Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (7): 1914-1933.doi: 10.3724/SP.J.1006.2025.41067

;

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effects of nitrogen and potassium fertilizer management on grain yield and quality of weak-gluten wheat

ZHAO Jia-Wen(), LI Zi-Hong, OU Xing-Yu, WANG Yi-Lang, DING Xiao-Fei, LIANG Yue-Yao, DING Wen-Jin, ZHANG Hai-Peng, MA Shang-Yu, FAN Yong-Hui, HUANG Zheng-Lai(), ZHANG Wen-Jing()   

  1. College of Agriculture, Anhui Agricultural University / Key Laboratory of Wheat Biology and Genetic Breeding in the South of Huang-Huai Rivers, Ministry of Agriculture and Rural Affairs, Hefei 230036, Anhui, China
  • Received:2024-10-11 Accepted:2025-03-27 Online:2025-07-12 Published:2025-04-01
  • Contact: *E-mail: xdnyyjs@163.com; E-mail: zhangwenjing79@126.com
  • Supported by:
    National Key Research and Development Program(2023YFD230020203);National Key Research and Development Program(2022YFD230140405);Major Scientific Research Project of Anhui Provincial Universities and Colleges(2023AH040133);Anhui Provincial Science and Technology Special Team(23231005)

Abstract:

To investigate the effects of nitrogen and potassium fertilizer management on the yield and quality of weak-gluten wheat and to provide a theoretical basis for high-yield, high-quality production, a field experiment was conducted during the wheat growing seasons from 2022 to 2024 using Baihumai 1 and Wanximai 0638 as experimental materials. Four nitrogen application levels were applied: N0 (0 kg hm-2), N10 (150 kg hm-2), N12 (180 kg hm-2), and N14 (210 kg hm-2), along with three basal-to-topdressing nitrogen ratios: F1 (8:2), F2 (7:3), and F3 (6:4). Potassium fertilizer was applied at 150 kg hm-2 with two treatments: a one-time basal application (K1) and a split application with a basal-to-topdressing ratio of 5:5 (K2). The study examined the effects of these treatments on tiller dynamics, dry matter accumulation and translocation, nitrogen accumulation, yield components, grain protein content, and wet gluten content of weak-gluten wheat. The results showed that nitrogen and potassium fertilizer management significantly influenced wheat growth and development. Tiller dynamics, dry matter accumulation and translocation, and plant nitrogen accumulation increased with higher nitrogen application rates and a greater proportion of topdressed nitrogen. Under the same nitrogen application rate and topdressing proportion, potassium topdressing resulted in higher tiller numbers and greater dry matter accumulation compared to a one-time basal application. Additionally, the nitrogen application rate, topdressing proportion, and potassium topdressing significantly affected yield-related traits, including thousand-grain weight, grains per spike, number of spikes, and overall yield, all of which increased with higher nitrogen rates and a greater proportion of topdressed nitrogen. When potassium fertilizer was topdressed rather than applied as a single basal dose, these yield components were further enhanced. Grain protein content and wet gluten content also increased with higher nitrogen application rates and a greater proportion of topdressed nitrogen. Among fertilization treatments that met national standards for high-quality weak-gluten wheat, the N12K2F2 treatment resulted in an average increase of 7.3% and 12.3% in dry matter accumulation at flowering and maturity stages, respectively, compared to N12K1F2. Additionally, post-flowering dry matter production and its contribution to grain yield increased by 19.0% and 7.7%, respectively, while nitrogen accumulation improved by 13.5%. Compared to N0K2, the N12K2F2 treatment increased thousand-grain weight, grains per spike, number of spikes, and yield by 6.7%, 86.8%, 25.1%, and 152.7%, respectively. Relative to N12K1F2, these parameters increased by 1.6%, 5.5%, 4.6%, and 12.6%, respectively. In conclusion, under the experimental conditions, the optimal fertilization strategy for simultaneously improving weak-gluten wheat yield and quality was a nitrogen application rate of 180 kg hm-2, a basal-to-topdressing ratio of 7:3, and topdressed potassium fertilizer at the jointing stage.

Key words: nitrogen fertilizer operation, potassium fertilizer application, weak gluten wheat, yield, quality

Fig. 1

Average precipitation and average temperature during wheat growth period"

Table 1

Analysis of variance on the effects of nitrogen and potassium fertilizer management on the tiller dynamics, dry matter accumulation, and nitrogen accumulation of weak-gluten wheat"

年份
Year
处理
Treatment
白湖麦1号 BHM 1
茎蘖动态
Dynamics of tillering
干物质积累
Dry matter accumulation
氮素积累
Nitrogen accumulation
(kg hm-2)
拔节期
Jointing stage
开花期
Anthesis stage
成熟期
Maturing stage
拔节期
Jointing stage
开花期
Anthesis stage
成熟期
Maturing stage
2022-2023 施氮量N level (N) ** ** ** ** ** ** **
追氮比例N topdressing ratio (F) ** NS ** ** ** ** **
钾肥追施Potassium top dressing (K) ** NS NS ** ** ** **
N×F NS NS NS ** * ** **
N×K NS NS NS ** NS ** **
K×F NS NS NS NS NS NS **
N×K×F NS NS NS NS NS * **
2023-2024 施氮量N level (N) ** ** ** ** ** ** **
追氮比例N topdressing ratio (F) NS * ** ** ** ** **
钾肥追施Potassium top dressing (K) NS NS * ** ** ** **
N×F NS NS NS ** NS ** **
N×K NS NS NS ** NS NS *
K×F NS NS NS ** NS NS *
N×K×F NS NS NS NS NS NS NS
年份
Year
处理
Treatment
皖西麦0638 WXM 0638
茎蘖动态
Dynamics of tillering
干物质积累
Dry matter accumulation
氮素积累
Nitrogen accumulation
(kg hm-2)
拔节期
Jointing stage
开花期
Anthesis stage
成熟期
Maturing stage
拔节期
Jointing stage
开花期
Anthesis stage
成熟期
Maturing stage
2022-2023 施氮量N level (N) ** ** ** ** ** ** **
追氮比例N topdressing ratio (F) * * ** ** ** ** **
钾肥追施Potassium top dressing (K) * * * ** ** ** **
N×F NS NS NS ** NS ** **
N×K NS NS NS NS NS NS **
K×F NS NS NS NS NS NS **
N×K×F NS NS NS NS NS NS **
2023-2024 施氮量N level (N) ** ** ** ** ** ** **
追氮比例N topdressing ratio (F) * * ** ** ** ** **
钾肥追施Potassium top dressing (K) NS * ** ** ** ** **
N×F NS NS NS ** ** ** **
N×K NS NS NS NS NS ** **
K×F NS NS NS NS NS NS NS
N×K×F NS NS NS NS NS NS NS

Fig. 2

Effects of nitrogen and potassium fertilizer management on the tiller dynamics of weak-gluten wheat BHM 1: Baihumai 1, WXM 0638: Wanximai 0638. N0: the nitrogen application rate of 0 kg hm-2, N10: the nitrogen application rate of 150 kg hm-2, N12: the nitrogen application rate of 180 kg hm-2, N14: the nitrogen application rate of 210 kg hm-2, K1: the one-time basal application of potassium fertilizer, K2: the potassium fertilizer base chase ratio of 5:5, F1: a nitrogen-based top dressing ratio of 8:2, F2: a nitrogen-based top dressing ratio of 7:3, F3: a nitrogen-based top dressing ratio of 6:4. Different lowercase letters indicate significant differences among different treatments (P < 0.05)."

Fig. 3

Effects of nitrogen and potassium fertilizer management on the above-ground dry matter accumulation of weak-gluten wheat from 2022 to 2023 Treatments and abbreviations are the same as those given in Fig. 2. JS: jointing stage, AS: anthesis stage, MS: maturing stage. Different lowercase letters indicate significant differences among different treatments (P < 0.05)."

Fig. 4

Effects of nitrogen and potassium fertilizer management on the above-ground dry matter accumulation of weak-gluten wheat from 2023 to 2024 Treatments and abbreviations are the same as those given in Figs. 2 and 3. Different lowercase letters indicate significant differences among different treatments (P < 0.05)."

Table 2

Effects of nitrogen and potassium fertilizer management on dry matter translocation of wheat and its contribution rate to grain yield (2022-2023)"

处理
Treatment
白湖麦1号 BHM 1
花前干物质
Dry matter before anthesis
花后干物质
Dry matter after anthesis
PTA
(kg hm-2)
PTR
(%)
CPT
(%)
PAA
(kg hm-2)
CPA
(%)
N0K1 771.59 h 24.54 i 25.93 ghi 1871.35 i 62.90 abcde
N0K2 759.44 h 21.88 i 22.25 i 2288.97 i 67.07 a
N10K1F1 2409.59 efg 44.17 bcd 40.55 acd 3291.24 h 55.38 efg
N10K1F2 2213.51 g 37.82 efg 32.43 cdefgh 4108.18 fg 60.19 abcdef
N10K1F3 2172.13 g 34.88 gh 28.35 fghi 4987.29 cd 65.09 abc
N10K2F1 2340.60 fg 40.30 cdef 36.12 bcdef 3934.67 fgh 60.72 abcdef
N10K2F2 2206.75 g 36.24 fgh 29.14 fghi 4877.23 cde 64.40 abcd
N10K2F3 2084.00 g 31.97 h 24.49 hi 5617.26 bc 66.01 ab
N12K1F1 3007.83 bcde 47.47 ab 46.38 a 3459.37 gh 53.34 fg
N12K1F2 3021.46 bcde 43.03 bcd 39.72 abcde 4321.12 def 56.80 defg
N12K1F3 2653.58 defg 35.30 gh 30.51 defghi 5616.26 bc 64.58 abc
N12K2F1 2982.28 bcde 42.93 bcd 40.76 abc 4313.11 def 58.94 bcdefg
N12K2F2 2879.11 cdef 39.71 defg 36.16 bcdef 4928.43 cde 61.91 abcde
N12K2F3 2517.59 defg 32.76 h 28.58 fghi 5783.81 b 65.67 ab
N14K1F1 3771.76 a 49.56 a 46.09 ab 4214.13 def 51.50 g
N14K1F2 3560.96 ab 44.04 bcd 40.53 abcd 4871.81 cde 55.46 efg
N14K1F3 3408.79 abc 40.90 cdef 36.83 abcdef 5799.84 b 62.66 abcde
N14K2F1 3577.03 ab 45.17 abc 41.12 abc 4986.75 cd 57.32 cdefg
N14K2F2 3497.50 abc 41.57 cde 35.88 cdefg 5861.74 b 60.13 abcdef
N14K2F3 3152.92 abcd 35.21 gh 30.11 efghi 6782.26 a 64.77 abc
施氮量 N level (N) ** ** ** ** **
追氮比例 N topdressing ratio (F) * ** ** ** **
钾肥追施 Potassium top dressing (K) NS ** ** ** **
N × F NS ** NS ** NS
N × K NS NS NS NS NS
K × F NS NS NS NS NS
N × K × F NS NS NS NS NS
处理
Treatment
皖西麦0638 WXM 0638
花前干物质
Dry matter before anthesis
花后干物质
Dry matter after anthesis
PTA
(kg hm-2)
PTR
(%)
CPT
(%)
PAA
(kg hm-2)
CPA
(%)
N0K1 752.58 i 27.52 ij 25.74 cdefgh 2105.78 l 72.02 b
N0K2 663.82 i 21.16 k 16.91 gh 3097.96 k 78.91 a
N10K1F1 1717.54 efgh 38.11 bcd 29.24 bcdef 3556.54 jk 60.55 defg
N10K1F2 1589.22 fgh 33.29 defg 24.35 defgh 4046.75 hij 62.01 cdef
N10K1F3 1467.67 gh 28.41 ghi 20.13 fgh 4987.25 def 68.39 bc
N10K2F1 1603.01 fgh 32.26 efghi 26.77 cdefg 3814.67 ij 63.71 cdef
N10K2F2 1447.09 gh 27.30 ij 20.76 fgh 4523.27 fgh 64.89 cde
N10K2F3 1284.82 h 22.88 jk 16.22 h 5478.83 bcd 69.16 bc
N12K1F1 2369.14 bcd 41.81 ab 37.96 ab 3674.95 ij 58.88 efg
N12K1F2 2241.86 cde 36.73 bcdef 32.12 abcde 4162.62 hi 59.64 defg
N12K1F3 2205.27 cde 33.59 def 27.18 cdefg 5260.75 cde 64.84 cde
N12K2F1 2182.49 cde 35.62 cdef 29.96 abcdef 4376.84 gh 60.08 defg
N12K2F2 2115.86 cdef 32.75 efgh 28.08 bcdef 4783.15 efg 63.49 cdef
N12K2F3 1919.60 defg 27.78 hij 21.71 efgh 5878.37 ab 66.47 bcd
N14K1F1 3135.28 a 45.58 a 39.67 a 3836.57 ij 48.54 h
N14K1F2 2986.21 a 40.94 ab 34.37 abcd 4951.80 ef 57.00 fg
N14K1F3 2887.24 ab 37.41 bcde 28.61 bcdef 5483.85 bcd 54.35 gh
N14K2F1 2924.38 ab 40.61 abc 34.95 abc 4516.99 fgh 53.98 gh
N14K2F2 2860.42 ab 37.00 bcdef 28.68 bcdef 5715.61 bc 57.31 fg
N14K2F3 2597.83 abc 31.83 fghi 24.56 cdefgh 6308.31 a 59.63 defg
施氮量 N level (N) ** ** ** ** **
追氮比例 N topdressing ratio (F) NS ** ** ** **
钾肥追施 Potassium top dressing (K) * ** ** ** **
N × F NS * NS ** NS
N × K NS NS NS * NS
K × F NS NS NS NS NS
N × K × F NS NS NS NS NS

Table 3

Effects of nitrogen and potassium fertilizer management on dry matter translocation of wheat and its contribution rate to grain yield (2023-2024)"

处理
Treatment
白湖麦1号 BHM 1
花前干物质Dry matter before anthesis 花后干物质Dry matter after anthesis
PTA
(kg hm-2)
PTR
(%)
CPT
(%)
PAA
(kg hm-2)
CPA
(%)
N0K1 859.03 h 37.55 ghi 37.67 bcde 1401.65 l 61.46 b
N0K2 652.87 h 27.44 k 20.25 j 2486.56 k 77.12 a
N10K1F1 1892.38 efg 46.81 bcde 40.73 abcd 2487.85 k 53.54 bcde
N10K1F2 1702.74 g 39.36 fghi 31.10 efghi 3243.96 ghi 59.25 bc
N10K1F3 1576.92 g 33.99 ij 23.73 ij 3983.30 def 59.93 bc
N10K2F1 1811.67 fg 41.98 defg 35.88 cdef 2898.93 ijk 57.42 bcd
N10K2F2 1672.92 g 35.99 hij 24.39 hij 4035.69 de 58.84 bc
N10K2F3 1540.54 g 31.44 jk 20.46 j 4661.21 bc 61.92 b
N12K1F1 2500.28 bcd 51.12 ab 44.95 ab 2558.22 jk 45.99 ef
N12K1F2 2478.33 bcd 47.03 bcde 31.82 efgh 3496.35 fgh 44.89 ef
N12K1F3 2336.18 cde 41.46 efgh 26.52 hij 4237.15 cd 48.10 def
N12K2F1 2491.68 bcd 46.96 bcde 43.00 abc 3048.94 hij 52.62 bcde
N12K2F2 2390.69 bcd 42.50 defg 28.91 fhi 4188.74 cde 50.66 cde
N12K2F3 2252.82 def 36.79 ghij 24.59 hij 4976.59 b 54.32 bcde
N14K1F1 3102.05 a 54.79 a 45.96 a 2671.60 jk 39.58 f
N14K1F2 2900.82 ab 49.34 bc 34.66 defg 3671.09 efg 43.87 ef
N14K1F3 2825.93 abc 44.46 cdef 27.10 ghij 4699.59 bc 45.07 ef
N14K2F1 2772.98 abcd 47.68 bcd 38.12 bcde 3444.84 gh 47.36 def
N14K2F2 2766.34 abcd 44.47 cdef 30.66 efghi 4477.08 bcd 49.62 cdef
N14K2F3 2603.96 abcd 38.32 ghi 23.77 ij 5522.21 a 50.41 cde
施氮量N level (N) ** ** ** ** **
追氮比例 N topdressing ratio (F) * ** ** ** NS
钾肥追施 Potassium top dressing (K) * ** ** ** **
N × F NS ** ** ** NS
N × K NS * ** NS **
K × F NS NS NS NS NS
N × K × F NS NS NS NS NS
处理
Treatment
皖西麦0638 WXM 0638
花前干物质Dry matter before anthesis 花后干物质Dry matter after anthesis
PTA
(kg hm-2)
PTR
(%)
CPT
(%)
PAA
(kg hm-2)
CPA
(%)
N0K1 953.96 f 43.15 de 45.81 a 1062.37 l 51.01 e
N0K2 919.41 f 38.39 fg 36.22 bcd 1539.31 l 60.65 abcde
N10K1F1 1483.41 cde 45.97 d 36.92 bcd 2386.04 k 59.39 bcde
N10K1F2 1346.65 ef 37.94 fgh 26.49 gh 3316.52 ij 65.24 abcd
N10K1F3 1263.21 ef 33.47 hi 21.64 hi 4096.83 fgh 70.19 ab
N10K2F1 1383.12 def 40.03 ef 25.39 gh 3653.88 hij 67.07 abc
N10K2F2 1313.98 ef 33.96 gh 21.26 hi 4321.87 fg 69.92 ab
N10K2F3 1232.96 ef 29.60 i 15.56 i 5673.98 bcd 71.61 a
N12K1F1 2035.42 b 50.44 bc 37.20 bc 3186.28 j 58.23 cde
N12K1F2 1938.81 bc 45.64 d 30.06 cdefg 4103.37 fgh 63.61 abcd
N12K1F3 1886.66 bc 40.09 ef 24.32 gh 5133.56 de 66.18 abc
N12K2F1 1931.81 bc 44.00 de 27.95 efgh 4200.98 fgh 60.77 abcde
N12K2F2 1845.69 bc 37.99 fgh 23.02 gh 5224.73 d 65.16 abcd
N12K2F3 1794.27 bcd 35.59 fgh 20.66 hi 5863.96 bc 67.53 abc
N14K1F1 2809.87 a 56.81 a 39.53 ab 3872.56 ghi 54.49 de
N14K1F2 2716.42 a 51.29 bc 33.75 bcdef 4595.34 ef 57.10 cde
N14K1F3 2606.30 a 45.22 d 26.83 fgh 6159.44 b 63.41 abcd
N14K2F1 2780.64 a 52.19 b 34.83 bcde 4388.05 fg 54.97 de
N14K2F2 2677.69 a 47.39 cd 29.85 defg 5464.60 cd 60.93 abcde
N14K2F3 2513.32 a 40.26 ef 22.25 hi 7295.32 a 64.58 abcd
施氮量N level (N) ** ** ** ** **
追氮比例 N topdressing ratio (F) NS ** ** ** **
钾肥追施 Potassium top dressing (K) NS ** ** ** **
N × F NS ** * ** NS
N × K NS NS NS ** NS
K × F NS NS NS NS NS
N × K × F NS NS NS NS NS

Fig. 5

Effects of nitrogen and potassium fertilizer management on nitrogen accumulation in weak-gluten wheat at the maturity stage Treatments and abbreviations are the same as those given in Fig. 2. Different lowercase letters indicate significant differences among different treatments (P < 0.05)."

Table 4

Effects of nitrogen and potassium fertilizer management on wheat yield and its component factors (2022-2023)"

处理
Treatment
白湖麦1号 BHM 1
千粒重
1000-kernel weight (g)
穗粒数
Grain per spike
穗数
Spike number (×104 hm-2)
籽粒产量
Grain yield (kg hm-2)
N0K1 34.09 l 23.48 e 371.67 h 2975.19 l
N0K2 34.45 kl 25.19 e 395.00 gh 3412.88 l
N10K1F1 34.49 kl 41.90 d 411.67 fgh 5943.00 k
N10K1F2 35.97 ghi 42.67 cd 445.00 efg 6825.25 ij
N10K1F3 36.75 defg 45.14 abcd 463.33 def 7661.81 gh
N10K2F1 35.28 ij 42.86 cd 431.67 fg 6480.45 jk
N10K2F2 36.65 defg 46.33 abcd 446.67 efg 7573.42 gh
N10K2F3 36.74 defg 49.33 ab 470.00 cdef 8509.14 def
N12K1F1 35.01 jk 42.38 cd 438.33 fg 6485.41 jk
N12K1F2 36.10 efgh 45.10 abcd 468.33 cdef 7607.71 gh
N12K1F3 36.88 de 47.10 abcd 503.33 bcde 8696.63 de
N12K2F1 35.67 hij 46.00 abcd 446.67 efg 7317.38 hi
N12K2F2 36.83 de 46.62 abcd 465.00 cdef 7961.20 fg
N12K2F3 37.19 cd 47.24 abcd 505.00 bcde 8807.99 cde
N14K1F1 36.01 fghi 44.00 bcd 516.67 abcd 8182.80 efg
N14K1F2 36.87 de 45.81 abcd 526.67 abc 8875.09 cd
N14K1F3 37.87 bc 46.14 abc 535.00 ab 9346.04 bc
N14K2F1 36.80 def 46.05 abcd 515.00 abcd 8699.81 de
N14K2F2 37.70 a 47.76 ab 541.67 ab 9748.26 b
N14K2F3 38.02 ab 48.67 a 566.67 a 10471.69 a
施氮量N level (N) ** ** ** **
追氮比例N topdressing ratio (F) ** * ** **
钾肥追施Potassium top dressing (K) ** ** NS **
N × F ** NS NS **
N × K NS NS NS NS
K × F NS NS NS NS
N × K × F NS NS NS NS
处理
Treatment
皖西麦0638 WXM 0638
千粒重
1000-kernel weight (g)
穗粒数
Grain per spike
穗数
Spike number (×104 hm-2)
籽粒产量
Grain yield (kg hm-2)
N0K1 35.62 i 20.33 g 405.00 h 2923.79 k
N0K2 36.87 h 25.90 f 411.67 h 3925.94 j
N10K1F1 37.23 h 38.10 e 415.00 gh 5874.04 i
N10K1F2 38.52 fg 39.86 de 425.00 fgh 6525.62 ghi
N10K1F3 39.02 cdef 41.71 cde 450.00 efgh 7291.90 efg
N10K2F1 37.48 gh 38.00 e 421.67 fgh 5987.91 i
N10K2F2 38.54 fg 41.05 de 441.67 efgh 6971.16 fgh
N10K2F3 39.92 abcde 42.76 bcde 465.00 def 7921.47 cde
N12K1F1 38.52 fg 38.38 e 423.33 fgh 6241.85 hi
N12K1F2 38.87 def 40.52 de 445.00 efgh 6979.95 fgh
N12K1F3 39.00 cdef 41.38 cde 475.00 cde 7688.90 def
N12K2F1 38.74 ef 40.76 de 461.67 defg 7285.44 efg
N12K2F2 40.26 abc 42.57 cde 468.33 cdef 8053.53 bcde
N12K2F3 40.31 abc 43.29 bcd 506.67 bcd 8843.31 b
N14K1F1 39.06 cdef 41.43 cde 488.33 cde 7903.51 cde
N14K1F2 39.65 bcdef 42.81 bcde 513.33 abc 8687.34 bc
N14K1F3 40.42 ab 46.57 a 536.67 ab 10089.95 a
N14K2F1 39.63 bcdef 43.62 bcd 485.00 cde 8368.50 bcd
N14K2F2 40.09 abcd 45.95 abc 541.67 ab 9972.85 a
N14K2F3 41.18 a 46.29 ab 555.00 a 10579.07 a
施氮量N level (N) ** ** ** **
追氮比例N topdressing ratio (F) ** ** ** **
钾肥追施Potassium top dressing (K) ** ** * **
N × F ** NS NS **
N × K NS * NS *
K × F NS NS NS NS
N × K × F NS NS NS NS

Table 5

Effects of nitrogen and potassium fertilizer management on wheat yield and its component factors (2023-2024)"

处理
Treatment
白湖麦1号 BHM 1
千粒重
1000-kernel weight (g)
穗粒数
Grain per spike
穗数
Spike number (×104 hm-2)
籽粒产量
Grain yield (kg hm-2)
N0K1 36.26 defg 22.78 d 280.01 f 2280.53 m
N0K2 37.06 bcdef 27.67 d 325.02 ef 3224.16 l
N10K1F1 33.66 h 42.33 c 327.52 ef 4646.55 k
N10K1F2 36.10 efg 42.56 c 357.52 def 5475.42 ij
N10K1F3 37.06 bcdef 46.89 abc 392.52 cde 6646.54 h
N10K2F1 33.69 h 42.67 c 353.35 def 5048.81 jk
N10K2F2 36.14 defg 46.67 abc 407.52 cde 6858.33 gh
N10K2F3 37.07 bcdef 48.67 abc 417.52 bcd 7527.86 ef
N12K1F1 34.61 gh 43.44 c 370.02 cde 5562.06 i
N12K1F2 37.02 bcdef 50.33 abc 420.02 bcd 7789.09 e
N12K1F3 38.44 abc 52.33 ab 447.52 abc 8808.65 c
N12K2F1 34.89 gh 44.00 bc 377.52 cde 5794.41 i
N12K2F2 37.26 bcdef 52.56 ab 422.52 abcd 8268.34 d
N12K2F3 38.28 abc 52.89 a 452.52 abc 9161.35 c
N14K1F1 35.55 fg 46.67 abc 407.52 cde 6749.92 h
N14K1F2 37.60 bcde 52.11 ab 427.52 abcd 8368.33 d
N14K1F3 38.71 ab 54.67 a 495.02 ab 10426.60 b
N14K2F1 36.81 cdef 48.22 abc 410.02 cde 7273.98 fg
N14K2F2 37.98 bcd 52.78 a 455.02 abc 9023.18 c
N14K2F3 39.84 a 54.67 a 505.03 a 10954.67 a
施氮量N level (N) ** ** ** **
追氮比例N topdressing ratio (F) ** ** ** **
钾肥追施Potassium top dressing (K) * * * **
N × F ** NS NS **
N × K NS NS NS *
K × F NS NS NS NS
N × K × F NS NS NS NS
处理
Treatment
皖西麦0638 WXM 0638
千粒重
1000-kernel weight (g)
穗粒数
Grain per spike
穗数
Spike number (×104 hm-2)
籽粒产量
Grain yield (kg hm-2)
N0K1 32.82 e 20.44 g 310.02 h 2082.53 m
N0K2 34.65 de 22.89 g 320.02 gh 2538.06 m
N10K1F1 35.37 cde 36.44 f 316.68 gh 4017.36 l
N10K1F2 35.72 bce 40.78 def 350.02 fgh 5083.38 k
N10K1F3 36.83 abcd 43.00 cde 370.02 efgh 5836.42 ijk
N10K2F1 35.66 bcde 39.89 ef 387.52 cdefgh 5447.93 jk
N10K2F2 35.91 bcde 44.67 bcde 387.52 cdefgh 6181.57 hij
N10K2F3 37.43 abcd 45.11 abcde 470.03 bc 7923.00 de
N12K1F1 35.96 bcde 40.11 ef 382.52 defgh 5472.28 jk
N12K1F2 38.04 abc 43.56 bcde 392.52 cdefg 6450.37 ghi
N12K1F3 38.19 abc 45.67 abcde 447.52 bcde 7757.34 ef
N12K2F1 37.33 abcd 47.33 abcd 395.02 cdefg 6912.51 gh
N12K2F2 38.10 abc 47.56 abcd 445.02 bcde 8018.68 de
N12K2F3 38.96 ab 48.89 abc 457.53 bcd 8682.92 cd
N14K1F1 36.31 abcd 47.56 abcd 412.52 cdef 7107.56 fg
N14K1F2 38.37 abc 49.11 abc 425.02 bcdef 7987.55 de
N14K1F3 38.86 ab 50.11 ab 497.53 ab 9653.03 b
N14K2F1 38.53 abc 48.89 abc 425.02 bcdef 7983.01 de
N14K2F2 38.71 ab 49.56 abc 470.03 bc 8969.04 bc
N14K2F3 39.31 a 51.89 a 555.03 a 11296.63 a
施氮量N level (N) ** ** ** **
追氮比例N topdressing ratio (F) * * ** **
钾肥追施Potassium top dressing (K) ** ** ** **
N × F NS NS NS **
N × K NS NS NS **
K × F NS NS NS NS
N × K × F NS NS NS NS

Table 6

Analysis of variance on the effects of nitrogen and potassium fertilizer management on the quality of weak-gluten wheat (%)"

年份
Year
处理
Treatment
白湖麦1号 BHM 1 皖西麦0638 WXM 0638
蛋白质含量
Protein content
湿面筋含量
Wet gluten content
蛋白质含量
Protein content
湿面筋含量
Wet gluten content
2022-2023 施氮量N level (N) ** ** ** **
追氮比例 N topdressing ratio (F) ** ** ** **
钾肥追施Potassium top dressing (K) ** ** ** **
N × F ** ** ** **
N × K NS NS NS NS
K × F NS NS ** NS
N × K × F NS NS ** NS
2023-2024 施氮量N level (N) ** ** ** **
追氮比例 N topdressing ratio (F) ** ** ** **
钾肥追施Potassium top dressing (K) ** ** ** **
N × F ** ** ** **
N × K NS NS ** **
K × F NS NS * **
N × K × F * ** * *

Fig. 6

Effects of nitrogen and potassium fertilizer management on the protein content in grains of weak-gluten wheat Treatments and abbreviations are the same as those given in Fig. 2. The value of 12.5 for the special line represents the national protein content standard for weak-gluten wheat, while 11.5 represents the national protein content standard for high-quality weak-gluten wheat. Different lowercase letters indicate significant differences among different treatments (P < 0.05)."

Fig. 7

Effects of nitrogen and potassium fertilizer management on the wet gluten content of weak-gluten wheat Treatments and abbreviations are the same as those given in Fig. 2. The value of 22.0 is the national standard for the wet gluten content of weak-gluten wheat. Different lowercase letters indicate significant differences among different treatments (P < 0.05)."

Fig. 8

Correlation analysis of wheat population indexes, wet gluten content with grain yield and protein content TGW: thousand-grain weight, GN: grain number, MDM: dry matter accumulation at the maturity stage, PTA: pre-anthesis dry matter translocation amount, PTR: pre-anthesis dry matter translocation rate, CPT: contribution rate of pre-anthesis dry matter to grains, PAA: post-anthesis dry matter production amount, CPA: contribution rate of post-anthesis dry matter to grains, MNA: nitrogen accumulation amount at the maturity stage, WGC: wet gluten content, GY: grain yield, GPC: grain protein content. Mantel’s P refers to the P-value of the Mantel test; Mantel’s r is the Mantel correlation coefficient; Pearson’s r is the Pearson correlation coefficient. The size of the square represents the absolute value of the correlation coefficient. * indicates a significant effect at the 0.05 level, ** indicates a significant effect at the 0.01 level, and *** indicates a significant effect at the 0.001 level, respectively."

[1] Li P F, Ma B L, Guo S, Ding T T, Xiong Y C. Bottom-up redistribution of biomass optimizes energy allocation, water use and yield formation in dryland wheat improvement. J Sci Food Agric, 2022, 102: 3336-3349.
[2] Tadesse W, Sanchez-Garcia M, Assefa S, Amri A, Bishaw Z, Ogbonnaya F, Baum M. Genetic gains in wheat breeding and its role in feeding the world. Crop Breed Genet Genom, 2019, 1: e190005.
[3] 胡学旭, 孙丽娟, 周桂英, 吴丽娜, 陆伟, 李为喜, 王爽, 杨秀兰, 宋敬可, 王步军. 2006-2015年中国小麦质量年度变化. 中国农业科学, 2016, 49: 3063-3072.
Hu X X, Sun L J, Zhou G Y, Wu L N, Lu W, Li W X, Wang S, Yang X L, Song J K, Wang B J. Variations of wheat quality in China from 2006 to 2015. Sci Agric Sin, 2016, 49: 3063-3072 (in Chinese with English abstract).
[4] Duncan E G O, Sullivan C A, Roper M M, Biggs J S, Peoples M B. Influence of co-application of nitrogen with phosphorus, potassium and sulphur on the apparent efficiency of nitrogen fertilizer use, grain yield and protein content of wheat: review. Field Crops Res, 2018, 226: 56-65.
[5] Hernández-Ochoa I M, Gaiser T, Hüging H, Ewert F. Yield components and yield quality of old and modern wheat cultivars as affected by cultivar release date, N fertilization and environment in Germany. Field Crops Res, 2023, 302: 109094.
[6] Lu D J, Lu F F, Pan J X, Cui Z L, Zou C Q, Chen X P, He M R, Wang Z L. The effects of cultivar and nitrogen management on wheat yield and nitrogen use efficiency in the North China Plain. Field Crops Res, 2015, 171: 157-164.
[7] Si Z Y, Zain M, Mehmood F, Wang G S, Gao Y, Duan A W. Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain. Agric Water Manag, 2020, 231: 106002.
[8] Liu M, Wu X L, Li C S, Li M, Xiong T, Tang Y L. Dry matter and nitrogen accumulation, partitioning, and translocation in synthetic-derived wheat cultivars under nitrogen deficiency at the post-jointing stage. Field Crops Res, 2020, 248: 107720.
[9] Cho S W, Kang C S, Kang T G, Cho K M, Park C S. Influence of different nitrogen application on flour properties, gluten properties by HPLC and end-use quality of Korean wheat. J Integr Agric, 2018, 17: 982-993.
doi: 10.1016/S2095-3119(18)61920-3
[10] Hamani A K M, Abubakar S A, Si Z Y, Kama R, Gao Y, Duan A W. Suitable split nitrogen application increases grain yield and photosynthetic capacity in drip-irrigated winter wheat (Triticum aestivum L.) under different water regimes in the North China Plain. Front Plant Sci, 2023, 13: 1105006.
[11] Garrido-Lestache E, López-Bellido R J, López-Bellido L. Durum wheat quality under Mediterranean conditions as affected by N rate, timing and splitting, N form and S fertilization. Eur J Agron, 2005, 23: 265-278.
[12] Dong S X, Zhang X, Chu J P, Zheng F N, Fei L W, Dai X L, He M R. Optimized seeding rate and nitrogen topdressing ratio for simultaneous improvement of grain yield and bread-making quality in bread wheat sown on different dates. J Sci Food Agric, 2022, 102: 360-369.
[13] Jumaboev Z M. Seeding rates, productivity and grain quality indicators of foreign and domestic promising varieties of winter soft wheat. J Glob Agric Ecol, 2022, 14: 1-7.
[14] Blandino M, Vaccino P, Reyneri A. Late-season nitrogen increases improver common and durum wheat quality. Agron J, 2015, 107: 680-690.
[15] Zheng B Q, Jiang J L, Wang L L, Huang M, Zhou Q, Cai J, Wang X, Dai T B, Jiang D. Reducing nitrogen rate and increasing plant density accomplished high yields with satisfied grain quality of soft wheat via modifying the free amino acid supply and storage protein gene expression. J Agric Food Chem, 2022, 70: 2146-2159.
[16] Hafeez A, Ali S, Ma X L, Tung S A, Shah A N, Liu A D, Ahmed S, Chattha M S, Yang G Z. Potassium to nitrogen ratio favors photosynthesis in late-planted cotton at high planting density. Ind Crops Prod, 2018, 124: 369-381.
[17] Hou W F, Xue X X, Li X K, Khan M R, Yan J Y, Ren T, Cong R H, Lu J W. Interactive effects of nitrogen and potassium on: Grain yield, nitrogen uptake and nitrogen use efficiency of rice in low potassium fertility soil in China. Field Crops Res, 2019, 236: 14-23.
[18] Pettigrew W T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol Plant, 2008, 133: 670-681.
doi: 10.1111/j.1399-3054.2008.01073.x pmid: 18331406
[19] Hou W F, Tränkner M, Lu J W, Yan J Y, Huang S Y, Ren T, Cong R H, Li X K. Interactive effects of nitrogen and potassium on photosynthesis and photosynthetic nitrogen allocation of rice leaves. BMC Plant Biol, 2019, 19: 302.
doi: 10.1186/s12870-019-1894-8 pmid: 31291890
[20] 武际, 郭熙盛, 王允青, 黄晓荣. 钾肥运筹对小麦氮素和钾素吸收利用及产量和品质的影响. 土壤, 2008, 40: 777-783.
Wu J, Guo X S, Wang Y Q, Huang X R. Effects of potassium fertilizer operation on the uptake and utilization of nitrogen and potassium, yield and quality of wheat. Soils, 2008, 40: 777-783 (in Chinese with English abstract).
[21] 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响. 作物学报, 2021, 47: 2258-2267.
doi: 10.3724/SP.J.1006.2021.01081
Hu X H, Gu S B, Zhu J K, Wang D. Effects of applying potassium at different growth stages on dry matter accumulation and yield of winter wheat in different soil-texture fields. Acta Agron Sin, 2021, 47: 2258-2267 (in Chinese with English abstract).
[22] 中华人民共和国国家质量监督检验检疫总局. 小麦品种品质分类: GB/T 17320-2013, 北京: 中国标准出版社, 2013.
State administration for quality supervision, inspection and quarantine of the People’s Republic of China. Classification of quality of wheat varieties: GB/T 17320-2013, Beijing: China Standard Press, 2013 (in Chinese).
[23] Kaur A, Singh N, Kaur S, Ahlawat A K, Singh A M. Relationships of flour solvent retention capacity, secondary structure and rheological properties with the cookie making characteristics of wheat cultivars. Food Chem, 2014, 158: 48-55.
doi: 10.1016/j.foodchem.2014.02.096 pmid: 24731313
[24] Makino A. Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiol, 2011, 155: 125-129.
doi: 10.1104/pp.110.165076 pmid: 20959423
[25] 丁锦峰, 徐东忆, 丁永刚, 朱敏, 李春燕, 朱新开, 郭文善. 栽培模式对稻茬小麦籽粒产量、氮素吸收利用和群体质量的影响. 中国农业科学, 2023, 56: 619-634.
doi: 10.3864/j.issn.0578-1752.2023.04.003
Ding J F, Xu D Y, Ding Y G, Zhu M, Li C Y, Zhu X K, Guo W S. Effects of cultivation patterns on grain yield, nitrogen uptake and utilization, and population quality of wheat under rice-wheat rotation. Sci Agric Sin, 2023, 56: 619-634 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2023.04.003
[26] Haque M A, Haque M M. Growth, yield and nitrogen use efficiency of new rice variety under variable nitrogen rates. Am J Plant Sci, 2016, 7: 612-622.
[27] Luo L, Zhang Y L, Xu G H. How does nitrogen shape plant architecture? J Exp Bot, 2020, 71: 4415-4427.
doi: 10.1093/jxb/eraa187 pmid: 32279073
[28] Leyser O. The control of shoot branching: an example of plant information processing. Plant Cell Environ, 2009, 32: 694-703.
[29] Chen L, Qiao Z J, Wang J J, Wang H G, Cao X N, Dong J L. Effect of nitrogen fertilizer on the accumulation and distribution of dry matter in broomcorn millet. Agric Sci Technol, 2015, 16: 1425-1428.
[30] Xu K, Chai Q, Hu F L, Fan Z L, Yin W. N-fertilizer postponing application improves dry matter translocation and increases system productivity of wheat/maize intercropping. Sci Rep, 2021, 11: 22825.
doi: 10.1038/s41598-021-02345-5 pmid: 34819592
[31] Carlisle E, Myers S, Raboy V, Bloom A. The effects of inorganic nitrogen form and CO2 concentration on wheat yield and nutrient accumulation and distribution. Front Plant Sci, 2012, 3: 195.
doi: 10.3389/fpls.2012.00195 pmid: 22969784
[32] Ji X H, Zheng S X, Shi L H, Liu Z B. Systematic studies of nitrogen loss from paddy soils through leaching in the Dongting Lake area of China. Pedosphere, 2011, 21: 753-762.
[33] Venterea R T, Halvorson A D, Kitchen N, Liebig M A, Cavigelli M A, Del Grosso S J, Motavalli P P, Nelson K A, Spokas K A, Singh B P, et al. Challenges and opportunities for mitigating nitrous oxide emissions from fertilized cropping systems. Frontiers Ecol & Environ, 2012, 10: 562-570.
[34] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响. 作物学报, 2022, 48: 942-951.
doi: 10.3724/SP.J.1006.2022.14045
Li R D, Yin Y Y, Song W W, Wu T T, Sun S, Han T F, Xu C L, Wu C X, Hu S X. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types. Acta Agron Sin, 2022, 48: 942-951 (in Chinese with English abstract).
[35] 张翔宇.钾肥底施和追施比例对冬小麦产量和品质的影响. 山东农业大学硕士学位论文, 山东泰安, 2022.
Zhang X Y. Effect of the Ratio of Bottom and Top Application of Potassium Fertilizer on Yield and Quality of Winter Wheat. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2022 (in Chinese with English abstract).
[36] Godebo T, Laekemariam F, Loha G. Nutrient uptake, use efficiency and productivity of bread wheat (Triticum aestivum L.) as affected by nitrogen and potassium fertilizer in Keddida Gamela Woreda, Southern Ethiopia. Environ Syst Res, 2021, 10: 12.
[37] Guo J X, Jia Y M, Chen H H, Zhang L J, Yang J C, Zhang J, Hu X Y, Ye X, Li Y, Zhou Y. Growth, photosynthesis, and nutrient uptake in wheat are affected by differences in nitrogen levels and forms and potassium supply. Sci Rep, 2019, 9: 1248.
doi: 10.1038/s41598-018-37838-3 pmid: 30718692
[38] Chen Y L, Xiao C X, Wu D L, Xia T T, Chen Q W, Chen F J, Yuan L X, Mi G H. Effects of nitrogen application rate on grain yield and grain nitrogen concentration in two maize hybrids with contrasting nitrogen remobilization efficiency. Eur J Agron, 2015, 62: 79-89.
[39] Yu X R, Chen X Y, Wang L L, Yang Y, Zhu X W, Shao S S, Cui W X, Xiong F. Novel insights into the effect of nitrogen on storage protein biosynthesis and protein body development in wheat caryopsis. J Exp Bot, 2017, 68: 2259-2274.
doi: 10.1093/jxb/erx108 pmid: 28472326
[40] De Santis M A, Giuliani M M, Flagella Z, Reyneri A, Blandino M. Impact of nitrogen fertilisation strategies on the protein content, gluten composition and rheological properties of wheat for biscuit production. Field Crops Res, 2020, 254: 107829.
[41] Asseng S, Ewert F, Rosenzweig C, Jones J W, Hatfield J L, Ruane A C, Boote K J, Thorburn P J, Rötter R P, Cammarano D, Brisson N, et al. Uncertainty in simulating wheat yields under climate change. Nat Clim Chang, 2013, 3: 827-832.
[42] Zheng B Q, Fang Q, Zhang C X, Mahmood H, Zhou Q, Li W Y, Li X N, Cai J, Wang X, Zhong Y X, et al. Reducing nitrogen rate and increasing plant density benefit processing quality by modifying the spatial distribution of protein bodies and gluten proteins in endosperm of a soft wheat cultivar. Field Crops Res, 2020, 253: 107831.
[43] Zörb C, Ludewig U, Hawkesford M J. Perspective on wheat yield and quality with reduced nitrogen supply. Trends Plant Sci, 2018, 23: 1029-1037.
doi: S1360-1385(18)30192-4 pmid: 30249481
[44] Staugaitis G, Poškus K, Brazienė Z, Avižienytė D. Effect of sulphur and nitrogen fertilisation on winter wheat in Calcaric Luvisol. Zemdirbyste-Agriculture, 2022, 109: 211-218.
[45] Wang J, Qiu Y Y, Zhang X Y, Zhou Z, Han X, Zhou Y, Qin L, Liu K, Li S Y, Wang W L, et al. Increasing basal nitrogen fertilizer rate improves grain yield, quality and 2-acetyl-1-pyrroline in rice under wheat straw returning. Front Plant Sci, 2023, 13: 1099751.
[46] Hawkesford M J. Reducing the reliance on nitrogen fertilizer for wheat production. J Cereal Sci, 2014, 59: 276-283.
pmid: 24882935
[47] Barneix A J. Physiology and biochemistry of source-regulated protein accumulation in the wheat grain. J Plant Physiol, 2007, 164: 581-590.
[48] Zhen S M, Zhou J X, Deng X, Zhu G R, Cao H, Wang Z M, Yan Y M. Metabolite profiling of the response to high-nitrogen fertilizer during grain development of bread wheat (Triticum aestivum L.). J Cereal Sci, 2016, 69: 85-94.
[49] Zhang X Q, Xu Y J, Du S Z, Qiao Y Q, Cao C F, Chen H. Optimized N application improves N absorption, population dynamics, and ear fruiting traits of wheat. Front Plant Sci, 2023, 14: 1199168.
[50] 朱新开, 郭文善, 周君良, 胡宏, 张影, 李春燕, 封超年, 彭永欣. 氮素对不同类型专用小麦营养和加工品质调控效应. 中国农业科学, 2003, 36: 640-645.
Zhu X K, Guo W S, Zhou J L, Hu H, Zhang Y, Li C Y, Feng C N, Peng Y X. Effects of nitrogen on grain yield. Nutritional quality and processing quality of wheat for different end uses. Sci Agric Sin, 2003, 36: 640-645 (in Chinese with English abstract).
[51] Wu H Y, Wang Z J, Zhang X, Wang J C, Hu W J, Wang H, Gao D R, Souza E, Cheng S H. Effects of different fertilizer treatments, environment and varieties on the yield-, grain-, flour-, and dough- related traits and cookie quality of weak-gluten wheat. Plants, 2022, 11: 3370.
[52] Daaloul Bouacha O, Nouaigui S, Rezgui S. Effects of N and K fertilizers on durum wheat quality in different environments. J Cereal Sci, 2014, 59: 9-14.
[1] YANG Ting-Ting, CHEN Juan, ABDUL Rehman, LI Jing, YAN Su-Hui, WANG Jian-Lai, LI Wen-Yang. Effects of weak light post-anthesis on dry matter accumulation and translocation, grain yield, and starch quality in soft wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2204-2219.
[2] YOU Gen-Ji, XIE Hao, LIANG Yu-Wen, LI Long, WANG Yu-Ru, JIANG Chen-Yang, GUO Jian, LI Guang-Hao, LU Da-Lei. Effects of nitrogen fertilizer reduction measures on yield and nitrogen use efficiency of spring maize in Jianghuai region [J]. Acta Agronomica Sinica, 2025, 51(8): 2152-2163.
[3] WANG Yao-Kuo, WANG Wen-Zheng, ZHANG Min, LIU Xi-Wei, YANG Min, LI Hao-Yu, ZHANG Ling-Xin, YAN Yan-Fei, CAI Rui-Guo. Effects of water and nitrogen treatments on GMP synthesis and flour processing quality of winter wheat grain [J]. Acta Agronomica Sinica, 2025, 51(8): 2176-2189.
[4] LI Yi-Qian, XU Shou-Zhen, LIU Ping, MA Qi, XIE Bin, CHEN Hong. Genome-wide association study of yield components using a 40K SNP array and identification of a stable locus for boll weight in upland cotton (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2025, 51(8): 2128-2138.
[5] FAN You-Zhong, WANG Xian-Ling, WANG Zong-Kai, WANG Chun-Yun, WANG Tian-Yao, XIE Jie, KUAI Jie, WANG Bo, WANG Jing, XU Zheng-Hua, ZHAO Jie, ZHOU Guang-Sheng. Effects of straw incorporation combined with nitrogen management on photosynthetic efficiency and yield of rapeseed following rice [J]. Acta Agronomica Sinica, 2025, 51(8): 2139-2151.
[6] WU Bin, CAO Yong-Gang, HU Fa-Long, YIN Wen, FAN Zhi-Long, FAN Hong, CHAI Qiang. Compensation effect of no-tillage rotation on yield reduction of nitrogen- reduced wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1959-1968.
[7] WU Liu-Ge, CHEN Jian, ZHANG Xin, DENG Ai-Xing, SONG Zhen-Wei, ZHENG Cheng-Yan, ZHANG Wei-Jian. Changes in yield and quality traits of nationally approved winter wheat varieties in China over last twenty years [J]. Acta Agronomica Sinica, 2025, 51(7): 1814-1826.
[8] LI Qiu-Yun, LI Shi-Gui, FAN Jun-Liang, LIU Hao-Tian, ZHAO Xiao-Bin, LYU Shuo, WANG Yan-Hao, YUE Yun, ZHANG Ning, SI Huai-Jun. Effects of ionic zinc and nano-zinc on physiological characteristics, yield, and quality of potato [J]. Acta Agronomica Sinica, 2025, 51(7): 1838-1849.
[9] WANG Tian-Yi, YANG Xiu-Juan, ZHAO Jia-Jia, HAO Yu-Qiong, ZHENG Xing-Wei, WU Bang-Bang, LI Xiao-Hua, HAO Shui-Yuan, ZHENG Jun. Gliadin diversity and its effects on flour quality in wheat from Shanxi province, China [J]. Acta Agronomica Sinica, 2025, 51(7): 1784-1800.
[10] WAN Shu-Bo, ZHANG Jia-Lei, GAO Hua-Xin, WANG Cai-Bin. Advances and prospects of high-yield peanut cultivation in China [J]. Acta Agronomica Sinica, 2025, 51(7): 1703-1711.
[11] LI Bing-Lin, YE Xiao-Lei, XIAO Hong, XIAO Guo-Bin, LYU Wei-Sheng, LIU Jun-Quan, REN Tao, LU Zhi-Feng, LU Jian-Wei. Effects of magnesium fertilization rates on rapeseed yield, magnesium uptake, and yield loss caused by frost damage [J]. Acta Agronomica Sinica, 2025, 51(7): 1850-1860.
[12] HUO Jian-Zhe, YU Ai-Zhong, WANG Yu-Long, WANG Peng-Fei, YIN Bo, LIU Ya-Long, ZHANG Dong-Ling, JIANG Ke-Qiang, PANG Xiao-Neng, WANG Feng. Effect of organic manure substitution for chemical fertilizer on yield, quality, and nitrogen utilization of sweet maize in oasis irrigation areas [J]. Acta Agronomica Sinica, 2025, 51(7): 1887-1900.
[13] DONG Wei-Jin, ZHANG Ya-Feng, LI Qi-Yun, LU Yang, ZHANG Zheng-Kun, SUI Li. Effects of Beauveria bassiana colonization on maize growth and yield under elevated CO2 concentration [J]. Acta Agronomica Sinica, 2025, 51(7): 1874-1886.
[14] CHEN Ru-Xue, SUN Li-Fang, ZHANG Xin-Yuan, MU Hai-Meng, ZHANG Yong-Xin, YUAN Li-Xue, PENG Shi-Le, WANG Zhuang-Zhuang, WANG Yong-Hua. Effects of combined straw returning and microbial inoculant application on carbon-nitrogen metabolism in flag leaves and yield formation in winter wheat [J]. Acta Agronomica Sinica, 2025, 51(7): 1901-1913.
[15] GUO Dong-Cai, LYU Tao, CAI Yong-Sheng, MAI WU-LU-DA·AI He-Mai-Ti, CHEN Quan-Jia, QU Yan-Ying, ZHENG Kai. Meta-analysis of QTL and identification of candidate genes for fiber quality in cotton [J]. Acta Agronomica Sinica, 2025, 51(6): 1445-1466.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .