same year mean no significant differences at P < 0.05 among the different N fertilizer treatments by LSR test. **: P < 0.01; ns: no significant difference. N: N fertilizer rate; Y: year; N×Y: the interaction of N fertilizer rate and year."

Table 3

Effects of N application rates on oil concentration, protein concentration, glucosinolate, water concentration, oil yield and protein yield of rapeseed seeds in 2019/2020 and 2020/2021 season"

年份
Year
氮肥用量
N fertilizer
rate
(kg N hm-2)
油脂含量
Oil
concentration
(%)
蛋白质含量
Protein
concentration
(%)
硫甙
Glucosinolate
(μmol g-1)
含水量
Water
concentration
(%)
产油量
Oil
yield
(kg hm-2)
蛋白质产量
Protein
yield
(kg hm-2)
2019/2020 0 50.3±2.1 a 19.8±2.6 b 20.3±5.0 b 4.52±0.19 a 281±28 c 112±29 c
90 48.9±3.0 a 20.4±1.1 b 26.8±5.4 ab 4.63±0.03 a 998±60 b 419±66 b
180 48.6±0.4 ab 21.0±1.3 b 33.4±2.5 ab 4.28±0.02 a 1272±138 a 551±97 b
270 45.0±0.1 bc 24.5±3.2 a 31.4±9.8 a 4.28±0.27 a 1384±121 a 760±165 a
360 44.7±2.5 c 25.1±1.0 a 36.7±4.0 a 4.58±0.17 a 1408±160 a 788±77 a
2020/2021 0 52.5±1.7 a 21.4±2.4 b 23.7±4.1 a 3.72±0.25 a 447±73 d 185±54 b
90 50.4±2.0 ab 23.4±1.4 b 23.6±4.6 a 3.83±0.07 a 767±48 c 357±31 b
180 48.2±2.5 b 24.3±2.7 ab 25.2±2.0 a 3.93±0.24 a 909±79 b 461±82 b
270 44.7±0.4 c 27.6±0.3 a 29.5±8.8 a 4.1±0.06 a 1060±22 a 654±23 a
360 44.9±0.5 c 27.7±0.6 a 33.7±3.8 a 3.98±0.11 a 947±85 ab 584±62 a
方差分析 ANOVA F F-value
氮肥 Nitrogen (N) 15.4** 39.5* 4.6* 1.1ns 117.4** 58.4**
年份 Year (Y) 0.8ns 55.5** 1.5ns 77.3** 70.0** 8.3*
N×Y 0.6ns 0.7ns 0.8ns 3.9* 14.0** 2.7ns

Table 4

Effects of N application rates on fatty acids concentration inrapeseed seeds during 2019/2020 and 2020/2021 season"

氮肥用量
N fertilizer rate
(kg N hm-2)
硬脂酸
Stearic acid (%)
棕榈酸
Palmitic acid (%)
油酸
Oleic acid (%)
亚油酸
Linoleic acid (%)
亚麻酸
linolenic acid (%)
芥酸
Erucic acid (%)
2019/
2020
2020/
2021
2019/
2020
2020/
2021
2019/
2020
2020/
2021
2019/
2020
2019/
2020
2020/
2021
2020/
2021
2019/
2020
2020/
2021
0 2.25 a 1.93 b 3.76 a 4.08 a 57.8bc 72.9 a 16.67 a 18.49 a 8.08 a 6.91 a 1.13 a 1.00 a
90 2.17 a 2.10 ab 3.87 a 4.19 a 55.6 c 83.4 a 15.93 a 18.43 a 8.27 a 7.30 a 1.62 a 2.49 a
180 2.21 a 2.21 ab 3.97 a 4.39 a 67.2 ab 88.5 a 15.23 a 18.70 a 8.24 a 7.64 a 2.21 a 2.48 a
270 2.29 a 2.26 ab 3.96 a 4.33 a 68.8 ab 90.4 a 14.73 a 17.81 a 8.65 a 7.75 a 2.26 a 2.86 a
360 2.33 a 2.65 a 4.12 a 4.40 a 73.7 a 92.6 a 14.94 a 17.55 a 8.69 a 7.95 a 3.46 a 2.93 a
方差分析 ANOVA F F-value
氮肥 Nitrogen (N) 2.6ns 1.3ns 6.2** 1.0ns 0.6ns 3.7*
年份 Year (Y) 0.1ns 10.7** 62.5** 26.3* 5.1* 0.4ns
N×Y 1.4ns 0.1ns 0.6ns 0.3ns 0.1ns 0.5ns

Fig. 2

Correlation between rapeseed yield and quality traits The data used for correlation analysis are nutrient, yield, quality and fatty acid data of all the experiment. *, **, and *** indicate significant difference at the 0.05, 0.01, and 0.001 probability levels, respectively."

Fig. 3

Relationship between N application rates and rapeseed yield, protein content, glucosinolate content, oil content and saturated fatty acid ratio Two years data are used for fitting. The N application rates and yield are fitted by quadratic function. The protein content, oil content, glucosinolate content and saturated fatty acid rate are fitted by linear fitting. 75% and 95% of the highest yield are taken as production targets to determine the nitrogen fertilizer rate."

[1] Bang T C, Husted S, Laursen K H, Persson D P, Schjoerring J K. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytol, 2021, 229: 2446-2469.
doi: 10.1111/nph.17074 pmid: 33175410
[2] Hou W F, Xue X X, Li X K, Khan M R, Yan J Y, Ren T, Cong R H, Lu J. Interactive effects of nitrogen and potassium on: grain yield, nitrogen uptake and nitrogen use efficiency of rice in low potassium fertility soil in China. Field Crops Res, 2019, 236: 14-23.
doi: 10.1016/j.fcr.2019.03.006
[3] 郭欣. 不同氮肥施用量及施用方式对油菜产量、品质和土壤肥力的影响. 西南大学硕士学位论文, 重庆, 2020.
Gou X. Effects of Different Nitrogen Fertilizer Application Rates and Application Methods on Rapeseed Yield, Quality and Soil. MS Thesis of Southwest University, Chongqing, China, 2020. (in Chinese with English abstract)
[4] 左青松, 蒯婕, 杨士芬, 曹石, 杨阳, 吴莲蓉, 孙盈盈, 周广生, 吴江生. 不同氮肥和密度对直播油菜冠层结构及群体特征的影响. 作物学报, 2015, 41: 758-765.
doi: 10.3724/SP.J.1006.2015.00758
Zuo Q S, Kuai J, Yang S F, Cao S, Yang Y, Wu L R, Sun Y Y, Zhou G S, Wu J S. Effects of nitrogen fertilizer and planting density on canopy structure and population characteristic of rapeseed with direct seeding treatment. Acta Agron Sin, 2015, 41: 758-765. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.00758
[5] Tian D, Niu S. A global analysis of soil acidification caused by nitrogen addition. Environ Res Lett, 2015, 10: 1714-1721.
[6] 吴世雨, 陈匡稷, 吕尊富, 徐锡明, 庞林江, 陆国权. 施氮量对甘薯块根膨大过程中淀粉含量及特性的影响. 作物学报, 2023, 49: 1090-1101.
doi: 10.3724/SP.J.1006.2023.24087
Wu S Y, Chen K J, Lyu Z F, Xu X M, Pang L J, Lu G Q. Effects of nitrogen fertilizer application rate on starch contents and properties during storage root expansion in sweet potato. Acta Agron Sin, 2023, 49: 1090-1101.
[7] 赵灿, 刘光明, 戴其根, 许轲, 高辉, 霍中洋. 氮肥对水稻产量、品质和氮利用效率的影响研究进展. 中国稻米, 2022, 28(1): 48-52.
doi: 10.3969/j.issn.1006-8082.2022.01.010
Zhao C, Liu G M, Dai Q K, Xu K, Gao H, Huo Z Y. Research progress on the effects of nitrogen fertilizer on rice yield, quality and nitrogen use efficient. China Rice, 2022, 28(1): 48-52. (in Chinese with English abstract)
[8] 王佳友, 何秀荣, 王茵. 中国油脂油料进口替代关系的计量经济研究. 统计与信息论坛, 2017, 32(5): 69-75.
Wang J Y, He X R, Wang Y. Econometric research on import substitution relationship between oils and oilseeds in China. J Stat Infor, 2017, 32(5): 69-75. (in Chinese with English abstract)
[9] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613-617.
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613-617. (in Chinese with English abstract)
[10] 农全东, 杨永超, 文和明. 双低油菜育种进展. 安徽农业科学, 2014, 42: 12434-12436.
Nong Q D, Yang Y C, Wen H M. Review on double-low rapeseed breeding. J Anhui Agric Sci, 2014, 42: 12434-12436. (in Chinese with English abstract)
[11] 王康春. 推广双低油菜促进产业化发展. 中国食品, 2020, (15): 120.
Wang K C. Popularizing double low rapeseed and promoting the development of industrialization. China Food, 2020, (15): 120. (in Chinese)
[12] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系. 作物学报, 2021, 47: 416-426.
doi: 10.3724/SP.J.1006.2021.04108
Tang J Q, Wang N, Gao J, Liu T T, Wen J, Yi B, Tu J X, Fu T D, Shen J X. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. Acta Agron Sin, 2021, 47: 416-426. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.04108
[13] 谷贺贺, 李静, 张洋洋, 李小坤, 丛日环, 任涛, 鲁剑巍. 钾肥与我国主要作物品质关系的整合分析. 植物营养与肥料学报, 2020, 26: 1749-1757.
Gu H H, Li J, Zhang Y Y, Li X K, Cong R H, Ren T, Lu J W. Meta-analysis of the relationship between potassium fertilizer and the quality of main crops in China. J Plant Nutr Fert, 2020, 26: 1749-1757. (in Chinese with English abstract)
[14] 左青松, 杨海燕, 冷锁虎, 曹石, 曾讲学, 吴江生, 周广生. 施氮量对油菜氮素积累和运转及氮素利用率的影响. 作物学报, 2014, 40: 511-518.
doi: 10.3724/SP.J.1006.2014.00511
Zuo Q S, Yang H Y, Leng S H, Cao S, Zeng J X, Wu J S, Zhou G S, Effects of nitrogen fertilizer on nitrogen accumulation, translocation and nitrogen use efficiency in rapeseed (Brassica napus L.). Acta Agron Sin, 2014, 40: 511-518. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00511
[15] 李静, 闫金垚, 胡文诗, 李小坤, 丛日环, 任涛, 鲁剑巍. 氮钾配施对油菜产量及氮素利用的影响. 作物学报, 2019, 45: 941-948.
doi: 10.3724/SP.J.1006.2019.84146
Li J, Yan J Y, Hu W S, Li X K, Cong R H, Ren T, Lu J W. Effects of combined application of nitrogen and potassium on seed yield and nitrogen utilization of winter oilseed rape (Brassica napus L.). Acta Agron Sin, 2019, 45: 941-948. (in Chinese with English abstract)
[16] Wang C, Li Z J, Zhang L X, Gao Y, Cai X H, Wu W. et al. Identifying key metabolites associated with glucosinolate biosynthesis in response to nitrogen management strategies in two rapeseed (Brassica napus) varieties. J Agric Food Chem, 2022, 70: 634-645.
doi: 10.1021/acs.jafc.1c06472
[17] 李慧.中国冬油菜氮磷钾肥施用效果与推荐用量研究. 华中农业大学博士学位论文, 湖北武汉, 2015.
Li H.Fertilization Effect and Fertilizer Recommendation of Nitrogen, Phosphorus and Potassium on the Winter Oilseed Rape of China. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2015. (in Chinese with English abstract)
[18] 邹娟, 鲁剑巍, 陈防, 李银水, 李小坤. 冬油菜施氮的增产和养分吸收效应及氮肥利用率研究. 中国农业科学, 2011, 44: 745-752.
Zou J, Lu J W, Chen F, Li Y S, Li X K. Study on Yield increasing and nutrient uptake effect by nitrogen application and nitrogen use efficiency for winter rapeseed. Sci Agric Sin, 2011, 44: 745-752. (in Chinese with English abstract)
[19] 王小军, 王春丽, 张智, 杨建利, 高亚军. 陕南地区冬油菜种植体系中的氮肥优化施用量. 中国油料作物学报, 2022, 44: 1065-1073.
Wang X J, Wang C L, Zhang Z, Yang J L, Gao Y J. Optimal application rate of nitrogen fertilizer in winter rape planting area in southern Shaanxi province. Chin J Oil Crop Sci, 2022, 44: 1065-1073. (in Chinese with English abstract)
[20] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. pp 25-114.
Bao S D. Soil Agricultural Chemistry Analysis. Beijing: China Agriculture Press, 2000. pp 25-114. (in Chinese)
[21] 智文良, 信晓阳, 崔建民, 胡胜武, 张文, 李培武. 一种国产近红外仪分析油菜籽三种品质参数. 中国油料作物学报, 2012, 34: 305-310.
Zhi W L, Xin X Y, Cui J M, Hu S W, Zhang W, Li P W. Determination of three major quality parameters of rapeseed with near infrared analyzer NYDL-3000. Chin J Oil Crop Sci, 2012, 34: 305-310. (in Chinese with English abstract)
[22] 汪瑞清, 杨国正, 史茜莎, 姚艳丽, 宋峥, 彭运磊. 氮磷钾镁锌混合施用对油菜产油量和蛋白质产量的影响. 湖北农业科学, 2009, 48: 1096-1100.
Wang R Q, Yang G Z, Shi Q S, Yao Y L, Song Z, Peng Y L. Effects of the mixed application of N, P, K, Mg, Zn on oil and protein yield of rapeseed (Brassica napus L.). Hubei Agric Sci, 2009, 48: 1096-1100. (in Chinese with English abstract)
[23] 李志玉, 郭庆元, 廖星, 秦亚平. 不同氮水平对双低油菜中双9号产量和品质的影响. 中国油料作物学报, 2007, 29: 184-188.
Li Z Y, Guo Y Q, Liao X, Qin Y P. Effects of different amount of nitrogen on yield, quality and economics of Zhongshuang No. 9. Chin J Oil Crop Sci, 2007, 29: 184-188. (in Chinese with English abstract)
[24] 冷锁虎, 左青松, 戴敬, 喻义珠. 油菜高产群体质量指标研究. 中国油料作物学报, 2004, 26: 40-46.
Leng S H, Zou Q S, Dai J, Yu Y Z. Studies on indices of high yield population quality of rapeseed Chin J Oil Crop Sci, 2004, 26: 40-46. (in Chinese with English abstract)
[25] 王玲. 油菜光合面积指数消长变化及高产群体指标研究. 华中农业大学研究生院硕士学位论文, 湖北武汉, 2019.
Wang L. Study on the Dynamic Chances of Photosynthetic Area Index and the Canopy Indices of High Yield Rapeseed. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2019. (in Chinese with English abstract)
[26] 左青, 孙勤, 甘光生, 左晖, 张伟春, 杨伟峰. 提高双低油菜籽利用价值的探讨. 中国油脂, 2019, 44(10): 124-128.
Zou Q, Sun Q, Gan G S, Zou H, Zhang W C, Yang W F. Improvement of utilization benefit of double-low rapeseed. China Oils Fats, 2019, 44(10): 124-128. (in Chinese with English abstract)
[27] 张巍, 杨雪海, 严念东, 郭万正, 魏金涛, 熊本海. 湖北地区商品油菜籽品质分析. 饲料工业, 2020, 41(24): 27-33.
Zhang W, Yang X H, Yan N D, Guo W Z, Wei J T, Xiong B H. Quality analysis of commercial rapeseed in Hubei, Feed Ind, 2020, 41(24): 27-33. (in Chinese with English abstract)
[28] 刘后利. 实用油菜栽培学. 上海: 上海科学技术出版社. 1987. pp 189-209.
Liu H L. Practical Rape Cultivation. Shanghai: Shanghai Scientific and Technical Publishers, 1987. pp 189-209. (in Chinese)
[29] 赵继献, 程国平, 任廷波, 高志宏. 不同氮水平对优质甘蓝型黄籽杂交油菜产量和品质性状的影响. 植物营养与肥料学报, 2007, 13: 882-889.
Zhao J X, Cheng G P, Ren T B, Gao Z H. Effect of different nitrogen rates on yield and quality parameters of high grade yellow seed hybrid rape. Plant Nutr Fert Sci, 2007, 13: 882-889. (in Chinese with English abstract)
[30] 吴永成, 李壮, 牛应泽. 高密度直播油菜高产优质和氮肥高效的适宜氮肥施用模式. 植物营养与肥料学报, 2015, 21: 1184-1189.
Wu Y C, Li Z, Niu Y Z. Suitable nitrogen fertilization mode for high yield and quality and high N use efficiency in high density direct-sown rapeseed (Brassica napus L.). J Plant Nutr Fert, 2015, 21: 1184-1189. (in Chinese with English abstract)
[31] Tripathi M K, Mishra A S. Glucosinolates in animal nutrition: a review. Anim Feed Sci Technol, 2007, 132: 1-27.
doi: 10.1016/j.anifeedsci.2006.03.003
[32] 雷红, 蔡亮亮, 操丽丽. 菜籽油中芥酸含量对小鼠食用安全性的影响. 食品科学, 2010, 31: 321-324.
doi: 10.7506/spkx1002-6630-201019070
Lei H, Cai L L, Cao L L. Effect of erucic Acid content in rapeseed ail on food intake safety in mice. Food Sci, 2010, 31: 321-324. (in Chinese with English abstract)
[33] Figen Mert-Türk M. Kemal G, Egesel C. Nitrogen and fungicide applications against Erysiphe cruciferarum affect quality components of oilseed rape. Mycopathologia, 2008, 165: 27-35.
pmid: 17934794
[34] 王成. 氮肥水平对冬油菜产量和品质协同调控机制研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2022.
Wang C. Synergistic Regulation Mechanism of Nitrogen Fertilizer Level on Yield and Quality of Rapeseed (Brassica napus L.). MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2022. (in Chinese with English abstract)
[35] Wang C, Li Z, Zhang L, Gao Y, Cai X, Wu W. Identifying key metabolites associated with Glucosinolate biosynthesis in response to nitrogen management strategies in two rapeseed (Brassica napus L.) varieties. J Age Food Chem, 2022, 70: 634-645.
[36] GB/T11762-2006. 油菜籽国家标准. 北京: 中国标准出版社, 2006. p 3.
GB/T1162-2006. National Standard for Rapeseed. Beijing: Standards Press of China, 2006. p 3. (in Chinese)
[37] Sarwar F. The role of oilseeds nutrition in human health: a critical review. J Essent Oil Res, 2013, 4: 97-100.
doi: 10.1080/10412905.1992.9698023
[38] Ghafoor A, Karim H, Asghar M A, Raza A, Hussain M I, Javed H H, Shafiq I, Xiao P, Yue H, Ahmad B, Manzoor A, Ali U, Wu Y C. Carbohydrates accumulation, oil quality and yield of rapeseed genotypes at different nitrogen rates. Plant Prod Sci, 2022, 25: 49-69.
[39] Zapletalova A, Ducsay L, Varga L, Sitkey J, Javorekova S, Hozlar P. Influence of nitrogen nutrition on fatty acids in oilseed rape (Brassica napus L.). Plants, 2022, 11: 44.
doi: 10.3390/plants11010044
[40] Mi C, Wang Q, Zhao Y N. Changes in the differentially expressed proteins and total fatty acid contents in winter rapeseed (Brassica napus L.) leaves under drought stress. Russ J Plant Physiol, 2022, 69: 31.
doi: 10.1134/S1021443722020133
[41] Chandra-Shekara A C, Venugopal S C, Barman S R. Plastidial fatty acid levels regulate resistance gene-dependent defense signaling in Arabidopsis. Proc Natl Acad Sci USA, 2007, 104: 7277-7282.
[42] Zhang J L, Li J, Geng G T, Hu W S, Ren T, Cong R H, Li X K, Lu J W. Combined application of nitrogen and potassium reduces seed yield loss of oilseed rape (Brassica napus L.) caused by Sclerotinia stem rot disease. Agron J, 2020, 112: 5143-5157.
doi: 10.1002/agj2.v112.6
[43] 杨燕宇. 油菜脂肪酸、硫苷、含油量近红外光谱分析模型的建立. 湖南农业大学硕士学位论文, 湖南长沙, 2007.
Yang Y Y. Development of Near-infrared Reflectance Spectroscopy Equations of Fatty Acid Composition, Glucosinolates & Oil Content. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2007. (in Chinese with English abstract)
[44] 中国营养学会. 中国居民膳食营养素参考摄入量. 北京: 中国轻工业出版社, 2000. pp 101-102.
Chinese Nutrition Society. Reference Intake of Dietary Nutrients for Chinese Residents. Beijing: China Light Industry Press, 2000. pp 101-102. (in Chinese)
[45] 周玉娇, 陈晓宁, 唐秀清, 邓昌俊, 晏宇翔. 食用油与人体健康研究. 北京农业, 2014, (24): 339.
Zhou Y J, Chen X N, Tang X Q, Deng C J, Yan Y X. Research on edible oil and human health. Beijing Agric, 2014, (24): 339. (in Chinese)
[46] 张冉, 曹娟娟, 濮超, 李育, 金海刚. 中国油菜籽、菜籽油供需分析及发展建议. 中国油脂, 2022 [2022-09-27]. DOI:10. 19902/j.cnki.zgyz.1003-7969.210729.
doi: 10. 19902/j.cnki.zgyz.1003-7969.210729
Zhang R, Cao J J, Pu C, Li Y, Jing H G. Supply and demand analysis and development suggestions of rapeseed and rapeseed oil in China. China Oils Fats, 2022 [2022-09-27]. DOI: 10.19902/j.cnki.zgyz.1003-7969.210729.
doi: 10.19902/j.cnki.zgyz.1003-7969.210729
[47] 唐建昭, 肖登攀, 王靖, 王仁德, 柏会子, 郭风华, 刘剑锋. 不同生产目标条件的马铃薯水氮管理优化. 农业工程学报, 2021, 37(20): 108-116.
Tang J Z, Xiao D P, Wang J, Wang R D, Bai H Z, Guo F H, Liu J F. Optimizing irrigation and nitrogen management for potato production under multi-objective production conditions. Trans CSAE, 2021, 37(20): 108-116 (in Chinese with English abstract).
[48] 张庆, 郭保卫, 胡雅杰, 张洪程, 徐玉峰, 徐晓杰, 朱邦辉, 徐洁芬, 钮中一, 凃荣文. 不同氮肥水平下优质高产软米粳稻的产量与品质差异. 中国水稻科学, 2021, 35: 606-616.
doi: 10.16819/j.1001-7216.2021.201101
Zhang Q, Guo B W, Hu Y J, Zhang H C, Xu Y F, Xu X J, Zhu B H, Xu J F, Niu Z Y, Tu R W. Differences in yield and rice quality of soft japonica rice with high quality and high yield under different nitrogen levels. Chin J Rice Sci, 2021, 35: 606-616. (in Chinese with English abstract)
[1] LIU Qiong , YANG Hong-Kun, CHEN Yan-Qi, WU Dong-Ming, HUANG Xiu-Lan, FAN Gao-Qiong. Effect of nitrogen application rate on grain quality, wine quality and volatile flavor compounds of waxy and no-waxy wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2240-2258.
[2] DONG Zhi-Qiang, LYU Li-Hua, YAO Yan-Rong, ZHANG Jing-Ting, ZHANG Li-Hua, YAO Hai-Po, SHEN Hai-Ping, JIA Xiu-Ling. Yield and quality of strong gluten wheat Shiluan 02-1 under water and nitrogen interaction [J]. Acta Agronomica Sinica, 2023, 49(7): 1942-1953.
[3] DENG Ai-Xing, LI Ge-Xing, LYU Yu-Ping, LIU You-Hong, MENG Ying, ZHANG Jun, ZHANG Wei-Jian. Effect of shading duration after heading on grain yield and quality of japonica rice in northwest China [J]. Acta Agronomica Sinica, 2023, 49(7): 1930-1941.
[4] YAN Jin-Yao, SONG Yi, LU Zhi-Feng, REN Tao, LU Jian-Wei. Effect of phosphorus fertilizer rate on rapeseed yield and quality (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1668-1677.
[5] ZHANG Xiao, LU Cheng-Bin, JIANG Wei, ZHANG Yong, LYU Guo-Feng, WU Hong-Ya, WANG Chao-Shun, LI Man, WU Su-Lan, GAO De-Rong. Quality selection indices and parent combination principle of weak-gluten wheat [J]. Acta Agronomica Sinica, 2023, 49(5): 1282-1291.
[6] XU Nai-Yin, WANG Yang, WANG Dan-Tao, NING He-Jia, YANG Xiao-Ni, QIAO Yin-Tao. Construction of cotton fiber quality index and weighted genotype by trait (WGT) biplot analysis [J]. Acta Agronomica Sinica, 2023, 49(5): 1262-1271.
[7] TAO Shun-Yu, WU Bei, LIU Nian, LUO Huai-Yong, HUANG Li, ZHOU Xiao-Jing, CHEN Wei-Gang, GUO Jian-Bin, YU Bo-Lun, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Development and employment of InDel marker in peanut QTL mapping of oil content [J]. Acta Agronomica Sinica, 2023, 49(5): 1222-1230.
[8] SHU Ze-Bing, LUO Wan-Yu, PU Tian, CHEN Guo-Peng, LIANG Bing, YANG Wen-Yu, WANG Xiao-Chun. Optimization of field configuration technology of strip intercropping of fresh corn and fresh soybean based on high yield and high efficiency [J]. Acta Agronomica Sinica, 2023, 49(4): 1140-1150.
[9] JI Hong-Chang, HU Chang-Li, QIU Xiao-Chen, WU Lan-Rong, LI Jing-Jing, LI Xin, LI Xiao-Ting, LIU Yu-Han, TANG Yan-Yan, ZHANG Xiao-Jun, WANG Jing-Shan, QIAO Li-Xian. High-throughput phenotyping models for quality traits in peanut kernels [J]. Acta Agronomica Sinica, 2023, 49(3): 869-876.
[10] GUO Hong, YU Ji-Wen, PEI Wen-Feng, GUAN Yong-Hu, LI Hang, LI Chang-Xi, LIU Jin-Wei, WANG Wei, WANG Bao-Quan, MEI Yong-Jun. Genetic analysis of F2 generation of upland cotton hybrids and main effect clustering in Southern Xinjiang, China [J]. Acta Agronomica Sinica, 2023, 49(3): 608-621.
[11] LIU Jun-Hua, WU Zheng-Feng, DANG Yan-Xue, YU Tian-Yi, ZHENG Yong-Mei, WAN Shu-Bo, WANG Cai-Bin, LI Lin. Effects of density on population quality and yield of peanut with different plant types under the mode of single-seed precision sowing [J]. Acta Agronomica Sinica, 2023, 49(2): 459-471.
[12] ZHU Da-Zhou, WU Ning, ZHANG Yong, SUN Jun-Mao, CHEN Meng-Shan. Current situation, issues, and prospects of breeding and approval of new varieties of nutrition-oriented crops [J]. Acta Agronomica Sinica, 2023, 49(1): 1-11.
[13] CHEN Bing-Jie, ZHANG Fu-Liang, YANG Shuo, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, HAO Xiao-Feng, ZHANG Xue-Lin. Effects of arbuscular mycorrhizae fungi on maize physiological characteristics during grain filling stage, yield, and grain quality under different nitrogen fertilizer forms [J]. Acta Agronomica Sinica, 2023, 49(1): 249-261.
[14] JIANG Yan, ZHAO Can, CHEN Yue, LIU Guang-Ming, ZHAO Ling-Tian, LIAO Ping-Qiang, WANG Wei-Ling, XU Ke, LI Guo-Hui, WU Wen-Ge, HUO Zhong-Yang. Effects of nitrogen panicle fertilizer application on physicochemical properties and fine structure of japonica rice starch and its relationship with eating quality [J]. Acta Agronomica Sinica, 2023, 49(1): 200-210.
[15] HUAI Yuan-Yuan, ZHANG Sheng-Rui, WU Ting-Ting, AZAM Muhammad, LI Jing, SUN Shi, HAN Tian-Fu, LI Bin, SUN Jun-Ming. Potential evaluation of molecular markers related to major nutritional quality traits in soybean breeding [J]. Acta Agronomica Sinica, 2022, 48(8): 1957-1976.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[4] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[5] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[6] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[7] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[8] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[9] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[10] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .