Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (9): 2358-2370.doi: 10.3724/SP.J.1006.2025.54043

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic diversity analysis of domestic albino tea germplasm resources based on the tea plant liquid phase functional chip

MEI Piao1**(), LIU Ding-Ding1**(), YE Yuan-Yuan1, ZHANG Chen-Yu1, DING Shi-Qi1, LI Ya-Qi2, WANG Pei-Xin1, MEI Ju-Fen2,*(), MA Chun-Lei1,*()   

  1. 1Tea Research Institute, Chinese Academy of Agricultural Sciences / National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Hangzhou 310008, Zhejiang, China
    2Wuxi Tea Breeding Research Co., Ltd. / Tea Tree Germplasm Resource Nursery of Jiangsu Province, Wuxi 214000, Jiangsu, China
  • Received:2025-03-31 Accepted:2025-06-01 Online:2025-09-12 Published:2025-06-11
  • Contact: *E-mail: malei220@tricaas.com; E-mail: meijufen@sina.com E-mail:2635718002@qq.com;liudingding@tricaas.com;malei220@tricaas.com;meijufen@sina.com
  • About author:**Contributed equally to this work
  • Supported by:
    Zhejiang Provincial Natural Science Foundation of China(LZ24C160003);Taihu Light Science and Technology Research Program of Wuxi(N20231002);Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding-Tea Plant(2021C02067-6);Fundamental Research Fund for Tea Research Institute of the Chinese Academy of Agricultural Sciences(1610212022009)

Abstract:

In this study, a self-developed high-density liquid-phase functional chip for tea plants was employed to genotype the major albino tea germplasms in China. Based on genetic similarity analyses, 61 core accessions were selected for genetic diversity assessment. Phylogenetic tree construction and population structure analysis revealed that these albino tea resources could be classified into three main groups, with their distribution closely associated with geographical origins and breeding histories. Principal Component Analysis further indicated that most albino tea accessions in China originate from Zhejiang province. Compared with the rich genetic resources of conventional tea germplasms in China, albino tea plants exhibit relatively limited genetic diversity, underscoring the need and potential for genetic improvement through breeding. Additionally, the quality components of 30 representative albino tea accessions were analyzed. Caffeine content ranged from 2.26% to 4.17%, with an average of 3.51%; total amino acid content varied from 1.85% to 7.54%, with a mean of 4.33%; and total catechin content ranged from 8.63% to 16.68%, averaging 13.28%. Compared to conventional green tea cultivars, most albino tea accessions exhibited higher amino acid levels and lower alkaloid and catechin contents, making them promising raw materials for the production of high-quality green tea. In conclusion, this study provides a comprehensive analysis of the genetic structure and diversity of major albino tea germplasms in China and demonstrates the effectiveness of the liquid-phase functional chip in tea germplasm and cultivar identification. These findings lay a theoretical foundation for the innovative utilization and genetic improvement of albino tea resources.

Key words: albino tea cultivars, liquid chip, genotyping, genetic diversity, biochemical components

Table 1

Sample ID, name, and origin of 71 albino tea germplasm accessions"

编号ID 资源名称Resources 来源Origin 编号ID 资源名称Resources 来源Origin
BJG 白鸡冠 Baijiguan 福建 Fujian HYB 黄叶宝 Huangyebao 浙江 Zhejiang
HJJu 黄金菊 Huangjinju 江西 Jiangxi CP260 CP260 浙江 Zhejiang
JF1H 金凤1号 Jinfeng 1 四川 Sichuan TTBC 天台白茶 Tiantaibaicha 浙江 Zhejiang
JF2H 金凤2号 Jinfeng 2 四川 Sichuan YXBC 越乡白茶 Yuexiangbaicha 浙江 Zhejiang
Y1 YNBH01 云南 Yunnan ZC211 中茶211 Zhongcha 211 浙江 Zhejiang
Y2 YNBH02 云南 Yunnan ZH1H 中黄1号 Zhonghuang 1 浙江 Zhejiang
Y3 YNBH03 云南 Yunnan ZH2H 中黄2号 Zhonghuang 2 浙江 Zhejiang
Y4 YNBH04 云南 Yunnan ZH3H 中黄3号 Zhonghuang 3 浙江 Zhejiang
Y5 YNBH05 云南 Yunnan ZH4H 中黄4号 Zhonghuang 4 浙江 Zhejiang
BHD 白蝴蝶 Baihudie 浙江 Zhejiang BY1H 白叶1号 Baiye 1 浙江 Zhejiang
DLHC 大龙黄茶 Dalong Huangcha 浙江 Zhejiang TSH 泰上黄 Taishanghuang 浙江 Zhejiang
HB1H 杭白1号 Hangbai 1 浙江 Zhejiang ZCB 早春白 Zaochunbai 浙江 Zhejiang
HB2H 杭白2号 Hangbai 2 浙江 Zhejiang LJHC 龙井黄茶 Longjin Huangcha 浙江 Zhejiang
HJXY 黄金雪芽 Huangjinxueya 浙江 Zhejiang QNX 千年雪 Qiannianxue 浙江 Zhejiang
HYJ3H 黄金芽3号 Huangjinya 3 浙江 Zhejiang BJY 白金芽 Baijinya 浙江 Zhejiang
YSBC 迎霜白茶Yingshuang Baicha 浙江 Zhejiang XXY 小雪芽 Xiaoxueya 浙江Zhejiang
JYMT 金玉满堂Jinyu Mantang 浙江 Zhejiang JXB 金香白 Jinxiangbai 浙江 Zhejiang
RXYH 瑞雪1号 Ruixue 1 浙江 Zhejiang YYB 圆叶白 Yuanyebai 浙江 Zhejiang
HJH 黄金毫 Huangjinhao 浙江 Zhejiang JB 极白 Jibai 浙江 Zhejiang
ZJH 醉金红 Zuijinhong 浙江 Zhejiang YJX 郁金香 Yujinxiang 浙江 Zhejiang
JB1H 景白1号 Jingbai 1 浙江 Zhejiang AJHC 安吉黄茶 Anji Huangcha 浙江 Zhejiang
JB2H 景白2号 Jingbai 2 浙江 Zhejiang SZYH 嵊州越黄 Shengzhou Yuehuang 浙江 Zhejiang
HJJ 黄金甲 Huangjinjia 浙江 Zhejiang HJYe 黄金叶 Huangjinye 浙江 Zhejiang
SB1H 嵊白1号 Shengbai 1 浙江 Zhejiang ZB1H 中白1号 Zhongbai 1 浙江 Zhejiang
LB1H 丽白1号 Libai 1 浙江 Zhejiang LDHC 莲都黄茶 Liandu Huangcha 浙江 Zhejiang
LH3H 丽黄3号 Lihuang 3 浙江 Zhejiang LH1H 丽黄1号 Lihuang 1 浙江 Zhejiang
YHY 玉皇芽 Yuhuangya 浙江 Zhejiang WNZH 乌牛早黄 Wuniu Zaohuang 浙江 Zhejiang
HJY 黄金芽 Huangjinya 浙江 Zhejiang WNB 乌牛白 Wuniubai 浙江 Zhejiang
HPX 黄袍香 Huangpaoxiang 浙江 Zhejiang JB3H 景白3号 Jingbai 3 浙江 Zhejiang
HT 黄汤 Huangtang 浙江 Zhejiang WNH 乌牛黄 Wuniuhuang 浙江 Zhejiang
NYBC 奶油白茶 Naiyou Baicha 浙江 Zhejiang ZNH 早奶黄 Zaonaihuang 浙江 Zhejiang
SJNB 水晶奶白 Shuijing Naibai 浙江 Zhejiang ZNB 早奶白 Zaonaibai 浙江 Zhejiang
SB2H 嵊白2号 Shengbai 2 浙江 Zhejiang TZJH 特早极黄 Tezao Jihuang 浙江 Zhejiang
SJB 水晶白 Shuijingbai 浙江 Zhejiang LOH1H 龙虎1号 Longhu 1 浙江 Zhejiang
XYNB 小叶奶白 Xiaoye Naibai 浙江 Zhejiang BPP2H 北坪棚2号 Beipingpeng 2 未知 Unknown
TTB2H 梯田白2号 Titianbai 2 浙江 Zhejiang

Fig. 1

New shoots of selected albino tea accessions Abbreviations are the same as those given in Table 1."

Fig. 2

Evaluation results of the 40K liquid-phase functional chip for tea plants A: density of SNPs; B: sequencing depth of SNPs; C: the MAF distribution statistics of SNPs; D: annotation results of SNP location."

Fig. 3

GO and KEGG enrichment analysis A: results of GO Enrichment analysis; B: results of KEGG Enrichment. MF: molecular function; BP: biological process; CC: cellular component."

Fig. 4

Genetic similarity analysis among albino tea germplasm Abbreviations are the same as those given in Table 1."

Fig. 5

Genetic diversity analysis of albino tea germplasm resources Abbreviations are the same as those given in Table 1. A: statistical analysis of PIC value; B: 61 phylogenetic trees of albino tea germplasms; C: population genetic structure of 61 albino tea germplasm."

Fig. 6

PCA of main albino tea resources and 3272 tea germplasms from major tea-producing provinces in China The red part represents the germplasm resources of albino tea trees, and the gray part represents the tea germplasm resources of 3272 accessions in the National Tea Germplasm Repository."

Fig. 7

Analysis of quality components in selected albino tea germplasm resources Fig. A: total content of major biochemical components; Fig. B: content of major amino acid components; Fig. C: content of major catechin components; Fig. D: content of major alkaloids. C: catechin; EC: epicatechin; ECG: epicatechin gallate; EGC: epigallocatechin; EGCG: epigallocatechin gallate; GC: gallocatechin; CAF: caffeine; TB: theobromine."

[1] 许继业. 代表性白化品种绿茶、红茶和白茶品质化学成分研究. 中国农业科学院硕士学位论文, 北京, 2023.
Xu J Y. Study on the Quality Chemical Constituents of Green Tea, Black Tea and White Tea Made by Representative Albino Varieties. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2023 (in Chinese with English abstract).
[2] 童海燕, 杨平. 安吉白茶: “三茶”统筹发展共走富裕路. 中国农村科技, 2023, (5): 4-7.
Tong H Y, Yang P. Anji white tea: coordinated development of “three teas” jointly paves the path to prosperity. China Rural Sci Technol, 2023, (5): 4-7 (in Chinese).
[3] 李娜娜. 新梢白化茶树生理生化特征及白化分子机理研究. 浙江大学博士学位论文, 浙江杭州, 2015.
Li N N. Physiological, Biochemical Characteristics and Molecular Albinism of the Albino Tea (Camellia sinensis) Plant. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2015 (in Chinese with English abstract).
[4] 韩奥迪. 黄 化茶树品种‘茗冠茶’多茶类风味及特征品质研究. 福建农林大学硕士学位论文, 福建福州, 2023.
Han A D. Study on the Multi-tea Flavour and Characteristic Quality of the Albino Tea Tree Variety ‘Ming Guan Tea’. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2023 (in Chinese with English abstract).
[5] 汪瑛琦. 遮荫和温度对光敏白化茶树‘黄金芽’叶色影响及其潜在机制. 浙江大学博士学位论文, 浙江杭州, 2023.
Wang Y Q. Effect of Shading and Temperature on the Leaf Color of the Light-sensitive Albino Tea Plant ‘Huangjinya’ and Its Potential Mechanism. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2023 (in Chinese with English abstract).
[6] 郝国双, 郑志平, 马海军, 叶银祥, 郭明敏, 成浩, 阮丽. 白化茶树新品系: 中白4号. 中国茶叶, 2019, 41(3): 11-13.
Hao G S, Zheng Z P, Ma H J, Ye Y X, Guo M M, Cheng H, Ruan L. A new albino tea tree cultivar ‘Zhongbai 4’. China Tea, 2019, 41(3): 11-13 (in Chinese).
[7] 唐子贻. 陕西引进的9个白化茶树品种综合评价. 西北农林科技大学硕士学位论文, 陕西杨凌, 2023.
Tang Z Y. Comprehensive Evaluation of 9 Albino Tea Cultivars Introduced in Shaanxi Province. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2023 (in Chinese with English abstract).
[8] 董玉琛. 生物多样性及作物遗传多样性检测. 作物品种资源, 1995, (3): 1-5.
Dong Y C. Detection of biodiversity and crop genetic diversity. China Seed Ind, 1995, (3): 1-5 (in Chinese).
[9] 李娜娜, 王璐, 郝心愿, 向云攀, 王波, 蔡琼梅, 丁长庆, 曾建明, 杨亚军, 王新超. 2022年茶树遗传育种研究进展. 中国茶叶, 2023, 45(5): 6-11.
Li N N, Wang L, Hao X Y, Xiang Y P, Wang B, Cai Q M, Ding C Q, Zeng J M, Yang Y J, Wang X C. Research progress of genetics and breeding of tea plants in 2022. China Tea, 2023, 45(5): 6-11 (in Chinese with English abstract).
[10] 王让剑, 杨军, 孔祥瑞, 陈常颂, 余文权. 茶树分子标记辅助育种研究进展. 茶叶学报, 2017, 58(4): 157-163.
Wang R J, Yang J, Kong X R, Chen C S, Yu W Q. Advances in molecular marker assisted breeding of Camellia sinensis. Acta Tea Sin, 2017, 58(4): 157-163 (in Chinese with English abstract).
[11] 黄丹娟, 马建强, 陈亮. 茶树DNA分子指纹图谱研究进展. 茶叶科学, 2015, 35: 513-519.
Huang D J, Ma J Q, Chen L. Research progress on DNA molecular fingerprinting of tea plant (Camellia sinensis). J Tea Sci, 2015, 35: 513-519 (in Chinese with English abstract).
[12] 刘浩然, 张晨禹, 龚洋, 叶圆圆, 陈杰丹, 陈亮, 刘丁丁, 马春雷. 基于全基因组重测序的白化茶树mSNP标记开发及验证. 茶叶科学, 2023, 43(1): 27-39.
Liu H R, Zhang C Y, Gong Y, Ye Y Y, Chen J D, Chen L, Liu D D, Ma C L. Development and application of albino tea plant mSNP molecular markers based on genome-wide resequencing. J Tea Sci, 2023, 43(1): 27-39 (in Chinese with English abstract).
[13] 黎巷汝. 基于简化基因组SNP标记的茶树气候适应性分化研究. 福建农林大学硕士学位论文, 福建福州, 2023.
Li X R. Analysis of Climatic Adaptive Differentiation of Camellia sinensis by Simplified Genomic SNP. MS Thesis of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2023 (in Chinese with English abstract).
[14] 徐云碧, 杨泉女, 郑洪建, 许彦芬, 桑志勤, 郭子锋, 彭海, 张丛, 蓝昊发, 王蕴波, 等. 靶向测序基因型检测(GBTS)技术及其应用. 中国农业科学, 2020, 53: 2983-3004.
doi: 10.3864/j.issn.0578-1752.2020.15.001
Xu Y B, Yang Q N, Zheng H J, Xu Y F, Sang Z Q, Guo Z F, Peng H, Zhang C, Lan H F, Wang Y B, et al. Genotyping by target sequencing (GBTS) and its applications. Sci Agric Sin, 2020, 53: 2983-3004 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2020.15.001
[15] Shaibu A S, Ibrahim H, Miko Z L, Mohammed I B, Mohammed S G, Yusuf H L, Kamara A Y, Omoigui L O, Karikari B. Assessment of the genetic structure and diversity of soybean (Glycine max L.) germplasm using diversity array technology and single nucleotide polymorphism markers. Plants, 2021, 11: 68.
[16] 雷梦林, 刘霞, 王艳珍, 崔国庆, 穆志新, 刘龙龙, 李欣, 逯腊虎, 李晓丽, 张晓军. 基于55K SNP芯片的山西冬小麦种质资源遗传多样性分析. 中国农业科学, 2024, 57: 1845-1856.
doi: 10.3864/j.issn.0578-1752.2024.10.001
Lei M L, Liu X, Wang Y Z, Cui G Q, Mu Z X, Liu L L, Li X, Lu L H, Li X L, Zhang X J. Genetic diversity analysis of winter wheat germplasm resources in Shanxi province based on 55K SNP array. Sci Agric Sin, 2024, 57: 1845-1856 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2024.10.001
[17] Guo Z F, Yang Q N, Huang F F, Zheng H J, Sang Z Q, Xu Y F, Zhang C, Wu K S, Tao J J, Prasanna B M, et al. Development of high-resolution multiple-SNP arrays for genetic analyses and molecular breeding through genotyping by target sequencing and liquid chip. Plant Commun, 2021, 2: 100230.
[18] Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987, 4: 406-425.
doi: 10.1093/oxfordjournals.molbev.a040454 pmid: 3447015
[19] Panagiotou O A, Evangelou E, Ioannidis J P A. Genome-wide significant associations for variants with minor allele frequency of 5% or less: an overview: a HuGE review. Am J Epidemiol, 2010, 172: 869-889.
doi: 10.1093/aje/kwq234 pmid: 20876667
[20] Wei K, Wang X C, Hao X Y, Qian Y H, Li X, Xu L Y, Ruan L, Wang Y X, Zhang Y Z, Bai P X, et al. Development of a genome-wide 200K SNP array and its application for high-density genetic mapping and origin analysis of Camellia sinensis. Plant Biotechnol J, 2022, 20: 414-416.
[21] Chen J D, He W Z, Chen S, Chen Q Y, Ma J Q, Jin J Q, Ma C L, Moon D G, Ercisli S, Yao M Z, et al. TeaGVD: a comprehensive database of genomic variations for uncovering the genetic architecture of metabolic traits in tea plants. Front Plant Sci, 2022, 13: 1056891.
[22] Chen S, Wang P J, Kong W L, Chai K, Zhang S C, Yu J X, Wang Y B, Jiang M W, Lei W L, Chen X, et al. Gene mining and genomics-assisted breeding empowered by the pangenome of tea plant Camellia sinensis. Nat Plants, 2023, 9: 1986-1999.
[23] 姜燕华, 张成才, 成浩. 茶树良种场不同品种的SSR鉴定研究. 茶叶学报, 2016, 57(3): 105-112.
Jiang Y H, Zhang C C, Cheng H. SSR cultivar identifications of premium teas. Acta Tea Sin, 2016, 57(3): 105-112 (in Chinese with English abstract).
[24] Zhang J, Yang J J, Zhang L K, Luo J, Zhao H, Zhang J N, Wen C L. A new SNP genotyping technology target SNP-seq and its application in genetic analysis of cucumber varieties. Sci Rep, 2020, 10: 5623.
doi: 10.1038/s41598-020-62518-6 pmid: 32221398
[25] 李力, 罗盛财, 王飞权, 黎巷汝, 冯花, 石玉涛, 叶江华, 刘菲, 赵佳林, 李舒莹, 等. 基于GBS-SNP的武夷茶树遗传分析及标记开发. 茶叶科学, 2023, 43: 310-324.
Li L, Luo S C, Wang F Q, Li X R, Feng H, Shi Y T, Ye J H, Liu F, Zhao J L, Li S Y, et al. Genetic analysis and marker development for Wuyi tea (Camellia sinensis, Synonym: Thea bohea L.) based on GBS-SNP. J Tea Sci, 2023, 43: 310-324 (in Chinese with English abstract).
[26] 李兰英, 尧渝, 龚雪蛟, 刘东娜, 罗晟, 胥亚琼, 高远, 罗凡. 茶树叶色黄化型新品种金凤1号选育研究. 安徽农业科学, 2022, 50(19): 20-24.
Li L Y, Yao Y, Gong X J, Liu D N, Luo S, Xu Y Q, Gao Y, Luo F. Breeding report of chlorosis-specific new tea plant variety Jinfeng 1. J Anhui Agric Sci, 2022, 50(19): 20-24 (in Chinese with English abstract).
[27] 李兰英, 胥亚琼, 刘东娜, 尧渝, 龚雪蛟, 罗晟, 罗凡. 茶树新品种‘金凤2号’. 园艺学报, 2022, 49(增刊2): 283-284.
Li L Y, Xu Y Q, Liu D N, Yao Y, Gong X J, Luo S, Luo F. A new Camellia sinensis cultivar ‘Jinfeng 2’. Acta Hortic Sin, 2022, 49(S2): 283-284 (in Chinese with English abstract).
[28] 王开荣, 张国平, 李明, 林伟平, 方乾勇, 杜颖颖, 俞茂昌, 梁月荣. 新梢白化系列茶树新品系性状比较研究. 茶叶, 2006, 32(1): 22-24.
Wang K R, Zhang G P, Li M, Lin W P, Fang Q Y, Du Y Y, Yu M C, Liang Y R. Comparative study on new tea cultivars with albino shoots. J Tea, 2006, 32(1): 22-24 (in Chinese with English abstract).
[29] 王开荣, 梁月荣, 李明, 张龙杰. 白化茶骨干亲本及其家系种质性状分析. 茶叶, 2015, 41(3): 130-132.
Wang K R, Liang Y R, Li M, Zhang L J. Backbone parents of albino tea plants and their germplasm traits. J Tea, 2015, 41(3): 130-132 (in Chinese with English abstract).
[30] Zhang X T, Chen S, Shi L Q, Gong D P, Zhang S C, Zhao Q, Zhan D L, Vasseur L, Wang Y B, Yu J X, et al. Haplotype-resolved genome assembly provides insights in to evolutionary history of the tea plant Camellia sinensis. Nat Genet, 2021, 53: 1250-1259.
[31] 张红秀, 汪灵燚, 孙杨炀, 何远庆, 徐丽荣, 刘升锐. 茶树育种研究进展. 茶叶学报, 2024, 65(5): 1-11.
Zhang H X, Wang L Y, Sun Y Y, He Y Q, Xu L R, Liu S R. Research progress on tea breeding. Acta Tea Sin, 2024, 65(5): 1-11 (in Chinese with English abstract).
[32] 黄飞毅, 陈宇宏, 刘伟, 丁玎, 雷雨, 段继华, 邓晶, 康彦凯, 罗意, 张秀军, 等. 湖南莽山茶树种质资源调查与品质性状的遗传多样性分析. 植物遗传资源学报, 2021, 22: 328-337.
doi: 10.13430/j.cnki.jpgr.20200807001
Huang F Y, Chen Y H, Liu W, Ding D, Lei Y, Duan J H, Deng J, Kang Y K, Luo Y, Zhang X J, et al. Germplasm resources and genetic diversity of quality characters of tea plants from Mangshan in Hunan. J Plant Genet Resour, 2021, 22: 328-337 (in Chinese with English abstract).
[33] 吕毅, 郭雯飞, 倪捷儿, 杨贤强. 茶氨酸的生理作用及合成. 茶叶科学, 2003, 23(1): 1-5.
Lyu Y, Guo W F, Ni J E, Yang X Q. The bioactivities and synthesis of theanine. J Tea Sci, 2003, 23(1): 1-5 (in Chinese with English abstract).
[34] 夏涛, 高丽萍. 类黄酮及茶儿茶素生物合成途径及其调控研究进展. 中国农业科学, 2009, 42: 2899-2908.
Xia T, Gao L P. Advances in biosynthesis pathways and regulation of flavonoids and catechins. Sci Agric Sin, 2009, 42: 2899-2908 (in Chinese with English abstract)
[35] 张建勇, 江和源, 崔宏春, 江用文, 王斌, 黄永东. 茶叶功能成分与新型食品开发. 湖南农业科学, 2011, (3): 104-108.
Zhang J Y, Jiang H Y, Cui H C, Jiang Y W, Wang B, Huang Y D. The functional components of tea and the exploitation of new type food. Hunan Agric Sci, 2011, (3): 104-108 (in Chinese with English abstract).
[36] 卢翠, 沈程文. 茶树白化变异研究进展. 茶叶科学, 2016, 36: 445-451.
Lu C, Shen C W. Research progress of albino tea plant (Camellia sinensis (L.) O. Kuntze). J Tea Sci, 2016, 36: 445-451 (in Chinese with English abstract).
[37] 穆兵, 艾仄宜, 唐君, 梅菊芬, 杨亦扬. 不同叶色茶树品种春季新梢生理生化特性研究. 江苏农业科学, 2021, 49(18): 143-149.
Mu B, Ai Z Y, Tang J, Mei J F, Yang Y Y. Study on physiological and biochemical characteristics of spring shoots of different tea cultivars with different leaf colors. Jiangsu Agric Sci, 2021, 49(18): 143-149 (in Chinese with English abstract).
[38] Li J L, Xiao Y Y, Zhou X C, Liao Y Y, Wu S H, Chen J M, Qian J J, Yan Y, Tang J C, Zeng L T. Characterizing the cultivar-specific mechanisms underlying the accumulation of quality-related metabolites in specific Chinese tea (Camellia sinensis) germplasms to diversify tea products. Food Res Int, 2022, 161: 111824.
[39] 周颖, 褚飞洋, 仇方方, 冯德品, 黄少奇, 黄声东. 宜昌茶树品种生化成分分析. 蚕桑茶叶通讯, 2024, (6): 27-30.
Zhou Y, Chu F Y, Qiu F F, Feng D P, Huang S Q, Huang S D. Analysis of biochemical components of tea varieties in Yichang. Newsl Seric Tea, 2024, (6): 27-30 (in Chinese).
[1] WANG Tian-Yi, YANG Xiu-Juan, ZHAO Jia-Jia, HAO Yu-Qiong, ZHENG Xing-Wei, WU Bang-Bang, LI Xiao-Hua, HAO Shui-Yuan, ZHENG Jun. Gliadin diversity and its effects on flour quality in wheat from Shanxi province, China [J]. Acta Agronomica Sinica, 2025, 51(7): 1784-1800.
[2] ZHANG Hong-Yan, MIN Yu-Xia, TENG Chang-Cai, PENG Xiao-Xing, CHEN Zhi-Kai, ZHOU Xian-Li, LOU Shu-Bao, LIU Yu-Jiao. Genetic diversity analysis of Chinese faba bean (Vicia faba L.) germplasm resources using 130K liquid phase chips [J]. Acta Agronomica Sinica, 2024, 50(8): 1989-2000.
[3] LI Chang-Xi, DONG Zhan-Peng, GUAN Yong-Hu, LIU Jin-Wei, LI Hang, MEI Yong-Jun. Genetic contribution and decision coefficient analysis of agronomic characters and lint yield traits of upland cotton in southern Xinjiang [J]. Acta Agronomica Sinica, 2024, 50(6): 1486-1502.
[4] MA Yan-Ming, LOU Hong-Yao, WANG Wei, SUN Na, YAN Guo-Rong, ZHANG Sheng-Jun, LIU Jie, NI Zhong-Fu, XU Lin. Genetic difference and genome association analysis of grain quality traits in Xinjiang winter wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1394-1405.
[5] KE Hui-Feng, SU Hong-Mei, SUN Zheng-Wen, GU Qi-Shen, YANG Jun, WANG Guo-Ning, XU Dong-Yong, WANG Hong-Zhe, WU Li-Qiang, ZHANG Yan, ZHANG Gui-Yin, MA Zhi-Ying, WANG Xing-Fen. Identification for yield and fiber quality traits and evaluation of molecular markers in modern cotton varieties [J]. Acta Agronomica Sinica, 2024, 50(2): 280-293.
[6] SU Yi-Jun, ZHAO Lu-Kuan, TANG Fen, DAI Xi-Bin, SUN Ya-Wei, ZHOU Zhi-Lin, LIU Ya-Ju, CAO Qing-He. Genetic diversity and population structure analysis of 378 introduced sweetpotato germplasm collections [J]. Acta Agronomica Sinica, 2023, 49(9): 2582-2593.
[7] WANG Qian, ZHANG Li-Yuan, XU Yue, LI Hai, LIU Shao-Xiong, XUE Ya-Peng, LU Ping, WANG Rui-Yun, LIU Min-Xuan. High motif EST-SSR markers development and genetic diversity evaluation for 200 core germplasms in proso millet [J]. Acta Agronomica Sinica, 2023, 49(8): 2308-2318.
[8] LU Mao-Ang, PENG Xiao-Ai, ZHANG Ling, WANG Jian-Lai, HE Xian-Fang, ZHU Yu-Lei. Genetic diversity of wheat breeding parents revealed by 55K SNP-based microarray [J]. Acta Agronomica Sinica, 2023, 49(6): 1708-1714.
[9] LI Ying, LIU Hai-Cui, SHI Lyu, SHI Xiao-Xu, HAN Xiao, LIU Jian, WEI Ya-Feng. Genetic diversity and population structure analysis of naked barley germplasm resources in Jiangsu province [J]. Acta Agronomica Sinica, 2023, 49(10): 2687-2697.
[10] YAO Zhu-Fang, ZHANG Xiong-Jian, YANG Yi-Ling, HUANG Li-Fei, CHEN Xin-Liang, YAO Xiao-Jian, LUO Zhong-Xia, CHEN Jing-Yi, WANG Zhang-Ying, FANG Bo-Ping. Genetic diversity of phenotypic traits in 177 sweetpotato landrace [J]. Acta Agronomica Sinica, 2022, 48(9): 2228-2241.
[11] WANG Rong, CHEN Xiao-Hong, WANG Qian, LIU Shao-Xiong, LU Ping, DIAO Xian-Min, LIU Min-Xuan, WANG Rui-Yun. Genetic diversity and genetic relationship of Chinese traditional foxtail millet accessions [J]. Acta Agronomica Sinica, 2022, 48(8): 1914-1925.
[12] XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311.
[13] TIAN Hong-Li, ZHAO Zi-Wei, YANG Yang, FAN Ya-Ming, BAN Xiu-Li, YI Hong-Mei, YANG Hong-Ming, LIU Shao-Rong, GAO Yu-Qian, LIU Ya-Wei, WANG Feng-Ge. Construction of SSR-DNA fingerprints and genetic diversity analysis of 290 maize varieties approved in Jilin province, China [J]. Acta Agronomica Sinica, 2022, 48(12): 2994-3003.
[14] LIU Yu-Ling, ZHANG Hong-Yan, TENG Chang-Cai, ZHOU Xian-Li, HOU Wan-Wei. Genetic diversity and its association analysis of SSR markers with starch content in faba bean (Vicia faba L.) [J]. Acta Agronomica Sinica, 2022, 48(11): 2786-2796.
[15] WANG Yan-Yan, WANG Jun, LIU Guo-Xiang, ZHONG Qiu, ZHANG Hua-Shu, LUO Zheng-Zhen, CHEN Zhi-Hua, DAI Pei-Gang, TONG Ying, LI Yuan, JIANG Xun, ZHANG Xing-Wei, YANG Ai-Guo. Construction of SSR fingerprint database and genetic diversity analysis of cigar germplasm resources [J]. Acta Agronomica Sinica, 2021, 47(7): 1259-1274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[2] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .
[3] NI Da-Hu;YI Cheng-Xin;LI Li;WANG Xiu-Feng;ZHANG Yi;ZHAO Kai-Jun;WANG Chun-Lian;ZHANG Qi;WANG Wen-Xiang;YANG Jian-Bo. Developing Rice Lines Resistant to Bacterial Blight and Blast with Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(01): 100 -105 .
[4] WANG Chun-Mei;FENG Yi-Gao;ZHUANG Li-Fang;CAO Ya-Ping;QI Zeng-Jun;BIE Tong-De;CAO Ai-Zhong;CHEN Pei-Du. Screening of Chromosome-Specific Markers for Chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria kamoji[J]. Acta Agron Sin, 2007, 33(11): 1741 -1747 .
[5] Zhao Qinghua;Huang Jianhua;Yan Changjing. A STUDY ON THE POLLEN GERMINATION OF BRASSICA NAPUS L.[J]. Acta Agron Sin, 1986, (01): 15 -20 .
[6] ZHOU Lu-Ying;LI Xiang-Dong;WANG Li-Li;TANG Xiao;LIN Ying-Jie. Effects of Different Ca Applications on Physiological Characteristics, Yield and Quality in Peanut[J]. Acta Agron Sin, 2008, 34(05): 879 -885 .
[7] WANG Li-Xin; LI Yun-Fu; CHANG Li-Fang; HUANG Lan ;; LI Hong-Bo ; GE Ling-Ling; Liu Li-Hua ;; YAO Ji ;; ZHAO Chang-Ping ;. Method of ID Constitution for Wheat Cultivars[J]. Acta Agron Sin, 2007, 33(10): 1738 -1740 .
[8] ZHENG Tian-Qing;XU Jian-Long;FU Bing-Ying;GAO Yong-Ming;Satish VERUKA;Renee LAFITTE;ZHAI Hu-Qu;WAN Jian-Min;ZHU Ling-Hua;LI Zhi-Kang. Preliminary Identification of Genetic Overlaps between Sheath Blight Resistance and Drought Tolerance in the Introgression Lines from Directional Selection[J]. Acta Agron Sin, 2007, 33(08): 1380 -1384 .
[9] YANG Yan;ZHAO Xian-Lin; ZHANG Yong;CHEN Xin-Min;HE Zhong-Hu;YU Zhuo;XIA Lan-Qin
. Evaluation and Validation of Four Molecular Markers Associated with Pre-Harvest Sprouting Tolerance in Chinese Wheats[J]. Acta Agron Sin, 2008, 34(01): 17 -24 .
[10] Xia Zhongyan. STUDIES ON INHERITANCE AND SELECTION OF THE LEAF SHAPE IN KENG RICE[J]. Acta Agron Sin, 1983, 9(04): 275 -282 .