Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (8): 2183-2195.doi: 10.3724/SP.J.1006.2023.23058

• TILLAGE & CULTIVATION · PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Responses of photosynthetic physiological characteristics of maize varieties released in different decades to nitrogen application rate in Jilin province

CAO Yu-Jun(), LIU Zhi-Ming, LAN Tian-Jiao, LIU Xiao-Dan, WEI Wen-Wen, YAO Fan-Yun, LYU Yan-Jie, WANG Li-Chun, WANG Yong-Jun()   

  1. Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences / Key Laboratory of Crop Eco-physiology and Farming System in the Northeastern, Ministry of Agriculture and Rural Affairs, Changchun 130033, Jilin, China
  • Received:2022-08-24 Accepted:2023-02-10 Online:2023-08-12 Published:2023-02-22
  • Contact: WANG Yong-Jun E-mail:caoyujun828@163.com;yjwang2004@126.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-02-19);Science and Technology Development Plan Project of Jilin Province(20220404007NC);Agricultural Science and Technology Innovation Project of Jilin Province(CXGC2017ZY015)

Abstract:

It is of great practical significance to clarify the response trend of yield, leaf nitrogen content, and photosynthetic characteristics of maize varieties released in different years in Jilin province to different nitrogen levels for the breeding of high-yield maize varieties in Northeast China. In this study, six representative varieties popularized and applied in Jilin province since 1970s were used as the materials (1970s: JD101, ZD2; 1990s: SD19, JD159; 2010s: XY335, NH101). Field experiments with four nitrogen levels (0, 125, 250, and 375 kg hm-2) were set up to analyze the effects of nitrogen application on the yield, leaf nitrogen content, and photosynthetic characteristic parameters of maize varieties released in different decades. The results showed that maize grain yield under all nitrogen levels increased with the replacement of varieties, and the yield advantage of modern varieties was more obvious under high nitrogen levels. The increase of grain yield under different treatments was mainly due to the simultaneous increase of kernel numbers per ear and kernel weight. The net photosynthetic rate (Pn) of ear leaf increased with the increase of nitrogen application rate at no more than 250 kg hm-2, and the Pn of modern varieties was significantly higher than that of old varieties. When the nitrogen application rate was 375 kg hm-2, Pn decreased significantly, and the degree of reduction showed that the old varieties were higher than the modern varieties. From silking to dough stage, the decrease of Pn decreased with the increase of nitrogen application and varieties evolution. The light compensation point and dark respiration rate of maize were the highest in 2010s, the second in 1990s and the lowest in 1970s at different stages. Compared with 1990s and 1970s, the light compensation point of maize in 2010s increased by 9.72% and 27.84% on average, and the dark respiration rate increased by 7.82% and 32.98% on average. The specific leaf weight (SLW) of varieties increased with the increase of nitrogen application rate, but SLW decreased with the evolution of varieties under the same nitrogen application rate. The leaf nitrogen content per unit area (Narea) of different varieties increased with the increase of nitrogen application rate, but it was significantly decreased in the old cultivars without nitrogen application, and there was no significant difference among the cultivars treated with nitrogen application rate. The correlation analysis showed that there was a significant positive linear correlation between Pn and SLW, and the relationship between Pn and Narea can be fitted by the quadratic equation, the Narea value of Pn turning with the increase of Narea was 1.57 g m-2. The photosynthetic nitrogen use efficiency (PNUE) of all varieties decreased with the increase of nitrogen application rate, while the PNUE of cultivars at higher nitrogen levels (≥ 250 kg hm-2) increased significantly with the evolution of varieties. Thus, compared with the old varieties, the modern varieties were more beneficial to yield improvement in the higher nitrogen levels (≥ 250 kg hm-2), which was mainly attributed to the higher Pn and PNUE of the modern varieties, while the increase of Pn and PNUE was closely related to the specific leaf weight (SLM), leaf N content (Nmass, Narea), and other characters, which was recommended for reference in the breeding process of maize varieties.

Key words: genetic improvement, nitrogen application rate, photosynthetic characteristics, specific leaf weight, nitrogen content of leaves, yield

Table 1

Meteorological conditions during 2018 and 2019 growing period"

气象因子
Meteorological factor
2018 2019
5月
May
6月
Jun.
7月
Jul.
8月
Aug.
9月
Sep.
5月
May
6月
Jun.
7月
Jul.
8月
Aug.
9月
Sep.
降雨量
Precipitation (mm)
63.9 111.4 135.8 198.7 42.1 95.9 99.9 116.7 234.4 52.3
平均气温
Mean air temperature (℃)
17.4 22.5 26.0 22.2 16.0 18.3 20.9 25.1 22.1 18.2
总辐射
Total radiation (MJ m-2 d-1)
543.4 524.8 518.3 411.1 344.6 499.8 502.5 548.3 422.9 389.0

Table 2

Variance analysis of grain yield and main physiological characters of maize leaves of varieties in different decades"

变异来源
Source of variation
自由度
DF
籽粒产量
Grain yield
比叶重
Specific leaf weight
单位质量氮含量
Leaf nitrogen
content per mass
净光合速率
Net photosynthetic rate
叶面积
Leaf area
年度 Year (Y) 1 NS NS NS NS NS
氮素 Nitrogen (N) 3 277.62** 47.59* 25.17** 36.28** 134.75**
品种 Variety (V) 5 911.39** NS 29.58* 30.29** NS
年代 Decade (D) 2 153.83** NS NS 111.30** 177.62*
年度×氮素 Y×N 3 NS NS NS NS NS
年度×品种 Y×V 5 NS NS NS NS NS
年度×年代 Y×D 2 NS NS NS NS NS

Table 3

Effects of different nitrogen rate on yield, yield components, and the total biomass accumulation of maize varieties in different decades"

年份
Year
氮素水平
Nitrogen
level
年代
Decade
品种
Variety
产量
Yield
(t hm-2)
单位面积穗数
Ears per
unit area
(×104 hm-2)
穗粒数
Kernel
number
per ear
百粒重
100-kernel weight
(g)
干物质总积累量
Total biomass accumulation
(t hm-2)
收获指数
Harvest index
2018 N0 1970s JD101 6.69 f 5.38 a 382.42 f 32.39 b 12.55 f 0.458 b
ZD2 7.06 f 5.70 a 375.21 f 33.01 b 13.37 f 0.454 b
1990s SD19 7.61 e 5.60 a 400.65 e 33.10 b 14.08 e 0.465 b
JD159 7.73 e 5.78 a 415.64 e 32.06 b 14.53 e 0.458 b
2010s XY335 8.06 e 5.89 a 411.22 e 33.21 b 14.26 e 0.470 b
NH101 8.09 e 5.90 a 407.35 e 33.69 b 14.58 e 0.477 b
N1 1970s JD101 10.32 d 5.67 a 533.63 c 33.93 ab 17.93 de 0.495 ab
ZD2 10.19 d 5.80 a 528.67 c 33.24 ab 18.07 d 0.485 ab
1990s SD19 10.52 cd 5.69 a 538.25 bc 34.30 a 18.18 cd 0.498 ab
JD159 10.72 c 5.70 a 542.14 bc 34.69 a 19.13 cd 0.482 ab
2010s XY335 10.84 bc 5.90 a 529.26 c 34.71 ab 18.61 cd 0.478 ab
NH101 10.92 c 5.79 a 538.54 bc 34.99 ab 18.39 cd 0.487 ab
N2 1970s JD101 10.53 cd 5.67 a 526.22 c 35.12 a 17.77 de 0.501 ab
ZD2 10.93 c 5.64 a 540.17 bc 36.04 a 18.39 cd 0.511 a
1990s SD19 11.55 b 5.78 a 558.66 b 35.67 a 19.87 bc 0.500 ab
JD159 11.58 b 5.80 a 560.60 b 35.62 a 19.53 c 0.510 a
2010s XY335 13.12 a 6.00 a 609.60 a 35.88 a 21.70 ab 0.520 a
NH101 12.73 a 5.90 a 598.91 a 36.02 a 21.38 ab 0.512 a
N3 1970s JD101 9.74 cd 5.45 a 498.61 d 35.50 a 18.01 d 0.465 b
ZD2 9.54 d 5.30 a 525.55 c 34.98 ab 17.31 de 0.474 b
1990s SD19 11.09 b 5.88 a 542.62 bc 35.18 ab 20.47 bc 0.466 b
JD159 11.23 b 5.90 a 598.93 a 34.59 ab 20.16 b 0.479 ab
2010s XY335 12.94 a 5.78 a 588.22 a 36.40 a 22.26 a 0.500 a
NH101 12.77 a 5.90 a 580.30 a 37.44 a 22.05 ab 0.498 a
2019 N0 1970s JD101 5.59 g 5.40 a 348.74 e 29.68 c 10.59 f 0.454 b
ZD2 5.87 g 5.65 a 340.65 e 30.24 c 10.93 f 0.462 b
1990s SD19 7.38 f 5.50 a 417.55 d 32.12 bc 13.71 e 0.463 b
JD159 7.47 f 5.65 a 420.60 d 31.14 c 13.67 de 0.470 b
2010s XY335 7.83 f 5.70 a 428.93 d 32.03 bc 14.70 de 0.458 b
NH101 7.72 f 5.55 a 429.55 d 32.11 c 14.16 e 0.469 b
N1 1970s JD101 9.63 de 5.70 a 524.66 b 32.21 c 17.36 d 0.477 b
ZD2 10.24 d 5.90 a 531.64 b 32.65 c 18.27 d 0.482 b
1990s SD19 10.74 c 5.60 a 555.14 ab 34.56 ab 18.74 cd 0.493 b
JD159 10.91 c 5.80 a 536.96 b 35.02 ab 19.22 bc 0.488 b
2010s XY335 11.01 c 5.95 a 546.54 ab 34.15 b 19.52 b 0.485 b
NH101 10.82 c 5.70 a 557.25 ab 34.08 b 19.43 bc 0.479 b
N2 1970s JD101 10.01 de 5.90 a 490.61 c 34.58 ab 17.29 d 0.498 ab
ZD2 10.27 d 5.80 a 524.62 b 33.74 bc 17.25 d 0.512 a
1990s SD19 11.62 b 5.80 a 558.22 a 35.89 ab 19.18 bc 0.521 a
JD159 11.88 b 5.70 a 576.31 a 36.18 a 19.88 b 0.514 a
2010s XY335 12.27 a 5.80 a 581.50 a 36.38 a 20.14 b 0.524 a
NH101 12.92 a 5.75 a 600.44 a 37.11 a 21.58 a 0.515 a
2019 N3 1970s JD101 9.54 de 5.40 a 520.40 b 33.96 b 18.76 c 0.462 b
ZD2 10.24 d 5.65 a 576.32 a 34.15 b 19.22 bc 0.458 b
1990s SD19 11.64 b 5.60 a 568.93 a 36.54 a 20.56 ab 0.487 a
JD159 11.74 b 5.80 a 560.56 a 36.12 a 21.53 a 0.469 b
2010s XY335 12.09 ab 5.70 a 588.91 a 36.01 a 21.21 a 0.490 ab
NH101 12.52 a 5.85 a 580.34 a 36.58 a 21.54 a 0.500 ab
方差分析Analysis of variance
年度 Year (Y) 1.625ns 0.785ns 2.207ns 23.447* 0.584ns 0.942ns
氮素Nitrogen (N) 277.621** 1.565ns 123.640** 67.592** 187.475** 59.799**
品种 Variety (V) 911.392** 3.478ns 146.265** 1.163ns 29.580** 25.173**
年代 Decade (D) 153.828** 4.574ns 45.062* 36.297** 111.296** 14.986**
年度×品种 Y×V 2.784ns 1.548ns 2.503ns 1.829ns 0.779ns 1.054ns
年度×年代 Y×D 0.047ns 0.035ns 2.035ns 2.374ns 0.277ns 0.763ns

Fig. 1

Responses of photosynthesis characteristic of maize varieties in different decades to different nitrogen application levels SS: silking stage; DS: dough stage. Different uppercase letters above the bars mean significant difference between the different ages in the same N level at P < 0.05. Different lowercase letters above the bars indicate significant difference among the different N levels in the same decade at P < 0.05."

Fig. 2

Light response curves of maize leaves under different decades at silking and dough stages SS: silking stage; DS: dough stage."

Table 4

Light response parameters of maize leaves under different decades"

时期
Stage
年代
Decade
AQE
(mol mol-1)
Pn,max
(μmol CO2 m-2 s-1)
LSP
(μmol m-2 s-1)
LCP
(μmol m-2 s-1)
Rd
(μmol m-2 s-1)
相关系数
Correlation coefficient
吐丝期
Silking stage
1970s 0.060 31.92 1709.66 62.81 4.08 0.999
1990s 0.061 34.32 1899.55 73.73 4.84 1.000
2010s 0.063 36.52 1855.84 82.09 5.36 0.999
蜡熟期
Dough stage
1970s 0.064 23.10 1814.14 56.42 3.59 0.999
1990s 0.065 24.21 1840.08 65.19 4.62 0.998
2010s 0.067 26.33 1887.80 70.33 4.84 0.999

Table 5

Responses of leaf physiological characteristics of maize in different decades to different nitrogen application levels"

生育时期Stage 指标
Index
年代
Decade
氮素水平Nitrogen level
N0 N1 N2 N3
吐丝期
Silking stage
单株叶面积
Leaf area per plant
(cm2 plant-1)
1970s 5219.43±123.3 Bc 6524.62±300.1 Bb 6902.56±276.1 Bb 7742.53±245.9 Aa
1990s 5631.56±266.9 Ad 6692.57±244.3 ABc 7336.94±330.2 ABb 8060.50±500.1 Aa
2010s 5910.65±437.3 Ac 6972.69±348.6 Ab 7686.31±192.1 Aa 8164.42±3665.2 Aa
比叶重
SLW
(g m-2)
1970s 40.24±0.21 Bd 44.99±0.20 Ac 50.00±1.56 Ab 54.82±0.30 Aa
1990s 42.84±1.71 ABc 43.86±0.34 Ac 49.46±0.58 ABb 53.49±1.35 Aa
2010s 43.78±1.13 Ac 43.64±0.15 Ac 46.56±3.04 Bb 51.28±0.89 Aa
单位质量含氮量
Nmass
(g kg-1)
1970s 19.13±0.46 Bc 23.14±1.19 Bb 29.50±1.38 Aa 31.27±0.39 Aa
1990s 19.81±0.34 ABc 23.62±0.59 Bb 31.59±0.86 Aa 32.45±0.29 Aa
2010s 20.75±0.43 Ac 25.29±0.37 Ab 31.85±0.20 Aa 32.62±0.21 Aa
单位面积含氮量
Narea
(g m-2)
1970s 0.78±0.02 Cd 1.04±0.06 Ac 1.48±0.07 Ab 1.69±0.03 Aa
1990s 0.85±0.02 Bd 1.06±0.05 Ac 1.53±0.06 Ab 1.74±0.06 Aa
2010s 0.91±0.00 Ad 1.10±0.02 Ac 1.47±0.11 Ab 1.69±0.04 Aa
光合氮利用率
PNUE
(μmol g-1 N s-1)
1970s 27.83±0.07 Aa 24.10±1.22 Ab 18.53±1.08 Cc 15.52±0.55 Bd
1990s 28.29±0.75 Aa 25.42±0.84 Ab 20.08±0.34 Bb 15.94±0.50 Bb
2010s 27.15±0.47 Aa 25.77±1.04 Aa 21.87±1.48 Ab 17.72±0.79 Ac
蜡熟期
Dough stage
单株叶面积
Leaf area per plant
(cm2 plant-1)
1970s 3159.52±157.9 Cc 4656.47±148.9 Ab 4965.56±300.6 Bb 5352.51±106.9 Ba
1990s 3501.79±196.1 Bd 4926.96±200.3 Ac 5225.78±200.1 ABb 5648.82±268.8 Ba
2010s 4714.35±279.1 Ad 5212.35±225.6 Ac 5785.89±121.3 Ab 6223.25±201.9 Aa
比叶重
SLW
(g m-2)
1970s 39.22±1.09 Bc 44.33±0.91 Ab 49.23±2.52 Aa 50.50±3.29 Aa
1990s 42.13±0.19 Ab 43.95±1.30 Ab 47.25±0.33 ABa 49.46±1.85 ABa
2010s 42.79±0.28 Aa 43.77±0.06 Aa 45.93±1.06 Ba 45.56±0.21 Ba
单位质量含氮量
Nmass
(g kg-1)
1970s 16.62±1.09 Bd 19.32±0.58 Bc 21.25±0.29 Bb 27.48±0.01 Aa
1990s 17.95±1.11 Ad 20.59±0.42 ABc 22.75±0.80 Ab 27.06±1.17 Aa
2010s 17.84±0.79 Ad 21.70±0.41 Ac 23.60±0.34 Ab 26.42±0.37 Aa
单位面积含氮量
Narea
(g m-2)
1970s 0.65±0.02 Cd 0.86±0.01 Bc 1.05±0.02 Ab 1.39±0.03 Aa
1990s 0.76±0.05 Bd 0.91±0.05 ABc 1.08±0.03 Ab 1.34±0.04 Aa
2010s 0.83±0.03 Ac 0.94±0.02 Ab 1.08±0.02 Aa 1.20±0.06 Aa
光合氮利用率
PNUE
(μmol g-1 N s-1)
1970s 23.80±2.14 Aa 21.72±0.61 Ab 19.37±1.16 Cc 15.87±0.87 Cd
1990s 24.71±0.86 Aa 22.69±1.33 Ab 21.37±0.68 Bb 18.04±0.82 Bc
2010s 24.70±1.05 Aa 23.04±1.61 Aab 22.90±1.11 Ab 20.94±0.44 Ac

Fig. 3

Relationship between specific leaf weight (SLW), nitrogen content per unit area (Narea), net photosynthetic rate (Pn), and photosynthetic nitrogen use efficiency (PNUE)"

[1] 慈晓科, 张世煌, 谢振江, 徐家舜, 卢振宇, 茹高林, 张德贵, 李新海, 谢传晓, 白丽, 李明顺, 董树亭. 1970-2000年代玉米单交种的遗传产量增益分析方法的比较. 作物学报, 2010, 36: 2185-2190.
doi: 10.3724/SP.J.1006.2010.02185
Ci X K, Zhang S H, Xie Z J, Xu J S, Lu Z Y, Ru G L, Zhang D G, Li X H, Xie C X, Bai L, Li M S, Dong S T. Comparison of analysis method of genetic yield gain for the single-cross hybrids released during 1970s-2000s. Acta Agron Sin, 2010, 36: 2185-2190. (in Chinese with English abstract)
[2] Niu X K, Xie R Z, Liu X, Zhang F L, Li S K, Gao S J. Maize yield gains in northeast China in the last six decades. J Integr Agric, 2013, 12: 630-637.
doi: 10.1016/S2095-3119(13)60281-6
[3] 史新海, 赵格. 山东省紧凑型玉米杂交种主要农艺性状对产量的影响及其演变规律的研究. 玉米科学, 2003, 11(2): 59-61.
Shi X H, Zhao G. Studies on effect of major agronomic characters of maize hybrid on maize yield and its development rule in Shandong Province. J Maize Sci, 2003, 11(2): 59-61. (in Chinese with English abstract)
[4] Yan Y Y, Hou P, Duan F Y, Dai T B, Wang K R, Zhao M, Li S K, Zhou W B. Improving photosynthesis to increase grain yield potential: an analysis of maize hybrids released in different years in China. Photosynth Res, 2021, 150: 295-311.
doi: 10.1007/s11120-021-00847-x
[5] 牛平平, 穆心愿, 张星, 杨春收, 李潮海. 不同年代玉米品种根系对低氮干旱胁迫的响应分析. 作物学报, 2015, 41: 1112-1120.
doi: 10.3724/SP.J.1006.2015.01112
Niu P P, Mu X Y, Zhang X, Yang C S, Li C H. Response of roots of maize varieties released in different years to low nitrogen and drought stresses. Acta Agron Sin, 2015, 41: 1112-1120. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.01112
[6] Borrás L, Otegui M E. Maize kernel weight response to post-flowering source-sink ratio. Crop Sci, 2001, 41: 1816-1822.
doi: 10.2135/cropsci2001.1816
[7] Yang L F, Yan J J, Cai Z C. Effects of N-applications and photosynthesis of maize (Zea mays L.)on soil respiration and its diurnal variation. Front Agric China, 2010, 4: 42-49.
doi: 10.1007/s11703-009-0088-9
[8] Ding L, Wang K J, Jiang G M, Liu M Z, Niu S L. Post-anthesis changes in photosynthetic traits of maize hybrids released in different years. Field Crops Res, 2005, 93: 108-115.
doi: 10.1016/j.fcr.2004.09.008
[9] Hikosaka K. Interspecific difference in the photosynthesis nitrogen relationship: patterns, physiological causes, and ecological importance. J Plant Res, 2004, 117: 481-494.
pmid: 15583974
[10] Poorter H, Niinemets L, Poorter L, Wright I J, Villar R. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol, 2009, 182: 565-588.
doi: 10.1111/nph.2009.182.issue-3
[11] Craufurd P Q, Wheeler R H, Elli R J, Summerfield R J, Williams J H. Effect of temperature and water deficit on water-use efficiency, carbon isotope discrimination, and specific leaf area in peanut. Crop Sci, 1999, 39: 136-142.
doi: 10.2135/cropsci1999.0011183X003900010022x
[12] Niinemets Ü, Sack L. Progress in Botany. Springer, Berlin, Heidelberg 2006. pp 385-419.
[13] Hassiotou F, Renton M, Ludwig M, Evanset J R, Veneklaas E J. Photosynthesis at an extreme end of the leaf trait spectrum: how does it relate to high leaf dry mass per area and associated structural parameters? J Exp Bot, 2010, 61: 3015-3028.
doi: 10.1093/jxb/erq128 pmid: 20484320
[14] Diaz S, Lavorel S, Bello de F, Quetier F, Grigulis K, Robson M. Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA, 2007, 104: 20684-20689.
doi: 10.1073/pnas.0704716104 pmid: 18093933
[15] Galmés J, Conesa M À, Ochogavía J M, Perdomo J A, Francis D M, Ribascarbó M, Savé R, Flexas J, Medrano H, Cifre J. Physiological and morphological adaptations in relation to water use efficiency in Mediterranean accessions of Solanum lycopersicum. Plant Cell Environ, 2011, 34: 245-260.
doi: 10.1111/pce.2011.34.issue-2
[16] Gastal F, Lemaire G. N uptake and distribution in crops: an agronomical and ecophysiological perspective. J Exp Bot, 2002, 53: 789-799.
pmid: 11912222
[17] 崔菁菁, 徐克章, 武志海, 陈展宇, 张治安, 吴春胜. 不同年代水稻品种叶片氮含量变化及其与净光合速率的关系. 西北农林科技大学学报(自然科学版), 2016, 44(7): 70-78.
Cui J J, Xu K Z, Wu Z H, Chen Z Y, Zhang Z A, Wu C S. Change of nitrogen content in leaf and its correlation with net photosynthetic rate of rice cultivars in different years. J Northwest Sci Tech Univ Agric For (Nat Sci Edn), 2016, 44(7): 70-78. (in Chinese with English abstract)
[18] 朱启林, 向蕊, 汤利, 龙光强. 间作对氮调控玉米光合速率和光合氮利用效率的影响. 植物生态学报, 2018, 42: 672-680.
doi: 10.17521/cjpe.2018.0033
Zhu Q L, Xiang R, Tang L, Long G Q. Effects of intercropping on photosynthetic rate and net photosynthetic nitrogen use efficiency of maize under nitrogen addition. Acta Phytophysiol Sin, 2018, 42: 672-680. (in Chinese with English abstract)
[19] 张彦群, 王建东, 龚时宏, 隋娟. 滴灌条件下冬小麦施氮增产的光合生理响应. 农业工程学报, 2015, 31(6): 170-177.
Zhang Y Q, Wang J D, Gong S H, Sui J. Photosynthetic response of yield enhancement by nitrogen fertilization in winter wheat fields with drip irrigation. Trans CSAE, 2015, 31(6): 170-177. (in Chinese with English abstract)
[20] Evans J R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia, 1989, 78: 9-19.
doi: 10.1007/BF00377192 pmid: 28311896
[21] 曹玉军, 路明, 都钧, 吕艳杰, 姚凡云, 魏雯雯, 刘志铭, 王虹霏, 刘卓, 王永军. 长期水分亏缺对吉林省不同年代玉米品种光合及物质生产特性的影响. 玉米科学, 2020, 28(3): 119-126.
Cao Y J, Lu M, Du J, Lyu Y J, Yao F Y, Wei W W, Liu Z M, Wang H F, Liu Z, Wang Y J. Effects of long-term water deficit on photosynthesis and dry matter production characteristics of maize varieties released in different eras in Jilin province. J Maize Sci, 2020, 28(3): 119-126. (in Chinese with English abstract)
[22] 李大勇, 陈展宇, 徐克章, 张志安, 武志海, 季平, 张鹏. 不同年代大豆品种叶片氮含量及其与净光合速率的关系. 中国油料作物学报, 2013, 35(2): 171-178.
Li D Y, Chen Z Y, Xu K Z, Zhang Z A, Wu Z H, Ji P, Zhang P. Changes of nitrogen content in leaf and its correlations with net photosynthetic rate of soybean cultivars released in different years. Chin J Oil Crop Sci, 2013, 35(2): 171-178. (in Chinese with English abstract)
[23] 张仁和, 杜伟莉, 郭东伟, 张爱瑛, 胡富亮, 李凤艳, 薛吉全. 陕西省不同年代玉米品种产量和氮效率性状的变化. 作物学报, 2014, 40: 915-923.
doi: 10.3724/SP.J.1006.2014.00915
Zhang R H, Du W L, Guo W D, Zhang A Y, Hu F L, Li F Y, Xue J Q. Changes of grain yield and nitrogen use efficiency of maize hybrids released in different eras in Shaanxi province. Acta Agron Sin, 2014, 40: 915-923. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00915
[24] 王帅, 韩晓日, 战秀梅, 杨劲峰, 王月, 刘轶飞, 李娜. 氮肥水平对玉米灌浆期穗位叶光合功能的影响. 植物营养与肥料学报, 2014, 20(2): 280-289.
Wang S, Han X R, Zhan X M, Yang J F, Wang Y, Liu Y F, Li N. Effect of nitrogenous fertilizer levels on photosynthetic functions of maize ear leaves at grain filling stage. J Plant Nutr, 2014, 20: 280-289. (in Chinese with English abstract)
[25] Carmo-silva E, Andralojc P J, Scales J C, Driever S M, Mead A. Phenotyping of field-grown wheat in the UK highlights contribution of light response of photosynthesis and flag leaf longevity to grain yield. J Exp Bot, 2017, 68: 3473-3486.
doi: 10.1093/jxb/erx169 pmid: 28859373
[26] Wells R, Schulze L L, Ashley D A, Boerma H R, Brown R H. Cultivar differences in canopy apparent photosynthesis and their relationship to seed yield in soybeans. Crop Sci, 1982, 22: 886-890.
doi: 10.2135/cropsci1982.0011183X002200040044x
[27] Peng S, Krieg D R, Girma F S, Girma F S. Leaf photosynthetic rate is correlated with biomass and grain production in grain sorghum lines. Photosynth Res, 1991, 28: 1-7.
doi: 10.1007/BF00027171
[28] Cao Y J, Wang L C, Gu W R, Zhang J H, Wang Y J. Increasing photosynthetic performance and post-silking N uptake by moderate decreasing leaf source of maize under high planting density. J Integr Agric, 2021, 20: 494-510.
doi: 10.1016/S2095-3119(20)63378-0
[29] Li X, Zhang G Q, Sun B, Zhang S, Zhang Y Q, Liao Y W, Zhou Y H, Xia X J, Shi K, Yu J Q. Stimulated leaf dark respiration in tomato in an elevated carbon dioxide atmosphere. Sci Rep, 2013, 3: 3433.
doi: 10.1038/srep03433 pmid: 24305603
[30] WestobY M, Falster D S, Moles A T, Vesk P A, Wright I J. Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst, 2002, 33: 125-159.
doi: 10.1146/ecolsys.2002.33.issue-1
[31] Poorter L, Bongers F. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology, 2006, 87: 1733-1743.
pmid: 16922323
[32] Amanullah. Specific Leaf area and specific leaf weight in small grain crops wheat, rye, barley, and oats differ at various growth stages and NPK source. J Plant Nutr, 2015, 38: 1694-1708.
doi: 10.1080/01904167.2015.1017051
[33] Amanullah, Zakirullah M, Tariq M, Nawab K,. Levels and time of phosphorus application influence growth, dry matter partitioning and harvest index in maize. Pak J Bot, 2010, 42: 4051-4061.
[34] 刘涛, 鲁剑巍, 任涛, 李小坤, 丛日环. 不同氮水平下冬油菜光合氮利用效率与光合器官氮分配的关系. 植物营养与肥料学报, 2016, 22: 518-524.
Liu T, Lu J W, Ren T, Li X K, Cong R H. Relationship between photosynthetic nitrogen use efficiency and nitrogen allocation in photosynthetic apparatus of winter oilseed rape under different nitrogen levels. J Plant Nutr, 2016, 22: 518-524. (in Chinese with English abstract)
[35] Terashima I, Hanba Y T, Tholen D, Niinemets Ü. Leaf functional anatomy in relation to photosynthesis. Plant Physiol, 2011, 155: 108-116.
doi: 10.1104/pp.110.165472 pmid: 21075960
[36] Onoda Y, Wright I J, Evans J R, Hikosaka K, Kitajima K, Niinemets Ü, Poorter H, Tosens T, Westoby M. Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytol, 2017, 214: 1447-1463.
doi: 10.1111/nph.14496 pmid: 28295374
[37] Ye M, Peng S B, Li Y.Intraspecific variation in photosynthetic nitrogen-use efficiency is positively related to photosynthetic rate in rice (Oryza sativa L.) plants. Photosynthetica, 2019, 57: 311-319.
doi: 10.32615/ps.2019.011
[38] Li D D, Tian M M, Cai J, Jiang D, Cao W X, Dai T B. Effects of low nitrogen supply on relationships between photosynthesis and nitrogen status at different leaf position in wheat seedlings. Plant Growth Regul, 2013, 70: 257-263.
doi: 10.1007/s10725-013-9797-4
[39] Tambussi E A, Nogués S, Araus J L. Ear of durum wheat under water stress: water relations and photosynthetic metabolism. Planta, 2005, 221: 446-458.
pmid: 15645303
[40] 郑淑霞, 上官周平. 不同功能型植物光合特性及其与叶氮含量、比叶重的关系. 生态学报, 2007, 27: 171-181.
Zheng S X, Shang-Guan Z P. Photosynthetic characteristics and their relationships with leaf nitrogen content and leaf mass per area in different plant functional types. Acta Ecol Sin, 2007, 27: 171-181. (in Chinese with English abstract)
[41] Liu X, Li Y.Varietal difference in the correlation between leaf nitrogen content and photosynthesis in rice (Oryza sativa L.)plants is related to specific leaf weight. J Integr Agric, 2016, 15: 2002-2011.
doi: 10.1016/S2095-3119(15)61262-X
[42] 叶苗.水稻品种间光合特性的差异及其机理研究. 华中农业大学博士学位论文, 湖北武汉, 2016.
Ye M.Studies on the Mechanisms of the Varietal Differences in Leaf Photosynthesis in Oryza sativa L. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2016. (in Chinese with English abstract)
[43] Onoda Y, Hikosaka K, Hirose T. Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Funct Ecol, 2004, 18: 419-425.
doi: 10.1111/fec.2004.18.issue-3
[1] HU Yan-Juan, XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue. Mutation effects of OsCDF1 gene and its genomic variations in rice [J]. Acta Agronomica Sinica, 2023, 49(9): 2362-2372.
[2] FANG Meng-Ying, REN Liang, LU Lin, DONG Xue-Rui, WU Zhi-Hai, YAN Peng, DONG Zhi-Qiang. Effect of ethylene-chlormequat-potassium on root morphological structure and grain yield in sorghum [J]. Acta Agronomica Sinica, 2023, 49(9): 2528-2538.
[3] LI Yi-Yang, LI Yuan, ZHAO Zi-Xu, ZHANG Ding-Shun, DU Jia-Ning, WU Shu-Juan, SUN Si-Qi, CHEN Yuan, ZHANG Xiang, CHEN De-Hua, LIU Zhen-Yu. Effects of increased nitrogen on Bt protein expression and nitrogen metabolism in the leaf subtending to cotton boll [J]. Acta Agronomica Sinica, 2023, 49(9): 2505-2516.
[4] ZHANG Li-Hua, ZHANG Jing-Ting, DONG Zhi-Qiang, HOU Wan-Bin, ZHAI Li-Chao, YAO Yan-Rong, LYU Li-Hua, ZHAO Yi-An, JIA Xiu-Ling. Effect of water management on yield and its components of winter wheat in different precipitation years [J]. Acta Agronomica Sinica, 2023, 49(9): 2539-2551.
[5] ZHANG Diao-Liang, YANG Zhao, HU Fa-Long, YIN Wen, CHAI Qiang, FAN Zhi-Long. Effects of multiple cropping green manure on grain quality and yield of wheat with different irrigation levels [J]. Acta Agronomica Sinica, 2023, 49(9): 2572-2581.
[6] YANG Yi, HE Zhi-Qiang, LIN Jia-Hui, LI Yang, CHEN Fei, LYU Chang-Wen, TANG Dao-Bin, ZHOU Quan-Lu, WANG Ji-Chun. Effects of coconut bran application rate on soil physicochemical properties and sweet-potato yield [J]. Acta Agronomica Sinica, 2023, 49(9): 2517-2527.
[7] YANG Xiao-Hui, WANG Bi-Sheng, SUN Xiao-Lu, HOU Jin-Jin, XU Meng-Jie, WANG Zhi-Jun, FANG Quan-Xiao. Modeling the response of winter wheat to deficit drip irrigation for optimizing irrigation schedule [J]. Acta Agronomica Sinica, 2023, 49(8): 2196-2209.
[8] LI Yu-Xing, MA Liang-Liang, ZHANG Yue, QIN Bo-Ya, ZHANG Wen-Jing, MA Shang-Yu, HUANG Zheng-Lai, FAN Yong-Hui. Effects of exogenous trehalose on physiological characteristics and yield of wheat flag leaves under high temperature stress at grain filling stage [J]. Acta Agronomica Sinica, 2023, 49(8): 2210-2224.
[9] LIU Shi-Jie, YANG Xi-Wen, MA Geng, FENG Hao-Xiang, HAN Zhi-Dong, HAN Xiao-Jie, ZHANG Xiao-Yan, HE De-Xian, MA Dong-Yun, XIE Ying-Xin, WANG Li-Fang, WANG Chen-Yang. Effects of water and nitrogen application on root characteristics and nitrogen utilization in winter wheat [J]. Acta Agronomica Sinica, 2023, 49(8): 2296-2307.
[10] WEI Jin-Gui, GUO Yao, CHAI Qiang, YIN Wen, FAN Zhi-Long, HU Fa-Long. Yield and yield components of maize response to high plant density under reduced water and nitrogen supply [J]. Acta Agronomica Sinica, 2023, 49(7): 1919-1929.
[11] ZHANG Zhen, SHI Yu, ZHANG Yong-Li, YU Zhen-Wen, WANG Xi-Zhi. Effects of different soil water content on water consumption by wheat and analysis of senescence characteristics of root and flag leaf [J]. Acta Agronomica Sinica, 2023, 49(7): 1895-1905.
[12] ZHANG Lu-Lu, ZHANG Xue-Mei, MU Wen-Yan, HUANG Ning, GUO Zi-Kang, LUO Yi-Nuo, WEI Lei, SUN Li-Qian, WANG Xing-Shu, SHI Mei, WANG Zhao-Hui. Grain Mn concentration of wheat in main wheat production regions of China: Effects of cultivars and soil factors [J]. Acta Agronomica Sinica, 2023, 49(7): 1906-1918.
[13] DONG Zhi-Qiang, LYU Li-Hua, YAO Yan-Rong, ZHANG Jing-Ting, ZHANG Li-Hua, YAO Hai-Po, SHEN Hai-Ping, JIA Xiu-Ling. Yield and quality of strong gluten wheat Shiluan 02-1 under water and nitrogen interaction [J]. Acta Agronomica Sinica, 2023, 49(7): 1942-1953.
[14] DENG Ai-Xing, LI Ge-Xing, LYU Yu-Ping, LIU You-Hong, MENG Ying, ZHANG Jun, ZHANG Wei-Jian. Effect of shading duration after heading on grain yield and quality of japonica rice in northwest China [J]. Acta Agronomica Sinica, 2023, 49(7): 1930-1941.
[15] SONG Yi, LI Jing, GU He-He, LU Zhi-Feng, LIAO Shi-Peng, LI Xiao-Kun, CONG Ri-Huan, REN Tao, LU Jian-Wei. Effects of application of nitrogen on seed yield and quality of winter oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 2002-2011.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .