Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (11): 2896-2907.doi: 10.3724/SP.J.1006.2024.43006

• RESEARCH NOTES • Previous Articles     Next Articles

Characteristics of AMF community in maize and peanut rhizosphere soil and its response to phosphate application

ZHAO Wei(), HU Xiao-Na, ZHENG Yan, LIANG Na, ZHENG Bin, WANG Xiao-Xiao, WANG Jiang-Tao, LIU Ling, FU Guo-Zhan, SHI Zhao-Yong, JIAO Nian-Yuan()   

  1. College of Agriculture, Henan University of Science and Technology / Henan Dryland Agricultural Engineering Technology Research Center, Luoyang 471023, Henan, China
  • Received:2024-01-21 Accepted:2024-06-20 Online:2024-11-12 Published:2024-07-11
  • Contact: *E-mail: jiaony1@163.com
  • Supported by:
    National Natural Science Foundation of China(32272231)

Abstract:

To elucidate the diversity and community structure of arbuscular mycorrhizal fungi (AMF) in the rhizosphere soil of maize and peanut, and their response to phosphate application, we utilized high-throughput sequencing technology to study the diversity, composition, and structure of AMF communities under both phosphorus application and phosphorus-deficient conditions. We also conducted correlation analysis of soil physicochemical factors and AMF community traits. The results showed that the α diversity of the AMF community in maize rhizosphere soil was higher than that in peanut rhizosphere soil. Phosphorus application reduced the α diversity of AMF communities in both maize and peanut rhizosphere soils compared to the phosphorus-deficient condition. The dominant family (genus) of AMF communities in the rhizosphere soil of both maize and peanut was Glomeraceae (Glomus), although there were significant differences in the composition of dominant species and the relative abundance of dominant communities. Specifically, the relative abundances of Claroideoglomeraceae, Claroideoglomus, GlBb12, Torrecillas12b_Glo_G5, and Lamellosum in maize rhizosphere soil were significantly higher than in peanut by 17.38%, 16.97%, 5.90%, 3.29%, and 7.79%, respectively. Compared to the phosphorus-deficient condition, phosphorus application significantly decreased the relative abundance of Claroideoglomeraceae and Claroideoglomus in maize rhizosphere soil and Glomeraceae in peanut rhizosphere soil by 16.89%, 16.88%, and 11.00%, respectively. It also significantly increased the relative abundance of Viscosum and Yamato09_A1 in maize rhizosphere soil. Redundancy analysis (RDA) indicated that available phosphorus (AP), available iron (AFe), organic matter (OM), total phosphorus (TP), and pH values were the main factors affecting the α diversity and community structure of AMF at the family and genus levels in both maize and peanut rhizosphere soils. In conclusion, maize and peanut exhibit distinct preferences for recruited AMF communities and respond differently to phosphate application. The primary factors influencing this response include the contents of AP, AFe, OM, TP, and pH value in the rhizosphere soil. This study provides a theoretical basis for improving the AMF community structure in maize and peanut, thereby enhancing high yield through phosphorus fertilizer application.

Key words: maize, peanut, rhizosphere soil, phosphorus fertilization, high-throughput sequencing, AMF community

Fig. 1

Effects of P fertilizer on infection rate (A) and spore density (B) of maize and peanut P0: P2O5 0 kg hm-2; P180: P2O5 180 kg hm-2. Different lowercase letters above the bars indicate significant difference among the treatments at the 0.05 probability level."

Fig. 2

Effects of P fertilizer on AMF community OTUs in rhizosphere soil of maize and peanut P0M: rhizosphere soil of maize without P application; P0P: rhizosphere soil of peanut without P application; P180M: rhizosphere soil of maize with P application; P180P: rhizosphere soil of peanut with P application."

Table 1

Effects of P fertilizer on diversity and richness of AMF community structure in rhizosphere soil of maize and peanut"

磷水平
P level
作物
Crops
辛普森指数
Simpson index
香农指数
Shannon index
ACE指数
ACE index
Chao1指数
Chao1 index
P0 M 0.044 b 5.70 a 853.4 a 710.1 a
P 0.046 b 5.60 a 881.1 a 722.8 a
P180 M 0.081 a 5.08 b 837.5 a 695.8 a
P 0.084 a 5.04 b 805.5 a 683.9 a
作物Crops 0.957 0.656 0.952 0.990
磷水平P level 0.006** 0.002** 0.227 0.390
作物×磷水平Crops × P level 0.841 0.850 0.418 0.686

Fig. 3

Effects of P fertilizer on the AMF family level’s community structure in rhizosphere soil of maize and peanut A: P fertilizer on accumulation map of AMF family horizontal community composition in rhizosphere soil of maize and peanut; B: P fertilizer on clustering map of AMF family horizontal community species abundance in rhizosphere soil of maize and peanut. Treatments are the same as those given in Fig. 2."

Fig. 4

Effects of P fertilizer on community composition of AMF dominant family in rhizosphere soil of maize and peanut Treatments are the same as those given in Fig. 2. Different lower-case letters above the bars indicate significant difference among the treatments at the 0.05 probability level."

Table 2

Two-way ANOVA of P fertilizer on the AMF dominant community in rhizosphere soil of maize and peanut"

AMF优势群落
AMF dominant community
作物Crops 磷水平P level 作物 × 磷水平Crops × P level
F-value P-value F-value P-value F-value P-value
Glomeraceae 2.616 0.144 16.904 0.003** 0.222 0.650
Claroideoglomeraceae 56.164 <0.001** 54.953 <0.001** 57.537 <0.001**
Paraglomeraceae 0.055 0.821 0.083 0.780 0.232 0.643
Glomus 1.971 0.198 13.346 0.006** 0.088 0.774
Claroideoglomus 56.252 <0.001** 55.042 <0.001** 57.631 <0.001**
Paraglomus 0.083 0.781 0.086 0.777 0.237 0.639
Lamellosum 66.653 <0.001** 60.263 <0.001** 70.328 <0.001**
GlBb12 12.856 0.007** 12.916 0.007** 12.760 0.007**
Torrecillas12b_Glo_G5 11.335 0.010* 11.266 0.010* 11.375 0.010*
Viscosum 16.871 0.003** 3.804 0.087 3.966 0.082
NF13 0.014 0.907 40.726 <0.001** 0.065 0.805
Glo7 0.025 0.878 11.326 0.010* 0.026 0.876
Yamato09_A1 3.713 0.090 4.826 0.059 2.464 0.155

Fig. 5

Effects of P fertilizer on the AMF genus level’s community structure in rhizosphere soil of maize and peanut A: P fertilizer on accumulation map of AMF genus horizontal community composition in rhizosphere soil of maize and peanut; B: P fertilizer on clustering map of AMF genus horizontal community species abundance in rhizosphere soil of maize and peanut. Treatments are the same as those given in Fig. 2."

Fig. 6

Effects of P fertilizer on community composition of AMF dominant genus in rhizosphere soil of maize and peanut Treatments are the same as those given in Fig. 2. Different lowercase letters above the bars indicate significant difference among the treatments at the 0.05 probability level."

Fig. 7

Effects of P fertilizer on the AMF species level’s community structure in rhizosphere soil of maize and peanut A: P fertilizer on accumulation map of AMF species horizontal community composition in rhizosphere soil of maize and peanut; B: P fertilizer on clustering map of AMF species horizontal community species abundance in rhizosphere soil of maize and peanut. Treatments are the same as those given in Fig. 2."

Table 3

Effects of P fertilizer on community composition of AMF dominant species in rhizosphere soil of maize and peanut"

磷水平
P level
作物
Crops
AMF优势种相对丰度Relative abundance of AMF dominant species (%)
Lamellosum Viscosum NF13 Glo7 Yamato09_A1 GlBb12 Torrecillas12b_Glo_G5
P0 M 0.0781 a 0.0083 b 0.0153 a 0.0138 a 0.0028 b 0.0586 a 0.0331 a
P 0.0005 b 0.0026 b 0.0144 a 0.0152 a 0.0012 b 0.0002 b 0.0001 b
P180 M 0.0024 b 0.0187 a 0.0007 b 0.0002 a 0.0197 a 0.0002 b 0.0002 b
P 0.0034 b 0.0025 b 0.0010 b 0.0002 a 0.0040 b 0.0001 b 0.0002 b

Fig. 8

Effects of P fertilizer on β diversity of AMF community in rhizosphere soil of maize and peanut Treatments are the same as those given in Fig. 2."

Table 4

Adonis test of AMF community composition in maize and peanut rhizosphere soil with P fertilizer"

分析对象
Analysis object
F-value r2 P-value
P0M vs P0P 8.06 0.668 0.1
P0M vs P180M 8.53 0.681 0.1
P0P vs P180P 10.90 0.732 0.1

Table 5

Effects of P fertilizer on physicochemical properties in rhizosphere soil of maize and peanut"

磷水平
P level
作物
Crops
全磷
Total P
(mg g-1)
速效磷Available P
(mg kg-1)
全氮
Total N
(mg kg-1)
碱解氮
Available N
(mg kg-1)
全铁
Total Fe
(mg g-1)
有效铁
Available Fe
(mg kg-1)
有机质
Organic matter
(g kg-1)
pH
P0 M 0.75 b 11.09 c 1.43 b 79.80 b 21.63 a 7.62 bc 27.30 b 6.91 b
P 0.76 b 11.08 c 1.62 a 101.50 a 21.52 a 6.85 c 33.54 a 6.86 b
P180 M 1.06 a 32.48 a 1.62 a 94.30 ab 21.77 a 9.35 a 33.45 a 7.27 a
P 1.09 a 24.47 b 1.63 a 106.91 a 21.86 a 7.85 b 33.34 a 7.36 a
作物Crops (C) 0.434 0.003** 0.031* 0.001** 0.971 0.005** 0.003** 0.631
磷水平P level (P) <0.001** <0.001** 0.032* 0.019* 0.569 0.002** 0.004** <0.001**
C× P 0.711 0.003** 0.046* 0.218 0.816 0.242 0.003** 0.190

Fig. 9

RDA analysis of AMF diversity and richness and soil physicochemical properties of maize and peanut TN: total N; AN: available N; TP: total P; AP: available P; TFe: total Fe; AFe: available Fe; OM: organic matter; pH: acid basicity."

Fig. 10

RDA analysis of AMF community structure and soil physicochemical properties at family level (A) and genus level (B) Glo: Glomeraceae / Glomus; Cla: Claroideoglomeraceae / Claroideoglomus; Par: Paraglomeraceae / Paraglomus; Div: Diversispora / Diversispora; Arc: Archaeosporaceae / Archaeospora; Aca: Acaulosporaceae / Acaulospora; Gig: Gigasporaceae; Scu: Scutellospora. TN: total N; AN: available N; TP: total P; AP: available P; TFe: total Fe; AFe: available Fe; OM: organic matter; pH: acid basicity."

[1] 冯固, 张福锁, 李晓林, 张俊伶, 盖京苹. 丛枝菌根真菌在农业生产中的作用与调控. 土壤学报, 2010, 47: 995-1004.
Feng G, Zhang F S, Li X L, Zhang J L, Gai J P. Functions of arbuscular mycorrhizal fungi in agriculture and their manipulation. Acta Pedol Sin, 2010, 47: 995-1004 (in Chinese with English abstract).
[2] 伏云珍, 马琨, 崔慧珍, 李光文. 间作作物种间相互作用对马铃薯根际土壤丛枝菌根真菌的影响. 生态学杂志, 2021, 40: 131-139.
Fu Y Z, Ma K, Cui H Z, Li G W. Effects of interspecific interactions between intercropping crops on arbuscular mycorrhizal fungi in potato rhizosphere soil in the intercropping system. Chin J Ecol, 2021, 40: 131-139 (in Chinese with English abstract).
doi: : 10.13292/j.1000-4890.202101.030
[3] Hazard C, Gosling P, van der Gast C J, Mitchell D T, Doohan F M, Bending G D. The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale. ISME J, 2013, 7: 498-508.
doi: 10.1038/ismej.2012.127 pmid: 23096401
[4] Bainard L D, Bainard J D, Hamel C, Gan Y. Spatial and temporal structuring of arbuscular mycorrhizal communities is differentially influenced by abiotic factors and host crop in a semi-arid prairie agroecosystem. FEMS Microbiol Ecol, 2014, 88: 333-344.
doi: 10.1111/1574-6941.12300 pmid: 24527842
[5] Song Y Y, Zeng R S, Xu J F, Li J, Shen X, Yihdego W G. Interplant communication of tomato plants through underground common mycorrhizal networks. PLoS One, 2010, 5: e13324.
[6] 田蜜, 陈应龙, 李敏, 刘润进. 丛枝菌根结构与功能研究进展. 应用生态学报, 2013, 24: 2369-2376.
pmid: 24380361
Tian M, Chen Y L, Li M, Liu R J. Structure and function of arbuscular mycorrhiza: a review. Chin J Appl Ecol, 2013, 24: 2369-2376 (in Chinese with English abstract).
pmid: 24380361
[7] 谢开云, 王玉祥, 万江春, 张树振, 隋晓青, 赵云, 张博. 混播草地中豆科/禾本科牧草氮转移机理及其影响因素. 草业学报, 2020, 29: 157-170.
doi: 10.11686/cyxb2018184
Xie K Y, Wang Y X, Wan J C, Zhang S Z, Sui X Q, Zhao Y, Zhang B. Mechanisms and factors affecting nitrogen transfer in mixed legume/grass swards: a review. Acta Pratac Sin, 2020, 29: 157-170 (in Chinese with English abstract).
[8] Rożek K, Rola K, Błaszkowski J, Leski T, Zubek S. How do monocultures of fourteen forest tree species affect arbuscular mycorrhizal fungi abundance and species richness and composition in soil. For Ecol Manag, 2020, 465: 118091.
[9] Szymon Z, Kaja R, Katarzyna R, Janusz B, Matgorzata S, Dominika C, Karolina C, Joanna Z G, Anna M S. Experimental assessment of forest floor geophyte and hemicryptophyte impact on arbuscular mycorrhizal fungi communities. Plant Soil, 2022, 480: 651-673.
[10] 宋亚娜, Petra M, 张福锁, 包兴国, 李隆. 小麦/蚕豆, 玉米/蚕豆和小麦/玉米间作对根际细菌群落结构的影响玉米/蚕豆和小麦/玉米间作对根际细菌群落结构的影响. 生态学报, 2006, 26: 2268-2274.
Song Y N, Petra M, Zhang F S, Bao X G, Li L. Effect of intercropping on bacterial community composition in rhizosphere of wheat (Triticum aestivum L.), maize (Zea mays L.) and faba bean (Vicia faba L.). Acta Ecol Sin, 2006, 26: 2268-2274 (in Chinese with English abstract).
[11] Zubek S, Rożek K, Stefanowicz A M, Błaszkowski J, Stanek M, Gielas I, Rola K. The impact of beech and riparian forest herbaceous plant species with contrasting traits on arbuscular mycorrhizal fungi abundance and diversity. For Ecol Manag, 2021, 492: 119245.
[12] Chen M, Arato M, Borghi L, Nouri E, Reinhardt D. Beneficial services of arbuscular mycorrhizal fungi-from ecology to application. Front Plant Sci, 2018, 9: 1270.
doi: 10.3389/fpls.2018.01270 pmid: 30233616
[13] Chen Y L, Zhang X, Ye J S, Han H Y, Wan S Q, Chen B D. Six-year fertilization modifies the biodiversity of arbuscular mycorrhizal fungi in a temperate steppe in Inner Mongolia. Soil Biol Biochem, 2014, 69: 371-381.
[14] 王庆峰, 姜昕, 马鸣超, 关大伟, 赵百锁, 魏丹, 曹凤明, 李力, 李俊. 长期施用氮肥和磷肥对东北黑土丛枝菌根真菌群落组成的影响. 中国农业科学, 2018, 51: 3315-3324.
doi: 10.3864/j.issn.0578-1752.2018.17.007
Wang Q F, Jiang X, Ma M C, Guan D W, Zhao B S, Wei D, Cao F M, Li L, Li J. Influence of long-term nitrogen and phosphorus fertilization on arbuscular mycorrhizal fungi community in mollisols of Northeast China. Sci Agric Sin, 2018, 51: 3315-3324 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2018.17.007
[15] 张旭红, 朱永官, 王幼珊, 林爱军, 陈保冬, 张美庆. 不同施肥处理对丛枝菌根真菌生态分布的影响. 生态学报, 2006, 26: 3081-3087.
Zhang X H, Zhu Y G, Wang Y S, Lin A J, Chen B D, Zhang M Q. Effect of long-term fertilization on the diversity and distribution of arbuscular mycorrhiza fungi in northeast China. Acta Ecol Sin, 2006, 26: 3081-3087 (in Chinese with English abstract).
[16] 薛壮壮, 冯童禹, 王超, 沈仁芳. 磷肥对酸性红壤上玉米不同部位丛枝菌根真菌群落的影响. 土壤, 2023, 55: 1008-1015.
Xue Z Z, Feng T Y, Wang C, Shen R F. Effects of phosphorus fertilizer on arbuscular mycorrhizal fungi community in different parts of maize in acidic red soil. Soils, 2023, 55: 1008-1015 (in Chinese with English abstract).
[17] Mythili M, Ramalakshmi A. Unraveling the distribution of AMF communities and their metabolites associated with soils of minor millets. Rhizosphere, 2022, 21: 100473.
[18] 赵德强, 元晋川, 侯玉婷, 李彤, 廖允成. 玉米||大豆间作对AMF时空变化的影响. 中国生态农业学报, 2020, 28: 631-642.
Zhao D Q, Yuan J C, Hou Y T, Li T, Liao Y C. Tempo-spatial dynamics of AMF under maize soybean intercropping. Chin J Eco-Agric, 2020, 28: 631-642 (in Chinese with English abstract).
[19] Ianson D C, Allen M F. The effects of soil texture on extraction of vesicular-arbuscular mycorrhizal fungal spores from arid sites. Mycologia, 1986, 78: 164.
[20] 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000. pp 7-23.
Bao S D. Agrochemical Analysis of Soil, 3rd edn. Beijing: China Agriculture Press, 2000. pp 7-23 (in Chinese).
[21] 顾嘉诚, 王文敏, 王振, 李鲁华, 蒋贵菊, 王家平, 程志博. 玉米/大豆间作对根际土壤磷素生物有效性和微生物群落结构的影响. 应用生态学报, 2023, 34: 3030-3038.
doi: 10.13287/j.1001-9332.202311.015
Gu J C, Wang W M, Wang Z, Li L H, Jiang G J, Wang J P, Cheng Z B. Effects of maize and soybean intercropping on soil phosphorus bioavailability and microbial community structure in rhizosphere. Chin J Appl Ecol, 2023, 34: 3030-3038 (in Chinese with English abstract).
doi: 10.13287/j.1001-9332.202311.015
[22] Zhang Q, Tian S, Chen G, Tang Q, Zhang Y, Fleming A J, Zhu X G, Wang P. Regulatory NADH dehydrogenase-like complex optimizes C4 photosynthetic carbon flow and cellular redox in maize. New Phytol, 2024, 241: 82-101.
[23] Yamori W, Hikosaka K, Way D A. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res, 2013, 119: 101-117.
[24] Hetrick B A D. Mycorrhizas and root architecture. Experientia, 1991, 47: 355-362.
[25] Wilson G W T, Harnett D C. Effects of mycorrhizae on plant growth and dynamics in experimental tall grass prairie. Am J Bot, 1997, 84: 478-482.
pmid: 21708601
[26] Buade R, Chourasiya D, Prakash A, Sharma M P. Changes in arbuscular mycorrhizal fungal community structure in soybean rhizosphere soil assessed at different growth stages of soybean. Agric Res, 2021, 10: 32-43.
[27] Alguacil M M, Lumini E, Roldán A, Salinas G J R, Bonfante P, Bianciotto V. The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops. Ecol Appl, 2008, 18: 527-536.
doi: 10.1890/07-0521.1 pmid: 18488613
[28] 章家恩, 高爱霞, 徐华勤, 罗明珠. 玉米/花生间作对土壤微生物和土壤养分状况的影响. 应用生态学报, 2009, 20: 1597-1602.
Zhang J E, Gao A X, Xu H Q, Luo M Z. Effects of maize/peanut intercropping on rhizosphere soil microbes and nutrient contents. J Appl Ecol, 2009, 20: 1597-1602 (in Chinese with English abstract).
[29] 董艳, 汤利, 郑毅, 朱有勇, 张福锁. 小麦-蚕豆间作条件下氮肥施用量对根际微生物区系的影响. 应用生态学报, 2008, 19: 1559-1566.
pmid: 18839919
Dong Y, Tang L, Zheng Y, Zhu Y Y, Zhang F S. Effects of nitrogen application rate on rhizosphere microbial community in wheat-faba bean intercropping system. Chin J Appl Ecol, 2008, 19: 1559-1566 (in Chinese with English abstract).
pmid: 18839919
[30] 马玉颖, 张焕朝, 项兴佳, 王道中, 郭熙盛, 郭志彬, 孙瑞波, 褚海燕. 长期施肥对砂姜黑土丛枝菌根真菌群落的影响. 应用生态学报, 2018, 29: 3398-3406.
doi: 10.13287/j.1001-9332.201810.035
Ma Y Y, Zhang H C, Xiang X J, Wang D Z, Guo X S, Guo Z B, Sun R B, Chu H Y. Effects of long-term fertilization on arbuscular mycorrhizal fungal community in lime concretion black soil. Chin J Appl Ecol, 2018, 29: 3398-3406 (in Chinese with English abstract).
[31] Jiang Y, Luan L, Hu K, Liu M, Chen Z, Geisen S, Chen X, Li H, Xu Q, Bonkowski M, Sun B. Trophic interactions as determinants of the arbuscular mycorrhizal fungal community with cascading plant-promoting consequences. Microbiome, 2020, 8: 142.
doi: 10.1186/s40168-020-00918-6 pmid: 33008469
[32] Beauregard M S, Hamel C, Atul N, St-Arnaud M. Long-term phosphorus fertilization impacts soil fungal and bacterial diversity but not AM fungal community in alfalfa. Microb Ecol, 2010, 59: 379-389.
doi: 10.1007/s00248-009-9583-z pmid: 19756847
[33] Joner E J, van Aarle I M, Vosatka M. Phosphatase activity of extra-radical arbuscular mycorrhizal hyphae: a review. Plant Soil, 2000, 226: 199-210.
[34] Shi J, Zhao B, Zheng S, Zhang X, Wang X, Dong W, Xie Q, Wang G, Xiao Y, Chen F, Yu N, Wang E. A phosphate starvation response-centered network regulates mycorrhizal symbiosis. Cell, 2021, 184: 5527-5540.
doi: 10.1016/j.cell.2021.09.030 pmid: 34644527
[35] Das D, Paries M, Hobecker K, Gigl M, Dawid C, Lam H M, Zhang J, Chen M, Gutjahr C. Phosphate starvation response transcription factors enable arbuscular mycorrhiza symbiosis. Nat Commun, 2022, 13: 477.
doi: 10.1038/s41467-022-27976-8 pmid: 35078978
[36] Tang F, White J A, Charvat I. The effect of phosphorus availability on arbuscular mycorrhizal colonization of Typha angustifolia. Mycologia 2001, 93: 1042.
[37] Raven J A, Lambers H, Smith S E, Westoby M. Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence. New Phytol, 2018, 217: 1420-1427.
doi: 10.1111/nph.14967 pmid: 29292829
[38] 李锋, 潘晓华, 刘水英, 李木英, 杨福孙. 低磷胁迫对不同水稻品种根系形态和养分吸收的影响. 作物学报, 2004, 30: 438-442.
Li F, Pan X H, Liu S Y, Li M Y, Yang F S. Effect of phosphorus deficiency stress on root morphology and nutrient absorption of rice cultivars. Acta Agron Sin, 2004, 30: 438-442 (in Chinese with English abstract).
[39] Jin J, Tang C X, Sale P. The impact of elevated carbon dioxide on the phosphorus nutrition of plants: a review. Ann Bot, 2015, 116: 987-999.
[40] Johansen A, Jakobsen I, Jensen E S. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. III: Hyphal transport of 32P and 15N. New Phytol, 1993, 124: 61-68.
[41] Anika L, Rillig M C. Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops: a meta-analysis. Soil Biol Biochem, 2015, 81: 147-158.
[42] 芦美, 范茂攀, 李永梅, 杨继芬, 杨春怀, 罗志章, 赵吉霞. 玉米与马铃薯间作对作物根际土壤丛枝菌根真菌群落的影响. 土壤通报, 2023, 54: 1392-1400.
Lu M, Fan M P, Li Y M, Yang J F, Yang C H, Luo Z Z, Zhao J X. Effects of intercropping maize and potato on arbuscular mycorrhizal fungi community in crop rhizosphere soil. Chin J Soil Sci, 2023, 54: 1392-1400 (in Chinese with English abstract).
[43] Zhu C, Ling N, Guo J, Wang M, Guo S, Shen Q. Impacts of fertilization regimes on arbuscular mycorrhizal fungal (AMF) community composition were correlated with organic matter composition in maize rhizosphere soil. Front Microbiol, 2016: 1840.
[44] Leff J W, Jones S E, Prober S M, Barberán A, Borer E T, Firn J L, Harpole W S, Hobbie S E, Hofmockel K S, Knops J M H, McCulley R L, Pierre K L, Risch A C, Seabloom E W, Schütz M, Steenbock C, Stevens C J, Fierer N. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci USA, 2015, 112: 10967-10972.
doi: 10.1073/pnas.1508382112 pmid: 26283343
[45] Bongoua D A J, Cebron A, Kassin K E, Yoro G R, Mustin C, Berthelin J. Microbial communities involved in Fe reduction and mobility during soil organic matter (SOM) mineralization in two contrasted paddy soils. Geomicrobiol J, 2013, 30: 347-361.
[46] Rajapitamahuni S, Kang B, Lee T K. Exploring the roles of arbuscular mycorrhizal fungi in plant-iron homeostasis. Agriculture, 2023, 13: 1918.
[47] 孙博雅, 程永毅, 肖广全, 王彦琴, 王明霞, 周志峰. 典型气田土壤铁还原活性与微生物群落关系研究. 环境科学学报, 2021, 41: 4170-4178.
Sun B Y, Cheng Y Y, Xiao G Q, Wang Y Q, Wang M X, Zhou Z F. Relationship between iron reducing potential of soil and microbial community structure in a typical shale gas field. Acta Sci Circumst, 2021, 41: 4170-4178 (in Chinese with English abstract).
[48] Pan Y Y, Yang X N, Sun G P, Xu M Y.Functional response of sediment bacterial community to iron-reducing bioaugmentation with Shewanella decolorationis S12. Appl Microbiol Biotechnol, 2019, 103: 4997-5005.
[1] YE Liang, ZHU Ye-Lin, PEI Lin-Jing, ZHANG Si-Ying, ZUO Xue-Qian, LI Zheng-Zhen, LIU Fang, TAN Jing. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(9): 2279-2296.
[2] LIU Yong-Hui, SHEN Yi, SHEN Yue, LIANG Man, SHA Qin, ZHANG Xu-Yao, CHEN Zhi-De. Cloning and functional analysis of drought-inducible promoter AhMYB44-11- Pro in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2024, 50(9): 2157-2166.
[3] SUN Zhao-Hua, REN Hao, WANG Hong-Zhang, WANG Zi-Qiang, YAO Hai-Yan, XIN Ai-Mei, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, LIU Peng. Effects of foliar silicon sprays on leaf photosynthetic performance and grain yield of summer maize in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2024, 50(9): 2383-2395.
[4] GUO Si-Yu, ZHAO Ke-Yong, DAI Zheng-Gang, ZOU Hua-Wen, WU Zhong-Yi, ZHANG Chun. Functional analysis of maize N-acetyltransferase ZmNAT1 gene in response to abiotic stress [J]. Acta Agronomica Sinica, 2024, 50(8): 2001-2013.
[5] CAO Xiao-Qing, QI Xian-Tao, LIU Chang-Lin, XIE Chuan-Xiao. Construction and verification of the CRISPR/Cas9 system containing DsRed fluorescent expression cassette for editing of ZmCCT10, ZmCCT9, and ZmGhd7 genes in maize [J]. Acta Agronomica Sinica, 2024, 50(8): 1961-1970.
[6] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[7] ZHU Rong-Yu, ZHAO Meng-Jie, YAO Yun-Feng, LI Yan-Hong, LI Xiang-Dong, LIU Zhao-Xin. Effects of straw returning methods and sowing depth on soil physical properties and emergence characteristics of summer peanut [J]. Acta Agronomica Sinica, 2024, 50(8): 2106-2121.
[8] LIU Chen-Ming, ZHAO Ke-Yong, YUE Man-Fang, ZHAO Yan-Ming, WU Zhong-Yi, ZHANG Chun. Functional study on the regulation of root growth and development and stress tolerance by maize transcription factor ZmEREB180 [J]. Acta Agronomica Sinica, 2024, 50(8): 1920-1933.
[9] LIU Shuang, LI Shen, WANG Dong-Mei, SHA Xiao-Qian, HE Guan-Hua, ZHANG Deng-Feng, LI Yong-Xiang, LIU Xu-Yang, WANG Tian-Yu, LI Yu, LI Chun-Hui. Superior allele genes mining for drought tolerance in maize based on introgression line from a cross between maize and teosinte [J]. Acta Agronomica Sinica, 2024, 50(8): 1896-1906.
[10] LIANG Lu, ZHOU Bao-Yuan, GAO Zhuo-Han, WANG Rui, WANG Xin-Bing, ZHAO Ming, LI Cong-Feng. Root and shoot growth of different maize varieties in response to soil compaction stress [J]. Acta Agronomica Sinica, 2024, 50(8): 2053-2066.
[11] WANG Rui, SUN Bo, ZHANG Yun-Long, ZHANG Ming-Qi, FAN Ya-Ming, TIAN Hong-Li, ZHAO Yi-Kun, YI Hong-Mei, KUANG Meng, WANG Feng-Ge. Application analysis of chloroplast markers on rapid classification in maize germplasm [J]. Acta Agronomica Sinica, 2024, 50(7): 1867-1876.
[12] YANG Qi-Rui, LI Lan-Tao, ZHANG Duo, WANG Ya-Xian, SHENG Kai, WANG Yi-Lun. Effect of phosphorus application on yield, quality, light temperature physiological characteristics, and root morphology in summer peanut [J]. Acta Agronomica Sinica, 2024, 50(7): 1841-1854.
[13] FANG Yu-Hui, QI Xue-Li, LI Yan, ZHANG Yu, PENG Chao-Jun, HUA Xia, CHEN Yan-Yan, GUO Rui, HU Lin, XU Wei-Gang. Effects of high light stress on photosynthesis and physiological characteristics of wheat with maize C4-type ZmPEPC+ZmPPDK gene [J]. Acta Agronomica Sinica, 2024, 50(7): 1647-1657.
[14] WANG Fei-Er, GUO Yao, LI Pan, WEI Jin-Gui, FAN Zhi-Long, HU Fa-Long, FAN Hong, HE Wei, YIN Wen, CHEN Gui-Ping. Compensation mechanism of increased maize density on yield with water and nitrogen reduction supply in oasis irrigation areas [J]. Acta Agronomica Sinica, 2024, 50(6): 1616-1627.
[15] SHE Meng, ZHENG Deng-Yu, KE Zhao, WU Zhong-Yi, ZOU Hua-Wen, ZHANG Zhong-Bao. Cloning and functional analysis of ZmGRAS13 gene in maize [J]. Acta Agronomica Sinica, 2024, 50(6): 1420-1434.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!