Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (11): 2923-2932.doi: 10.3724/SP.J.1006.2025.41080

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and agronomic characterization of imazamox-resistant dwarf mutants in Ningmai 36

GUI Ling-Xing1,2(), LING Xi-Tie2, TANG Zhao-Cheng2, LUO Wen-Zhen1,2, ZHU Pan-Zhen1,2, QIU Ze-Yu2,*(), ZHANG Bao-Long1,2,*()   

  1. 1 College of Life Sciences, Nanjing Agricultural University, Nanjing 210014, Jiangsu, China
    2 Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
  • Received:2024-11-15 Accepted:2025-08-13 Online:2025-11-12 Published:2025-08-26
  • Contact: *E-mail: qzy910525@163.com; E-mail: zhbl2248@hotmail.com
  • Supported by:
    Jiangsu Provincial Independent Innovation Project((CX (23) 3094)

Abstract:

The frequent occurrence of herbicide-resistant volunteer weed plants in wheat fields, combined with poor agronomic performance due to lodging, poses a significant challenge to achieving high yields and yield stability. To address this issue, we applied ethyl methanesulfonate (EMS) mutagenesis to the widely cultivated winter wheat variety Ningmai 36 and generated an M2 population screened for both resistance to the acetolactate synthase (ALS) inhibitor imazamox and reduced plant height. Two stable mutants, WK120 and WK121, were identified that combined both traits. These mutants survived imazamox doses lethal to the wild type and exhibited height reductions of 37% and 29%, respectively. Genotyping revealed a G-to-A point mutation in the ALS gene on the D subgenome, resulting in a serine-to-asparagine substitution at position 627. Comprehensive evaluation of agronomic and yield-related traits showed that WK120 and WK121 outperformed the wild type in several key metrics: thousand-grain weight increased by 4.29% and 5.17%, grain number per spike by 1.9% and 3.1%, and spike length by 1.8% and 2.7%, respectively. Gibberellin (GA3) application experiments confirmed that both mutants remain responsive to GA, indicating that their dwarf phenotype is not due to GA insensitivity. Furthermore, molecular marker assays and Sanger sequencing ruled out the presence of known GA-sensitive dwarfing alleles (Rht4, Rht8, Rht9, Rht11, and Rht22) in both the wild type and mutant lines, suggesting the presence of a previously uncharacterized dwarfing locus in WK120 and WK121. These herbicide-resistant, dwarf derivatives of Ningmai 36 demonstrate strong tolerance to ALS-inhibiting herbicides along with improved agronomic performance, representing valuable genetic resources for future wheat breeding programs.

Key words: wheat, dwarf mutant, imazamox, gibberellin, agronomic traits

Table 1

Selected dwarf genes in gibberellin-sensitive wheat"

基因
Gene
引物名称
Primer name
引物序列
Primer sequence
(5'-3')
片段长度
Fragment length (bp)
退火温度
Annealing temperature
(℃)
染色体
Chromosome
Rht4 WMC317 F
WMC317 R
TGCTAGCAATGCTCCGGGTAAC
TCACGAAACCTTTTCCTCCTCC
170 58 2BL
Rht8 WMC503 F
WMC503 R
GCAATAGTTCCCGCAAGAAAAG
ATCAACTACCTCCAGATCCCGT
275 55 2DS
Rht9 BARC151 F
BARC151 R
TGAGGAAAATGTCTCTATAGCATCC
CGCATAAACACCTTCGCTCTTCCACTC
220 55 5AL
Rht11 WR3 F
WR3 R
GGTAGGGAGGCGAGAGGCGAG
GGCCATCTCCAGCTGCTCCAGCTA
220 65 4B
Rht22 Xgwm471 F
Xgwm471 R
CGGCCCTATCATGGCTG
GCTTGCAAGTTCCATTTTGC
149 60 7AS

Fig. 1

ALS gene sequences from the genomes of imazamox-resistant wheat lines A: WK120 mutation site; B: WK121 mutation site. The red box represents a single point mutation from G-A."

Fig. 2

Resistance levels to imazamox in wild type (WT) Ningmai 36 and dwarf mutants WK120 and WK121 The numbers below the picture indicate the concentration, and the unit of concentration: g a.i. hm-2. Scale bar: 10 cm."

Table 2

Comparison of major agronomic traits between wild type Ningmai 36 and dwarf mutants WK120 and WK121"

材料
Material
宁麦36
Ningmai 36
WK120 WK121
株高Plant height (cm) 80.45±3.29 a 50.60±2.06 c 57.00±3.00 b
旗叶长度Flag leaf length (cm) 18.87±2.32 a 20.17±3.42 a 19.60±3.27 a
旗叶宽度Flag leaf width (cm) 1.69±0.14 a 1.44±0.22 b 1.46±0.32 b
每穗粒数Number of grains per panicle 40.66±7.75 a 41.47±4.36 a 41.93±4.76 a
穗长Spike length (cm) 8.77±0.78 a 8.92±1.08 a 9.01±0.81 a
节间数 Number of internodes 5.90±0.32 a 4.80±0.42 b 4.70±0.48 b
平均节间长Average internode length (cm) 14.28±3.15 a 10.67±3.56 b 13.05±4.88 ab
第4节间充实度Intersegmental fullness of fourth internode (mg cm-1) 24.54±3.46 a 23.18±2.30 a 20.36±5.23 a

Table 3

Comparison of grain morphology and thousand-grain weight between wild type Ningmai 36 and dwarf mutants WK120 and WK121"

材料 Material 宁麦36 Ningmai 36 WK120 WK121
粒长Grain length (cm) 0.66 a 0.64 a 0.66 a
粒宽Grain width (cm) 0.33 a 0.34 a 0.34 a
千粒重Thousand-seed weight (g) 40.82 a 42.58 a 42.93 a

Fig. 3

Major phenotypic characteristics of wild type (WT) Ningmai 36 and mutants WK120 and WK121 A: spike length; B: grain length; C: cross-section of the stem; D: grain width; E: plant height. Scale bars in A-E: 5 cm, 1 cm, 10 mm, 1 cm, and 5 cm."

Fig. 4

Morphological responses of wild type (WT) Ningmai 36 and mutant lines WK120 and WK121 to exogenous gibberellin (GA3) treatment during seedling stage A and B were the effects of gibberellin on the length of the first leaf and the elongation of the coleoplasty at the seedling stage of wheat Ningmai 36 and mutants WK120 and WK121, respectively. C shows the phenotypic comparison of all genotypes under GA3 and MOCK treatments. GA: gibberellin. Different lowercase and uppercase letters represent significant difference at the 0.05 and 0.01 levels, respectively. Scale bar in C: 1 cm."

Fig. 5

Molecular marker detection and Sanger sequencing of wheat dwarfing-related genes A and B represent molecular marker detection and Sanger sequencing, respectively. M: marker, 100-5000 bp. Lanes 1-3 were indicated: wild type Ningmai 36, mutant WK120 and mutant WK121. The target fragment size of each gene has been noted. In figure B, the red box indicates that wild type (WT), WK120, and WK121 all have CG bases in the target region, with no T-type mutations present in the mutants."

[1] 朱春梅, 孙环宇, 周长勇. 多种除草剂组合对麦田抗性杂草的防除效果研究. 现代农业科技, 2022, (11): 70-73.
Zhu C M, Sun H Y, Zhou C Y. Study on the control effect of multiple herbicide combinations on resistant weeds in wheat field. Mod Agric Sci Technol, 2022, (11): 70-73 (in Chinese with English abstract).
[2] 张新凤, 张国, 于居龙, 余向阳, 程金金, 吴雪芬, 束兆林. 不同化控产品对镇江地区小麦抗倒性及产量的影响. 大麦与谷类科学, 2024, 41(4): 35-39.
Zhang X F, Zhang G, Yu J L, Yu X Y, Cheng J J, Wu X F, Shu Z L. Effects of different chemical control products on lodging resistance and yield of wheat in Zhenjiang area. Barley Cereal Sci, 2024, 41(4): 35-39 (in Chinese with English abstract).
[3] 陈本洋. 不同除草剂对稻茬麦田杂草的防除效果. 现代农业科技, 2025, (2): 58-60.
Chen B Y. Evaluation of different herbicides for weed control in wheat grown after rice harvest. Mod Agric Sci Technol, 2025, (2): 58-60 (in Chinese).
[4] 魏丽, 陈译君, 施升高, 赵厚亚, 曹伟召, 肖耀忠. 不同除草剂对冬小麦田杂草的防效研究. 现代农业科技, 2025, (1): 80-82.
Wei L, Chen Y J, Shi S G, Zhao H Y, Cao W Z, Xiao Y Z. Study on the control effect of different herbicides on weeds in winter wheat field. Mod Agric Sci Technol, 2025, (1): 80-82 (in Chinese).
[5] Ali F, Tang Z C, Mo G A, Zhang B L, Ling X T, Qiu Z Y. Taxonomic and functional changes in wheat rhizosphere microbiome caused by imidazoline-based herbicide and genetic modification. Environ Res, 2024, 262: 119726.
[6] Flintham J E, Gale M D. The tom thumb dwarfing gene Rht3 in wheat. Theor Appl Genet, 1983, 66: 249-256.
doi: 10.1007/BF00251155 pmid: 24263924
[7] Worland A, Sayers E J, Korzun V. Allelic variation at the dwarfing gene Rht8 locus and its significance in international breeding programmes. Euphytica, 2001, 119: 157-161.
[8] Peng J R, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, et al. Green revolution genes encode mutant gibberellin response modulators. Nature, 1999, 400: 256-261.
[9] 周强, 袁中伟, 张连全, 甯顺腙, 任勇, 陶军, 李生荣, 刘登才. 四倍体小麦地方品种矮蓝麦矮秆性状的遗传分析. 作物学报, 2015, 41: 1899-1905.
doi: 10.3724/SP.J.1006.2015.01899
Zhou Q, Yuan Z W, Zhang L Q, Ning S Z, Ren Y, Tao J, Li S R, Liu D C. Genetic analysis on dwarfing trait in landrace Ailanmai of Triticum turgidum L. ssp. turgidum. Acta Agron Sin, 2015, 41: 1899-1905 (in Chinese with English abstract).
[10] 单宝雪, 刘秀坤, 肖延军, 展晓孟, 黄金鑫, 刘百川, 张玉梅, 李豪圣, 刘建军, 高欣, 等. 小麦矮秆基因Rht-B1bRht-D1b的降秆效应及株高相关QTL挖掘. 麦类作物学报, 2023, 43: 1105-1114.
Shan B X, Liu X K, Xiao Y J, Zhan X M, Huang J X, Liu B C, Zhang Y M, Li H S, Liu J J, Gao X, et al. Height reduced effect of wheat dwarf genes Rht-B1b and Rht-D1b and mining of plant height related QTL. J Triticeae Crops, 2023, 43: 1105-1114 (in Chinese with English abstract).
[11] Asghar G B, 李翠, 胡银岗. 小麦矮秆基因Rht8对株高和其它农艺性状的遗传效应. 干旱地区农业研究, 2014, 32(1): 252-257.
Asghar G B, Li C, Hu Y G. The effects of dwarfing Rht8 on plant height and other agronomic traits in common wheat. Agric Res Arid Areas, 2014, 32(1): 252-257 (in Chinese with English abstract).
[12] Rebetzke G J, Richards R A. Gibberellic acid-sensitive dwarfing genes reduce plant height to increase kernel number and grain yield of wheat. Aust J Agric Res, 2000, 51: 235.
[13] Liu Y X, Zhang J L, Hu Y G, Chen J L. Dwarfing genes Rht4 and Rht-B1b affect plant height and key agronomic traits in common wheat under two water regimes. Field Crops Res, 2017, 204: 242-248.
[14] Xiong H C, Zhou C Y, Fu M Y, Guo H J, Xie Y D, Zhao L S, Gu J Y, Zhao S R, Ding Y P, Li Y T, et al. Cloning and functional characterization of Rht8, a “Green Revolution” replacement gene in wheat. Mol Plant, 2022, 15: 373-376.
[15] 周春云. 小麦矮秆基因Rht8的图位克隆与功能分析. 西北农林科技大学博士学位论文, 陕西杨凌, 2023.
Zhou C Y. Map-based Cloning and Functional Analysis of Wheat Dwarf Gene Rht8. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2023 (in Chinese with English abstract).
[16] Rebetzke G J, Ellis M H, Bonnett D G, Mickelson B, Condon A G, Richards R A. Height reduction and agronomic performance for selected gibberellin-responsive dwarfing genes in bread wheat (Triticum aestivum L.). Field Crops Res, 2012, 126: 87-96.
[17] Linn T Z, Bachir D G, Chen L, Hu Y G. Effects of gibberellic acid responsive dwarfing gene Rht9 on plant height and agronomic traits in common wheat. Am J Agric For, 2017, 5: 102.
[18] Ellis M H, Rebetzke G J, Chandler P, Bonnett D, Spielmeyer W, Richards R A. The effect of different height reducing genes on the early growth of wheat. Funct Plant Biol, 2004, 31: 583-589.
doi: 10.1071/FP03207 pmid: 32688930
[19] Mohan A, Grant N P, Schillinger W F, Gill K S. Characterizing reduced height wheat mutants for traits affecting abiotic stress and photosynthesis during seedling growth. Physiol Plant, 2021, 172: 233-246.
doi: 10.1111/ppl.13321 pmid: 33421138
[20] 包芸菁. 简阳矮蓝麦矮秆基因Rht22的紧密连锁标记开发及育种利用. 四川农业大学硕士学位论文, 四川雅安, 2021.
Bao Y J. Development of Tight Linkage Markersand Utilization of the Dwarfing Gene Rht22 of Jianyang Ailanmai. MS Thesis of Sichuan Agricultural University, Ya’an, Sichuan, China, 2021 (in Chinese with English abstract).
[21] 张红, 王歆, 钱禄巧, 金彦刚, 杨永乐, 夏中华. 53份小麦品系中矮秆基因检测及降秆效应分析. 甘肃农业大学学报, 2025, 60(1): 58-66.
Zhang H, Wang X, Qian L Q, Jin Y G, Yang Y L, Xia Z H. Detection of dwarf genes and analysis of plant height reduction effects in 53 wheat lines. J Gansu Agric Univ, 2025, 60(1): 58-66 (in Chinese with English abstract).
[22] Xu H L, Cheng J P, Leng Q L, Cao R, Su W C, Sun L L, Xue F, Han Y, Wu R H. Characterization of acetolactate synthase genes and resistance mechanisms of multiple herbicide resistant Lolium multiflorum. Plant Physiol Biochem, 2025, 219: 109324.
[23] 卢一帆. 新疆小麦长颖基因TaVRT2的精细定位、克隆与功能验证. 南京农业大学硕士学位论文, 江苏南京, 2021.
Lu Y F. Fine Mapping, Cloning and Functional Verification of Along Glume Regulating Gene TaVRT2 in Triticum Petropavlovskyi. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2021 (in Chinese with English abstract).
[24] 赵秋实, 李倩倩, 王超杰, 蒋宏宝, 耿皆飞, 杨媛, 刘录祥, 张小燕, 谢彦周, 王成社. 普通小麦品种陕农33矮秆突变体的矮化效应分析. 麦类作物学报, 2018, 38: 1053-1064.
Zhao Q S, Li Q Q, Wang C J, Jiang H B, Geng J F, Yang Y, Liu L X, Zhang X Y, Xie Y Z, Wang C S. Analysis of the dwarfing mutagenic effect on dwarf mutants of common wheat variety Shaannong 33. J Triticeae Crops, 2018, 38: 1053-1064 (in Chinese with English abstract).
[25] 苏在兴, 黄忠勤, 高闰飞, 朱雪成, 王波, 常勇, 李小珊, 丁震乾, 易媛. 小麦矮秆突变体Xu1801的鉴定及其矮化效应分析. 作物学报, 2023, 49: 2133-2143.
doi: 10.3724/SP.J.1006.2023.21056
Su Z X, Huang Z Q, Gao R F, Zhu X C, Wang B, Chang Y, Li X S, Ding Z Q, Yi Y. Identification of wheat dwarf mutant Xu1801 and analysis of its dwarfing effect. Acta Agron Sin, 2023, 49: 2133-2143 (in Chinese with English abstract).
[26] 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析. 作物学报, 2021, 47: 974-982.
doi: 10.3724/SP.J.1006.2021.01066
He J Y, Yin S Q, Chen Y Q, Xiong J L, Wang W B, Zhou H B, Chen M, Wang M Y, Chen S W. Identification of dwarf mutants in wheat and association analysis of mutant traits. Acta Agron Sin, 2021, 47: 974-982 (in Chinese with English abstract).
[27] 周田田, 唐兆成, 李笑, 朱鹏, 邓晶晶, 杨郁文, 张保龙, 郭冬姝. 利用基因编辑技术创制低谷蛋白水稻种质. 作物学报, 2024, 50: 2435-2446.
doi: 10.3724/SP.J.1006.2024.32060
Zhou T T, Tang Z C, Li X, Zhu P, Deng J J, Yang Y W, Zhang B L, Guo D S. Development of low-gluten rice germplasm using gene editing technology. Acta Agron Sin, 2024, 50: 2435-2446 (in Chinese with English abstract).
[28] Gale M D, Marshall G A. The nature and genetic control of gibberellin insensitivity in dwarf wheat grain. Heredity, 1975, 35: 55-65.
[29] 项秉晗, 蔡新仪, 彭震, 黄卉, 董立尧. 甲氧咪草烟对耐咪唑啉酮类除草剂水稻后茬作物的安全性. 农药, 2022, 61: 889-893.
Xiang B H, Cai X Y, Peng Z, Huang H, Dong L Y. Safety assessment of imazamox-resistant rice on subsequent crops following imidazolinone herbicide application. Agrochemicals, 2022, 61: 889-893 (in Chinese with English abstract).
[30] Shimizu, Tsutomu, Nakayama I, Nagayama K, Miyazawa T, Nezu Y. Herbicide Classes in Development:Mode of Action, Targets, Genetic Engineering, Chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. pp 1-41.
[31] Yu Q, Han H P, Powles S B. Mutations of the ALS gene endowing resistance to ALS-inhibiting herbicides in Lolium rigidum populations. Pest Manag Sci, 2008, 64: 1229-1236.
[32] Zhou Q Y, Liu W P, Zhang Y S, Liu Kevin K. Action mechanisms of acetolactate synthase-inhibiting herbicides. Pestic Biochem Physiol, 2007, 89: 89-96.
[33] Sun P L, Niu L L, He P F, Yu H Y, Chen J C, Cui H L, Li X J. Trp-574-Leu and the novel Pro-197-His/Leu mutations contribute to penoxsulam resistance in Echinochloa crus-galli (L.) P. Beauv. Front Plant Sci, 2024, 15: 1488976.
[34] Busov V B, Brunner A M, Strauss S H. Genes for control of plant stature and form. New Phytol, 2008, 177: 589-607.
doi: 10.1111/j.1469-8137.2007.02324.x pmid: 18211474
[35] Rebetzke G J, Ellis M H, Bonnett D G, Condon A G, Falk D, Richards R A. The Rht13 dwarfing gene reduces peduncle length and plant height to increase grain number and yield of wheat. Field Crops Res, 2011, 124: 323-331.
[36] 于东艳, 朱欣欣, 李巧云, 姜玉梅, 牛吉山. 小麦dms突变体株高与赤霉素代谢的关系. 河南农业科学, 2016, 45(5): 18-21.
Yu D Y, Zhu X X, Li Q Y, Jiang Y M, Niu J S. Relationship between plant height and gibberellin metabolism in wheat dms mutants. Henan Agric Sci, 2016, 45(5): 18-21 (in Chinese with English abstract).
[37] Korzun V, Röder M S, Ganal M W, Worland A J, Law C N. Genetic analysis of the dwarfing gene (Rht8) in wheat Part I: molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet, 1998, 96: 1104-1109.
[38] Worland A J, Korzun V, Röder M S, Ganal M W, Law C N. Genetic analysis of the dwarfing gene Rht8 in wheat Part II: the distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. Theor Appl Genet, 1998, 96: 1110-1120.
[39] Lu Q M, Lu S, Wang M, Cui C G, Condon A G, Jatayev S, Chen L, Hu Y G. The exogenous GA3 greatly affected the grain-filling process of dwarf gene Rht4 in bread wheat. Physiol Plant, 2022, 174: e13725.
[40] Ellis M H, Rebetzke G J, Azanza F, Richards R A, Spielmeyer W. Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor Appl Genet, 2005, 111: 423-430.
doi: 10.1007/s00122-005-2008-6 pmid: 15968526
[41] Li A X, Yang W L, Guo X L, Liu D C, Sun J Z, Zhang A M. Isolation of a gibberellin-Insensitive dwarfing gene, Rht-B1e, and development of an allele-specific PCR marker. Mol Breed, 2012, 30: 1443-1451.
[42] Wang C, Bao Y J, Yao Q, Long D, Xiao X, Fan X, Kang H Y, Zeng J, Sha L N, Zhang H Q, et al. Fine mapping of the reduced height gene Rht22 in tetraploid wheat landrace Jianyangailanmai (Triticum turgidum L.). Theor Appl Genet, 2022, 135: 3643-3660.
[1] HU Run-Hui, WANG Jun-Cheng, SI Er-Jing, ZHANG Hong, LI Xing-Mao, MA Xiao-Le, MENG Ya-Xiong, WANG Hua-Jun, LIU Qing, YAO Li-Rong, LI Bao-Chun. Screening of drought and salt tolerant germplasm during wheat seedling stage and comprehensive evaluation of drought and salt tolerance [J]. Acta Agronomica Sinica, 2025, 51(9): 2371-2386.
[2] YANG Ying-Cong, ZHANG Jun-Hao, TANG Yi-Zhe, QIAO Chang-Chang, WANG Peng-Bo, HUANG Ming, XU Guo-Wei, WANG He-Zheng. Effects of straw returning and phosphorus application rates on grain starch and the activities of starch synthesis-related enzymes in dryland wheat [J]. Acta Agronomica Sinica, 2025, 51(9): 2467-2484.
[3] KONG De-Zhen, SANG Wei, NIE Ying-Bin, LI Wei, XU Hong-Jun, LI Jiang-Bo, LIU Peng-Peng, TIAN Xiao-Ming. Comparative analysis of metabolite changes during young panicle development in wheat AL type cytoplasmic male serile line and homologous maintainers [J]. Acta Agronomica Sinica, 2025, 51(9): 2454-2466.
[4] LI Yun-Xiang, GUO Qian-Qian, HOU Wan-Wei, ZHANG Xiao-Juan. Genome-wide association analysis of drought resistance traits in wheat seedlings introduced from ICARDA [J]. Acta Agronomica Sinica, 2025, 51(9): 2387-2398.
[5] LI Lu-Qi, CHENG Yu-Kun, BAI Bin, LEI Bin, GENG Hong-Wei. Genome-wide association analysis of stomatal-related traits in wheat leaves [J]. Acta Agronomica Sinica, 2025, 51(9): 2266-2284.
[6] YANG Ting-Ting, CHEN Juan, ABDUL Rehman, LI Jing, YAN Su-Hui, WANG Jian-Lai, LI Wen-Yang. Effects of weak light post-anthesis on dry matter accumulation and translocation, grain yield, and starch quality in soft wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2204-2219.
[7] YAN Zhe-Lin, REN Qiang, FAN Zhi-Long, YIN Wen, SUN Ya-Li, FAN Hong, HE Wei, HU Fa-Long, YAN Li-Juan, CHAI Qiang. Postponed nitrogen application optimizes interspecific interactions and enhances nitrogen use efficiency in wheat-maize intercropping systems in an oasis irrigation region [J]. Acta Agronomica Sinica, 2025, 51(8): 2190-2203.
[8] WANG Yao-Kuo, WANG Wen-Zheng, ZHANG Min, LIU Xi-Wei, YANG Min, LI Hao-Yu, ZHANG Ling-Xin, YAN Yan-Fei, CAI Rui-Guo. Effects of water and nitrogen treatments on GMP synthesis and flour processing quality of winter wheat grain [J]. Acta Agronomica Sinica, 2025, 51(8): 2176-2189.
[9] JIANG Peng, WU Lei, HUANG Qian-Nan, LI Chang, WANG Hua-Dun, HE Yi, ZHANG Peng, ZHANG Xu. Exploring the breeding utilization of the dwarfing gene Rht-D1 in wheat in the middle and lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2025, 51(8): 2077-2086.
[10] CAI Jin-Shan, LI Chao-Nan, WANG Jing-Yi, LI Ning, LIU Yu-Ping, JING Rui-Lian, LI Long, SUN Dai-Zhen. Genome-wide association study of root traits in wheat seedlings and identification of a superior allele at TaSRL-3B [J]. Acta Agronomica Sinica, 2025, 51(8): 2020-2032.
[11] ZHANG Fei-Fei, HE Wan-Long, JIAO Wen-Juan, BAI Bin, GENG Hong-Wei, CHENG Yu-Kun. Meta-analysis of stripe rust resistance-associated traits and candidate gene identification in wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2111-2127.
[12] SONG Gai-Li, WANG Lu-Qian, QU Ke-Fei, TANG Jian-Wei, DONG Chun-Hao, HUANG Zhen-Pu, GAO Yan, NIU Ji-Shan, YIN Gui-Hong, LI Qiao-Yun. Effect of Bipolaris sorokiniana-induced black point disease on starch content, particle size distribution, and pasting properties of medium-gluten wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2164-2175.
[13] GAO Meng-Juan, ZHAO He-Ying, CHEN Jia-Hui, CHEN Xiao-Qian, NIU Meng-Kang, QIAN Qi-Run, CUI Lu-Fei, XING Jiang-Min, YIN Qing-Miao, GUO Wen, ZHANG Ning, SUN Cong-Wei, YANG Xia, PEI Dan, JIA Ao-Lin, CHEN Feng, YU Xiao-Dong, REN Yan. Mapping and identification of a novel sharp eyespot resistance locus Qse.hnau-5AS and its candidate genes in wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2240-2250.
[14] LU Xiang-Qian, FU Yu-Jie, ZHAO Jun-Heng, ZHENG Nan-Nan, SUN Nan-Nan, ZHANG Guo-Ping, YE Ling-Zhen. Characterization of spike morphological traits at optimal sampling stage and screening of high-culturability genotypes in wheat anther culture [J]. Acta Agronomica Sinica, 2025, 51(8): 2033-2047.
[15] WANG Tian-Yi, YANG Xiu-Juan, ZHAO Jia-Jia, HAO Yu-Qiong, ZHENG Xing-Wei, WU Bang-Bang, LI Xiao-Hua, HAO Shui-Yuan, ZHENG Jun. Gliadin diversity and its effects on flour quality in wheat from Shanxi province, China [J]. Acta Agronomica Sinica, 2025, 51(7): 1784-1800.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!