Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (4): 957-968.doi: 10.3724/SP.J.1006.2024.34080

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Transcriptome analysis of a stigma exsertion mutant in mungbean

SONG Meng-Yuan1,2(), GUO Zhong-Xiao1, SU Yu-Fei1,2, DENG Kun-Peng1, LAN Tian-Jiao1, CHENG Yu-Xin1, BAO Shu-Ying1, WANG Gui-Fang1, DOU Jin-Guang1, JIANG Ze-Kai1,2, WANG Ming-Hai1,*(), XU Ning1,*()   

  1. 1Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences / Jilin Provincial Laboratory of Crop Germplasm Resources, Gongzhuling 136100, Jilin, China
    2College of Agronomy, Jilin Agricultural University, Changchun 130118, Jilin, China
  • Received:2023-05-09 Accepted:2023-09-13 Online:2024-04-12 Published:2023-10-07
  • Contact: * E-mail: xunig2008@163.com; E-mail: shiyongdou@163.com
  • Supported by:
    Agricultural Science and Technology Innovation Program of Jilin Province(CXGC2021ZY131);Agricultural Science and Technology Innovation Program of Jilin Province(CXGC2021TD111);China Agriculture Research System of MOF and MARA(CARS-08-Z8)

Abstract:

Stigma exsertion has been widely used in hybrid breeding as an excellent trait to improve crop outcrossing rate, seed purity, and seed production cost. As a closed-pollinated crop, few stigma exsertion mutants have been reported in mungbean. A stigma exsertion mutant se2 was discovered in mungbean variety Jilyu 7 after chemical mutagination. In order to clarify the molecular mechanism of stigma exsertion, transcription-sequencing (RNA-seq) analysis was conducted on the next day's opening buds of se2 and its wild type Jilyu 7. A total of 572 differentially expressed genes (DEGs) were obtained in se2, among which 262 DEGs were up-regulated and 310 DEGs were down-regulated, based on the screening criteria of difference multiplier |log2(Fold Change)| ≥1 and P ≤ 0.05. In GO database, differentially expressed genes were significantly enriched in biological processes such as metabolism and biosynthesis, and localized in regions such as apoplast, cell walls, and membranes, and mainly associated with molecular functions such as binding and redox. In the kyoto encyclopedia of genes and genome (KEGG) database, differentially expressed genes were significantly enriched in plant hormone signal transduction and biosynthesis of secondary metabolites. Functional annotation revealed many genes related to cell wall synthesis and metabolism, cell division and cell expansion, and plant hormones. Therefore, we hypothesized that cell division, cell expansion, and plant hormone signaling processes of the keel flap in se2 mutants were affected, leading to stigma exsertion. This study laid a foundation for future investigations into the molecular mechanism of stigma exsertion in mungbean and its application in heterosis.

Key words: mungbean, stigma exsertion, mutant, transcriptome, high-throughput sequencing, heterosis

Fig. 1

Phenotypic comparison of flower buds of se2 and wild type (WT) A: stigma exsertion mutant se2; B: Jilyu 7 (WT)."

Table 1

Primers for qRT-PCR used in this study"

基因编号
Gene ID
正向引物序列
Forward sequence (5'-3')
反向引物序列
Reverse sequence (5'-3')
jg12155 CTTGGATACCATACCTGCGGACATG CACGAACATCGGCAATTCTGAATGG
jg15370 TGTGGAGCAAGGAGCATCAACAAC CTTAGCCAAATCCATGTCCCTTCCC
jg17957 CCCGGTGTTGCAACTTCTCT CATAAGCTTGCGGTGATGCC
novel.24 TGTGTGGTGTCGCAGGTTGTTC AGCAGTGAGGAGTGGTCCAAGAG
jg25789 CACCTCCCTCTACTTTGCCG AGCGCCGAGAATCATGTCAA
VrActin GGCATCCACGAGACAACA AGCCTCCAATCCAGACAC

Table 2

Transcriptome sequencing data"

样本
Sample
测序总读数
Total reads number
质控后读数
Clean reads number
错误率
Error rate (%)
总比对率
Mapped ratio (%)
Q20碱基百分比
Q20 base
percentage (%)
Q30碱基百分比
Q30 base
percentage (%)
WT1 44719486 43961678 0.02 96.79 98.10 94.43
WT2 46637862 45775686 0.02 96.86 98.05 94.23
WT3 43888030 42753792 0.03 96.68 97.97 94.08
SE2-1 47065416 46312622 0.02 96.97 98.10 94.33
SE2-2 47644132 46668574 0.02 96.67 98.20 94.61
SE2-3 45688950 44977346 0.03 96.99 98.00 94.11

Fig. 2

Distribution and correlation analysis of gene expression in samples A: distribution of gene expression in each sample; B: correlation heat map between samples."

Fig. 3

Volcano plot of differentially expressed genes Up: up-regulated gene; Down: down-regulated gene; Not significant: not significant difference gene."

Fig. 4

Relative expression level of differentially expressed genes in se2 and Jilyu 7 (WT)"

Fig. 5

GO enrichment of DEGs between se2 and Jilyu 7 (WT) BP: biological process; MF: molecular function; CC: cellular component."

Fig. 6

KEGG enrichment of DEGs between se2 and Jilyu 7 (WT)"

Table 3

Differentially expressed genes associated with cell division and cell expansion"

基因编号
Gene ID
上调/下调
Up/down
基因名称
Gene name
描述
Description
jg13552 Down Laccase-15 漆酶15 Laccase-15
jg12507 Down Laccase-2 漆酶2 Laccase-2
jg17193 Down Laccase-4 漆酶4 Laccase-4
jg15432 Down callose synthase 8 推测的胼胝质合酶8 Putative callose synthase 8
jg25641 Down PE6/PME6 可能的果胶甲酯酶6/抑制剂6 Probable pectinesterase/pectinesterase inhibitor 6
jg33131 Up PMEI 18/PME4 果胶甲酯酶/果胶甲酯酶抑制剂18 Pectinesterase/pectinesterase inhibitor 18
jg11460 Down NAO 乙酰鸟氨酸脱酰基酶 Acetylornithine deacetylase
jg13187 Up CEL1 纤维素酶1 Cellulase 1
jg21473 Down XTH-7 木葡聚糖内转糖苷酶/水解酶7 XTH-7
jg24723 Up XTH-16 木葡聚糖内转糖苷酶/水解酶16 XTH-16
jg20410 Down XTH-22 木葡聚糖内转糖苷酶/水解酶22 XTH-22
jg20409 Down XTH-22 木葡聚糖内转糖苷酶/水解酶22 XTH-22
jg20407 Down XTH-23 木葡聚糖内转糖苷酶/水解酶23 XTH-23
jg20408 Down XTH-23 木葡聚糖内转糖苷酶/水解酶23 XTH-23
jg12255 Up XTH-31 木葡聚糖内转糖苷酶/水解酶31 XTH-31
jg11149 Down GDP-fucose protein O-fucosyltransferase GDP-fucose O-岩藻糖基转移酶
GDP-fucose protein O-fucosyltransferase
jg9115 Up MYB46 转录因子MYB46 Transcription factor MYB46
jg17738 Down GDPDL4 甘油磷酸二酯磷酸二酯酶GDPDL4
Glycerophosphodiester phosphodiesterase-like 4
jg23957 Down 1,3-beta-glucanase 7 1,3-β-葡聚糖内水解酶7 1,3-beta-glucan endohydrolase 7
jg9059 Up Beta-glucosidase 12 β-葡萄糖苷酶12 Beta-glucosidase 12
jg16663 Up Beta-1,3-endoglucanase 8 β-1.3内切葡聚糖酶8 Beta-1,3-endoglucanase 8
jg23043 Down RAY1 β-阿拉伯呋喃糖基转移酶 Beta-arabinofuranosyltransferase RAY1
jg36915 Down Cell wall beta-fructosidase 1 细胞壁β-果糖苷酶1 Cell wall beta-fructosidase 1
jg21315 Up Probable aspartyl protease 可能的天冬氨酰蛋白酶At4g16563 Probable aspartyl protease At4g16563
jg17593 Down Aspartyl protease family protein 2 天冬氨酰蛋白酶家族蛋白2 Aspartyl protease family protein 2
jg39446 Down LRX/Extensin 6 富含亮氨酸重复延伸蛋白样蛋白6 Leucine-rich repeat extensin-like protein 6
jg15038 Down IRX14H β-1,4-木糖基转移酶IRX14H Probable beta-1,4-xylosyltransferase IRX14H
jg12968 Down EXPLA2 扩展蛋白EXPLA2 Expansin-like A2
jg19405 Down EXORDIUM 蛋白EXORDIUM Protein EXORDIUM
jg19402 Down EXORDIUM 蛋白EXORDIUM Protein EXORDIUM
jg19404 Down EXORDIUM 蛋白EXORDIUM Protein EXORDIUM
jg20020 Down COBRA-Like protein 7 COBRA样蛋白7 COBRA-like protein 7
jg29779 Down Sec3b 囊泡转运复合体亚基Sec3B Exocyst complex component SEC3B
jg15257 Down KIN-6 驱动蛋白KIN-6 Kinesin-like protein KIN-6
jg15248 Down KIN-6 驱动蛋白KIN-6 Kinesin-like protein KIN-6
jg35033 Down KIN-7M 驱动蛋白KIN-7M Kinesin-like protein KIN-7M
jg14893 Up KIN-5C 驱动蛋白KIN-5C Kinesin-like protein KIN-5C
jg33119 Down DUF1005 未知功能蛋白DUF1005 Protein of unknown function DUF1005
jg33683 Up BTB/POZ domain BTB/POZ结构域蛋白 BTB/POZ domain-containing protein
jg15199 Down PICKLE/CHR5 CHD3型染色质重塑因子PICKLE
CHD3-type chromatin-remodeling factor PICKLE
jg15252 Down PICKLE/CHR6 CHD3型染色质重塑因子PICKLE
CHD3-type chromatin-remodeling factor PICKLE
jg2927 Up EBP1 ERBB3结合蛋白1 ERBB-3 BINDING PROTEIN 1
jg13226 Down CCR4 丝氨酸/苏氨酸蛋白激酶样蛋白CCR4
Serine/threonine-protein kinase-like protein CCR4
jg15053 Down PAS1 肽基脯氨酰顺反异构酶 Peptidyl-prolyl cis-trans isomerase PASTICCINO1
jg15144 Up SLAH3 S型阴离子通道3 S-type anion channel SLAH3
jg19729 Down SLAH1 S型阴离子通道1 S-type anion channel SLAH1
jg25789 Down SKOR 外向整流K+通道SKOR Stelar K(+) outward rectifying channel
jg17957 Down CLC-e 氯离子通道蛋CLC-e Chloride channel protein CLC-e

Table 4

Differentially expressed genes associated with plant hormones"

基因编号
Gene ID
上调/下调
Up/down
基因名称
Gene name
描述
Description
jg16675 Down AUX1-like protein 1 生长素输入载体AUX1 Auxin transporter-like protein 1
jg2587 Down PIN-Likes 1 生长素输出蛋白PIN-Likes 1 Protein PIN-Likes 1
jg20452 Up VAN3-binding VAN3结合蛋白 VAN3-binding protein
jg12839 Up ARG7 生长素相应蛋白ARG7 Auxin responsive protein
jg28855 Up SAUR71 生长素响应蛋白SAUR71 Auxin-responsive protein SAUR71
jg13096 Down CKX6/CKO6 细胞分裂素脱氢酶/氧化酶6 Cytokinin dehydrogenase/oxidase 6
jg33851 Up ATHB-40 HD-ZIP蛋白ATHB-40 HD-ZIP protein ATHB-40
jg638 Up ATHB-12 HD-ZIP蛋白 ATHB-12 HD-ZIP protein ATHB-12
jg1095 Up GA 20-oxidase 2 赤霉素20氧化酶2 Gibberellin 20 oxidase 2
jg18873 Up GA 20-oxidase 2 赤霉素20氧化酶2 Gibberellin 20 oxidase 2
jg36069 Up ETR2 乙烯受体ETR2 Ethylene receptor 2
jg36578 Up ERF106 乙烯响应转录因子ERF106 Ethylene-responsive transcription factor ERF106
jg4916 Up ERF034 乙烯响应转录因子ERF034 Ethylene-responsive transcription factor ERF034
jg37484 Up ERF1B 乙烯响应转录因子ERF1B Ethylene-responsive transcription factor 1B
jg38226 Down PP2C 可能的蛋白磷脂酶 PP2C 49 Probable protein phosphatase 2C 49
jg545 Up MARD1/SAG102 ABA调节的休眠介质1/衰老相关蛋白SAG102
Mediator of ABA-regulated dormancy1/Senescence-associated protein SAG102
jg20855 Up AFP3 ABI5结合蛋白3 ABI5-binding protein 3
jg27356 Up ABR1 乙烯响应因子ABR1 Ethylene-responsive transcription factor ABR1
jg29371 Up AOS2/P450 74A 丙二烯氧化物合酶2 Allene oxide synthase 2/Cytochrome P450 74A
jg35914 Down TGA7 转录因子TGA7 Transcription factor TGA7
jg15164 Down OPP21 双组分响应调节子ORR21 Two-component response regulator ORR21
jg25674 Down ARR14 双组分响应调节子ARR14 Two-component response regulator ARR14
jg27911 Up ARR17 双组分响应调节子ARR17 Two-component response regulator ARR17
jg14455 Down SAP12 锌指结构域应激相关蛋白12
Zinc finger AN1 domain-containing stress-associated protein 12 SAP12
jg14454 Down SAP12 锌指结构域应激相关蛋白12
Zinc finger AN1 domain-containing stress-associated protein 12 SAP12
[26] 胡育玮. 烟草细胞质遗传柱头外露发生机制研究. 河南农业大学硕士学位论文, 河南郑州, 2019.
Hu Y W. Study on the Stigma Exsertion Formation Mechanism in Cytoplasmic Inheritance of Stigma Exsertion Tobacco. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2018. (in Chinese with English abstract)
[27] Li J X, Li M, Wang W M, Wang D, Hu Y W, Zhang Y Y, Zhang X Q. Morphological and physiological mechanism of cytoplasmic inheritance stigma exsertion trait expression in tobacco (Nicotiana tabacu). Plant Sci, 2023, 326: 111528.
doi: 10.1016/j.plantsci.2022.111528
[28] Smyczynski C, Roudier F, Gissot L, Vaillant E, Grandjean O, Morin H, Masson T, Bellec Y, Geelen D, Faure J D. The C terminus of the immunophilin pasticcino1 is required for plant development and for interaction with a NAC-like transcription factor. J Biol Chem, 2006, 281: 25475-25484.
doi: 10.1074/jbc.M601815200 pmid: 16803883
[29] Garcia M A, Koonrugsa N, Toda T. Two kinesin-like KIN I family proteins in fission yeast regulate the establishment of metaphase and the onset of anaphase A. Curr Biol, 2002, 12: 610-621.
doi: 10.1016/s0960-9822(02)00761-3 pmid: 11967147
[30] Becraft P W, Stinard P S, McCarty D R. Crinkly4: a tnfr-like receptor kinase involved in maize epidermal differentiation. Science, 1996, 273: 1406-1409.
doi: 10.1126/science.273.5280.1406 pmid: 8703079
[31] Kang S G, Lee H J, Suh S G. The maize Crinkly4 gene is expressed spatially in vegetative and floral organs. Plant Biol, 2002, 45: 219-224.
[32] Pu C X, Ma Y, Wang J, Zhang Y C, Jiao X W, Hu Y H, Wang L L, Zhu Z G, Sun D, Sun Y. Crinkly4 receptor-like kinase is required to maintain the interlocking of the palea and lemma, and fertility in rice, by promoting epidermal cell differentiation. Plant J, 2012, 70: 940-953.
doi: 10.1111/tpj.2012.70.issue-6
[33] Cosgrove D J. Growth of the plant cell wall. Nat Rev Mol Cell Biol, 2005, 6: 850-861.
[34] Chen K Y, Cong B, Wing R, Vrebalov J, Tanksley S D. Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes. Science, 2007, 318: 643-645.
doi: 10.1126/science.1148428
[35] Cheng M, Gong C, Zhang B, Qu W, Qi H, Chen X, Wang X, Zhang Y, Liu J, Ding X, Qiu Y, Wang A. Morphological and anatomical characteristics of exserted stigma sterility and the location and function of SLLST (Solanum lycopersicum long styles) gene in tomato. Theor Appl Genet, 2021, 134: 505-518.
doi: 10.1007/s00122-020-03710-0 pmid: 33140169
[36] Guo N, Wang Y, Chen W, Tang S, An R, Wei X, Hu S, Tang S, Shao G, Jiao G, Xie L, Wang L, Sheng Z, Hu P. Fine mapping and target gene identification of QSE4, a QTL for stigma exsertion rate in rice (Oryza sativa L.). Front Plant Sci, 2022, 13: 959859.
doi: 10.3389/fpls.2022.959859
[37] Zhao M, Han Y, Feng Y, Li F, Wang W. Expansins are involved in cell growth mediated by abscisic acid and indole-3-acetic acid under drought stress in wheat. Plant Cell Rep, 2012, 31: 671-685.
doi: 10.1007/s00299-011-1185-9
[38] Pan C, Yang D, Zhao X, Jiao C, Yan Y, Lamin-Samu A T, Wang Q, Xu X, Fei Z, Lu G. Tomato stigma exsertion induced by high temperature is associated with the jasmonate signalling pathway. Plant Cell Environ, 2019, 42: 1205-1221.
doi: 10.1111/pce.v42.4
[39] Cheng H, Qin L, Lee S, Fu X, Richards D E, Cao D, Luo D, Harberd N P, Peng J. Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development, 2004, 131: 1055-1064.
doi: 10.1242/dev.00992 pmid: 14973286
[40] 王燕, 潘长田, 王洁, 秦力, 邹滔, 卢钢. 赤霉素对亚高温胁迫下番茄花柱外露及相关基因表达的影响. 浙江大学学报(农业与生命科学版), 2015, 41: 449-457.
Wang Y, Pan C T, Wang J, Qin L, Zou T, Lu G. Effects of gibberellin on tomato stigma exsertion and hormone-related gene expression under moderate heat stress. J Zhejiang Univ (Agric Life Sci Edn), 2015, 41: 449-457. (in Chinese with English abstract)
[41] Carrera E, Ruiz-Rivero O, Peres L E P, Atares A, Garcia-Martinez J L. Characterization of the procera tomato mutant shows novel functions of the sldella protein in the control of flower morphology, cell division and expansion, and the auxin-signaling pathway during fruit-set and development. Plant Physiol, 2012, 160: 1581-1596.
doi: 10.1104/pp.112.204552 pmid: 22942390
[42] Rieu I, Ruiz R O, Fernandez G N, Griffiths J, Powers S J, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas S G, Phillips A L, Hedden P. The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J, 2008, 53: 488-504.
doi: 10.1111/j.1365-313X.2007.03356.x pmid: 18069939
[43] Brioudes F, Joly C, Szécsi J, Varaud E, Leroux J, Bellvert F, Bertrand C, Bendahmane M. Jasmonate controls late development stages of petal growth in Arabidopsis thaliana. Plant J, 2009, 60: 1070-1080.
doi: 10.1111/tpj.2009.60.issue-6
[44] Dong S, Tarkowska D, Sedaghatmehr M, Welsch M, Gupta S, Mueller-Roeber B, Balazadeh S. The HB40-JUB1 transcriptional regulatory network controls gibberellin homeostasis in Arabidopsis. Mol Plant, 2022, 15: 322-339.
[45] Son O, Hur Y S, Kim Y K, Lee H J, Kim S, Kim M R, Nam K H, Lee M S, Kim B Y, Park J, Park J, Lee S C, Hanada A, Yamaguchi S, Lee I J, Kim S K, Yun D J, Söderman E, Cheon C I. ATHB12, an ABA-inducible homeodomain-leucine zipper (HD- Zip) protein of Arabidopsis, negatively regulates the growth of the inflorescence stem by decreasing the expression of a gibberellin 20-oxidase gene. Plant Cell Physiol, 2010, 51: 1537-1547.
doi: 10.1093/pcp/pcq108
[1] 郑卓杰. 中国食用豆类学. 北京: 中国农业出版社, 1997. pp 141-166.
Zheng Z J. Food Legumes in China. Beijing: China Agriculture Press, 1995. pp 141-166. (in Chinese)
[2] 田静, 程须珍, 范保杰, 王丽侠, 刘建军, 刘长友, 王素华, 曹志敏, 陈红霖, 王彦, 王珅. 我国绿豆品种现状及发展趋势. 作物杂志, 2021, (6): 15-21.
Tian J, Cheng X J, Fan B J, Wang L X, Liu J J, Liu C Y, Wang S H, Cao Z M, Chen H L, Wang Y, Wang K. Current situation and development trend of mungbean varieties in China. Crops, 2021, (6): 15-21. (in Chinese with English abstract)
[3] 王丽侠, 程须珍, 王素华. 绿豆种质资源、育种及遗传研究进展. 中国农业科学, 2009, 42: 1519-1527.
Wang L X, Cheng X Z, Wang S H. Advances in research on genetic resources, breeding and genetics of mungbean (Vigna radiata L.). Sci Agric Sin, 2009, 42: 1519-1527. (in Chinese with English abstract)
[4] 黄穗兰, 郭宝德, 冀丽霞, 牛永章, 姜艳丽. 棉花种间杂交长柱头种质系TY35的培育与应用. 山西农业科学, 2015, 43: 777-779.
Huang S L, Guo B D, Ji L X, Niu Y Z, Jiang Y L. The selection and application of germplasm line TY35 with long stigma from interspecific crossing in cotton. J Shanxi Agric Sci, 2015, 43: 777-779. (in Chinese with English abstract)
[5] 杨保汉. 不育系柱头外露率及其结实率研究. 杂交水稻, 1997, (1): 15-17.
Yang B H. Studies on stigma exsertion rate and outcrossing rate of CMS Lines in rice. Hybrid Rice, 1997, (1): 15-17. (in Chinese)
[6] 崔贵梅, 牛天堂, 张福耀, 袁爱萍, 孙毅. 谷子(Setaria italica Beauv.)高异交结实雄性不育系“81-16”的柱头性状观察. 作物学报, 2007, 33: 149-153.
Cui G M, Niu T T, Zhang F Y, Yuan A P, Sun Y. The stigma observation on foxtail millet (Setaria italica Beauv.) male-sterile line “81-16” with high outcross seed setting. Acta Agron Sin, 2007, 33: 149-153. (in Chinese with English abstract)
[7] Lin Y, Laosatit K, Chen J, Yuan X, Wu R, Amkul K, Chen X, Somta P. Mapping and functional characterization of stigma exposed 1, a DUF1005 gene controlling petal and stigma cells in mungbean (Vigna radiata). Front Plant Sci, 2020, 11: 575922.
doi: 10.3389/fpls.2020.575922
[8] Yan H, Zhang B, Zhang Y, Chen X, Xiong H, Matsui T, Tian X. High temperature induced glume closure resulted in lower fertility in hybrid rice seed production. Front Plant Sci, 2017, 7: 1960.
[9] Elshamey E A Z, Hamad H S, Alshallash K S, Alghuthaymi M A, Ghazy M I, Sakran R M, Selim M E, ElSayed M A A, Abdelmegeed T M, Okasha S A, Behiry S I, Boudiar R, Mansour E. Growth regulators improve outcrossing rate of diverse rice cytoplasmic male sterile lines through affecting floral traits. Plants (Basel), 2022, 11: 1291.
doi: 10.3390/plants11101291
[10] Matthias Benoit. From non-self to self: stepwise mutations in transcription factors promote the transition to self-pollination in tomato. Plant Cell, 2021, 10: 3183-3184.
[11] Riccini A, Picarella M E, De Angelis F, Mazzucato A. Bulk RNA-Seq analysis to dissect the regulation of stigma position in tomato. Plant Mol Biol, 2021, 105: 263-285.
doi: 10.1007/s11103-020-01086-9 pmid: 33104942
[12] Pan C, Ye L, Zheng Y, Wang Y, Yang D, Liu X, Chen L, Zhang Y, Fei Z, Lu G. Identification and expression profiling of micrornas involved in the stigma exsertion under high-temperature stress in tomato. BMC Genomics, 2017, 18: 843.
doi: 10.1186/s12864-017-4238-9 pmid: 29096602
[13] Mortazavi A, Williams B A, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 2008, 5: 621-628.
doi: 10.1038/nmeth.1226 pmid: 18516045
[14] Trapnell C, Williams B A, Pertea G, Mortazavi A, Kwan G, van Baren M J, Salzberg S L, Wold B J, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 2010, 28: 511-515.
doi: 10.1038/nbt.1621 pmid: 20436464
[15] Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol, 2014, 15: 550.
doi: 10.1186/s13059-014-0550-8
[16] Bashline L, Lei L, Li S, Gu Y. Cell wall, cytoskeleton, and cell expansion in higher plants. Mol Plant, 2014, 7: 586-600.
doi: 10.1093/mp/ssu018 pmid: 24557922
[17] Tsabary G, Shani Z, Roiz L, Levy I, Riov J, Shoseyov O. Abnormal ‘wrinkled’ cell walls and retarded development of transgenic Arabidopsis thaliana plants expressing endo-1,4-β-glucanase (cell) antisense. Plant Mol Biol, 2003, 51: 213-224.
pmid: 12602880
[18] Herger A, Dünser K, Kleine-Vehn J, Ringli C. Leucine-rich repeat extensin proteins and their role in cell wall sensing. Curr Biol, 2019, 29: 851-858.
doi: S0960-9822(19)30884-X pmid: 31505187
[19] Fendrych M, Synek L, Pečenková T, Toupalová H, Cole R, Drdová E, Nebesářová J, Šedinová M, Hála M, Fowler J E, Žárský V. The Arabidopsis exocyst complex is involved in cytokinesis and cell plate maturation. Plant Cell, 2010, 22: 3053-3065.
doi: 10.1105/tpc.110.074351
[20] Wen T J, Hochholdinger F, Sauer M, Bruce W, Schnable P S. The roothairless1 gene of maize encodes a homolog of sec3, which is involved in polar exocytosis. Plant Physiol, 2005, 138: 1637-1643.
doi: 10.1104/pp.105.062174
[21] To J P C, Haberer G, Ferreira F J, Deruère J, Mason M G, Schaller G E, Alonso J M, Ecker J R, Kieber J J. Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell, 2004, 16: 658-671.
doi: 10.1105/tpc.018978
[22] 吴健, 孙玥, 张融雪, 李军玲, 王晓静, 闫双勇, 马忠友, 孙林静, 苏京平, 王胜军, 刘学军. 水稻柱头外露率相关性状的调查及高柱头外露率不育系的创制. 天津农业科学, 2017, 23(11): 55-60.
Wu J, Sun Y, Zhang R X, Li J L, Wang X J, Yan S Y, Ma Z Y, Sun L J, Su J P, Wang S J, Liu X J. Investigation of characters related to stigma exserted rate in rice and establishment of male sterile line with high stigma exposure. Tianjin Agric Sci, 2017, 23(11): 55-60. (in Chinese with English abstract)
[23] Shang L, Song J, Yu H, Wang X, Yu C, Wang Y, Li F, Lu Y, Wang T, Ou-Yang B, Zhang J, Larkin R M, Ye Z, Zhang Y. A mutation in a C2H2-type zinc finger transcription factor contributed to the transition toward self-pollination in cultivated tomato. Plant Cell, 2021, 33: 3293-3308.
doi: 10.1093/plcell/koab201
[24] 张栩佳, 胡灵芝, 陈哲皓, 李颖, 王利琳. 花器官大小调控机制的研究进展. 植物生理学报, 2014, 50: 691-697.
Zhang X J, Hu L Z, Chen Z H, Li Y, Wang L L. Research progress in regulation mechanism of floral organ size. Plant Physiol J, 2014, 50: 691-697. (in Chinese with English abstract)
[25] 张鋆鋆. 烟草细胞质遗传柱头外露性状发育特征研究. 河南农业大学硕士学位论文, 河南郑州, 2018.
Zhang Y Y. Study on the Developmental Characteristic of Cytoplasmic Inheritance of Tobacco Stigma Exsertion. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2018. (in Chinese with English abstract)
[1] MIAO Long, SHU Kuo, LI Juan, HUANG Ru, WANG Ye-Xing, Soltani Muhammad Yousof, XU Jing-Hao, WU Chuan-Lei, LI Jia-Jia, WANG Xiao-Bo, QIU Li-Juan. Identification and gene mapping of soybean mutant Mrstz in root-stem transition zone [J]. Acta Agronomica Sinica, 2024, 50(5): 1091-1103.
[2] CAO Song, YAO Min, REN Rui, JIA Yuan, XIANG Xing-Ru, LI Wen, HE Xin, LIU Zhong-Song, GUAN Chun-Yun, QIAN Lun-Wen, XIONG Xing-Hua. A combination of genome-wide association and transcriptome analysis reveal candidate genes affecting seed oil accumulation in Brassica napus [J]. Acta Agronomica Sinica, 2024, 50(5): 1136-1146.
[3] LI Yang-Yang, WU Dan, XU Jun-Hong, CHEN Zhuo-Yong, XU Xin-Yuan, XU Jin-Pan, TANG Zhong-Lin, ZHANG Ya-Ru, ZHU Li, YAN Zhuo-Li, ZHOU Qing-Yuan, LI Jia-Na, LIU Lie-Zhao, TANG Zhang-Lin. Identification of candidate genes associated with drought tolerance based on QTL and transcriptome sequencing in Brassica napus L. [J]. Acta Agronomica Sinica, 2024, 50(4): 820-835.
[4] ZHANG Hui, ZHANG Xin-Yu, YUAN Xu, CHEN Wei-Da, YANG Ting. Transcriptome analysis of tobacco in response to cadmium stress [J]. Acta Agronomica Sinica, 2024, 50(4): 944-956.
[5] WANG Ya-Qi, XU Hai-Feng, LI Shu-Guang, FU Meng-Meng, YU Xi-Wen, ZHAO Zhi-Xin, YANG Jia-Yin, ZHAO Tuan-Jie. Genetic analysis and two pairs of genes mapping in soybean mutant NT301 with disease-like rugose leaf [J]. Acta Agronomica Sinica, 2024, 50(4): 808-819.
[6] WANG Rui, ZHANG Fu-Yao, ZHAN Peng-Jie, CHU Jian-Qiang, JIN Min-Shan, ZHAO Wei-Jun, CHENG Qing-Jun. Identification of candidate genes implicated in low-nitrogen-stress tolerance based on RNA-Seq in sorghum [J]. Acta Agronomica Sinica, 2024, 50(3): 669-685.
[7] LI Shi-Kuan, HONG Hui-Long, FU Jia-Qi, GU Yong-Zhe, SUN Ru-Jian, QIU Li-Juan. Mine the genes of premature yellowing and aging in soybean leaves by BSA-seq combined with RNA-seq technology [J]. Acta Agronomica Sinica, 2024, 50(2): 294-309.
[8] CHEN Tian, LI Yu-Ying, RONG Er-Hua, WU Yu-Xiang. Character identification and floral organ transcriptome analysis on artificial allotetraploids of Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2024, 50(2): 325-339.
[9] ZHU Xiao-Ya, ZHANG Qiang-Qiang, ZHAO Peng, LIU Ming, WANG Jing, JIN Rong, YU Yong-Chao, TANG Zhong-Hou. Transcriptome and metabolomic analysis of foliar spraying of Salvia miltiorrhiza carbon dots to alleviate low phosphorus stress in sweetpotato [J]. Acta Agronomica Sinica, 2024, 50(2): 383-393.
[10] WANG Fei-Fei, ZHANG Sheng-Zhong, HU Xiao-Hui, CHU Ye, CUI Feng-Gao, ZHONG Wen, ZHAO Li-Bo, ZHANG Tian-Yu, GUO Jin-Tao, YU Hao-Liang, MIAO Hua-Rong, CHEN Jing. Comparative transcriptome profiling of dormancy regulatory network in peanut [J]. Acta Agronomica Sinica, 2023, 49(9): 2446-2461.
[11] HU Xin, LUO Zheng-Ying, LI Chun-Jia, WU Zhuan-Di, LI Xu-Juan, LIU Xin-Long. Comparative transcriptome analysis of elite ‘ROC’ sugarcane parents for exploring genes involved in Sporisorium scitamineum infection by using Illumina- and SMRT-based RNA-seq [J]. Acta Agronomica Sinica, 2023, 49(9): 2412-2432.
[12] CHEN Li, WANG Jing, QIU Xiao, SUN Hai-Lian, ZHANG Wen-Hao, WANG Tian-Zuo. Differences of physiological responses and transcriptional regulation of alfalfa with different drought tolerances under drought stresses [J]. Acta Agronomica Sinica, 2023, 49(8): 2122-2132.
[13] SONG Zhao-Jian, FENG Zi-Yi, QU Tian-Ge, LYU Pin-Cang, YANG Xiao-Lu, ZHAN Ming-Yue, ZHANG Xian-Hua, HE Yu-Chi, LIU Yu-Hua, CAI De-Tian. Indica-japonica attribute identification and heterosis utilization of diploid rice lines reverted from tetraploid rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2039-2050.
[14] WANG Juan, XU Xiang-Bo, ZHANG Mao-Lin, LIU Tie-Shan, XU Qian, DONG Rui, LIU Chun-Xiao, GUAN Hai-Ying, LIU Qiang, WANG Li-Ming, HE Chun-Mei. Characterization and genetic analysis of a new allelic mutant of Miniature1 gene in maize [J]. Acta Agronomica Sinica, 2023, 49(8): 2088-2096.
[15] SU Zai-Xing, HUANG Zhong-Qin, GAO Run-Fei, ZHU Xue-Cheng, WANG Bo, CHANG Yong, LI Xiao-Shan, DING Zhen-Qian, YI Yuan. Identification of wheat dwarf mutant Xu1801 and analysis of its dwarfing effect [J]. Acta Agronomica Sinica, 2023, 49(8): 2133-2143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .