Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2006, Vol. 32 ›› Issue (06): 924-930.

• ORIGINAL PAPERS • Previous Articles     Next Articles

Effects of Epi-brassinolide (epi-BR) Application at Anthesis on Starch Accumulation and Activities of Key Enzymes in Wheat Grains

LIU Hai-Ying1 2,UO Tian-Cai1,HU Yun-Ji1,ANG Chen-Yang1,ANG Guo-Zhang1   

  1. 1Henan Agricultural University / National Engineering Research Center for Wheat, Zhengzhou 450002, Henan;2College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China
  • Received:2005-05-24 Revised:1900-01-01 Online:2006-06-12 Published:2006-06-12

Abstract:

It has been found that the application of epi-brassionolide (epi-BR) at anthesis results in improving photosynthetic character, postponing senescence, and increasing wheat grain weight. However, the physiological effects of epi-BR application at anthesis on starch accumulation and starch quality of grains were poorly understood. The present study reports the effect of epi-BR application on the activities of some key enzymes involved in starch synthesis at grain filling stage. The experiment was carried out on the farm of Henan Agricultural University in the growing season of 2003–2004 with winter wheat cultivar Yumai 49. Four different concentrations (0, 0.1, 1.0 and 10.0 µg/L) of epi-BR were used. Epi-BR was sprayed at a rate of 75 mL/m2 on the leaves and spikes on 3 days after anthesis (DAA). The activities of key starch-synthesizing enzymes in grains, i.e. adenosine diphosphorate glucosepyrophorylase (ADPGPPase), soluble starch synthase (SSS), granule-bound starch synthase (GBSS) and starch branching enzyme (SBE), as well as the total starch content, amylopectin and amylose accumulation rate during grain filling were measured. The total starch content, amylopectin and amylose content of grains, and grain starch quality were also examined at maturing stage. The results indicated that changes in activities of ADPGPPase (Fig.1-A), SSS (Fig.1-B) and SBE (Fig.1-D) were consistent with those in total starch content and the accumulation of amylopectin. Activity of GBSS (Fig.1-C) was consistent with the accumulation of amylose. The activities of ADPGPPase, SSS and SBE were increased in the treatment of 1.0 µg/L epi-BR, thereby the total starch (Fig.2-A) and amylopectin accumulation rate accelerated (Fig.2-B). The activity of GBSS was decreased, thereby the rate of amylose accumulation slowed down by epi-BR treatment (Fig.3). Consequently, contents both of total starch and amylopectin were significantly increased (α<0.01) compared with those of the control, respectively. Amylose content was significantly decreased (α<0.05), and the ratio of amylopectin to amylose increased significantly (α<0.01 ) by epi-BR application (Table 1). The peak value and breakdown of epi-BR application treatments were 32.4 BU and 13.7 BU, significantly higher (α<0.01) than those of control, respectively (Table 2). Epi-BR at 10.0 µg/L had similar effects, but the high value duration of the indexes were shorter. Consequently, content of total starch, amylopectin, and amylose was significantly increased (α<0.05 ), respectively. However the ratio of amylopectin to amylose was not significantly different with that of control. Compared with control, the peak value and swelling power were significantly higher, respectively, while the setback was significantly lower (α<0.05). At 0.1 µg/L, the effects of epi-BR were similar to those at 1.0 µg/L, but weaker than those at either 1.0 or 10.0 µg/L, therefore, the total starch content and starch quality were not significantly different with those of control. The results indicated that epi-BR plays an important role in starch accumulation and starch quality, probably through affecting the activities of ADPGPPase, SSS, SBE and GBSS. Under the experimental condition, epi-BR at 1.0 µg/L had the best regulative effects on total starch content, ratio of amylopectin to amylose, starch pasting properties and starch quality.

Key words: Winter wheat, epi-BR, Enzyme activity, Starch accumulation, Starch quality

CLC Number: 

  • S512
[1] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[2] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[3] DONG Er-Wei, WANG Jin-Song, WU Ai-Lian, WANG Yuan, WANG Li-Ge, HAN Xiong, GUO Jun, JIAO Xiao-Yan. Effects of row space and plant density on characteristics of grain filling, starch and NPK accumulation of sorghum grain of different parts of panicle [J]. Acta Agronomica Sinica, 2021, 47(12): 2459-2470.
[4] ZHANG Yu-Xun, QI Tuo-Ye, SUN Yuan, QU Xiang-Ning, CAO Yuan, WU Meng-Yao, LIU Chun-Hong, WANG Lei. Vegetation characteristics of GF-6 remote sensing image and application on LAI retrieval of winter wheat at seedling stage [J]. Acta Agronomica Sinica, 2021, 47(12): 2532-2540.
[5] HU Xin-Hui, GU Shu-Bo, ZHU Jun-Ke, WANG Dong. Effects of applying potassium at different growth stages on dry matter accumulation and yield of winter wheat in different soil-texture fields [J]. Acta Agronomica Sinica, 2021, 47(11): 2258-2267.
[6] ZHOU Bao-Yuan, GE Jun-Zhu, SUN Xue-Fang, HAN Yu-Ling, MA Wei, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Research advance on optimizing annual distribution of solar and heat resources for double cropping system in the Yellow-Huaihe-Haihe Rivers plain [J]. Acta Agronomica Sinica, 2021, 47(10): 1843-1853.
[7] LUO Wen-He, SHI Zu-Jiao, WANG Xu-Min, LI Jun, WANG Rui. Effects of water saving and nitrogen reduction on soil nitrate nitrogen distribution, water and nitrogen use efficiencies of winter wheat [J]. Acta Agronomica Sinica, 2020, 46(6): 924-936.
[8] MA Yan-Ming, FENG Zhi-Yu, WANG Wei, ZHANG Sheng-Jun, GUO Ying, NI Zhong-Fu, LIU Jie. Genetic diversity analysis of winter wheat landraces and modern bred varieties in Xinjiang based on agronomic traits [J]. Acta Agronomica Sinica, 2020, 46(12): 1997-2007.
[9] MA Yan-Ming, LOU Hong-Yao, CHEN Zhao-Yan, XIAO Jing, XU Lin, NI Zhong-Fu, LIU Jie. Genetic diversity assessment of winter wheat landraces and cultivars in Xinjiang via SNP array analysis [J]. Acta Agronomica Sinica, 2020, 46(10): 1539-1556.
[10] ZHANG Li,CHEN Fu,LEI Yong-Deng. Spatial and temporal patterns of drought risk for winter wheat grown in Hebei province in past 60 years [J]. Acta Agronomica Sinica, 2019, 45(9): 1407-1415.
[11] WU Ya-Peng,HE Li,WANG Yang-Yang,LIU Bei-Cheng,WANG Yong-Hua,GUO Tian-Cai,FENG Wei. Dynamic model of vegetation indices for biomass and nitrogen accumulation in winter wheat [J]. Acta Agronomica Sinica, 2019, 45(8): 1238-1249.
[12] YAO Kai,ZHAO Zhang-Ping,KANG Yi-Chen,ZHANG Wei-Na,SHI Ming-Fu,YANG Xin-Yu,FAN Yan-Ling,QIN Shu-Hao. Effects of ridge-furrow mulching on soil enzyme activity, physicochemical properties and yield in continuous cropping potato field [J]. Acta Agronomica Sinica, 2019, 45(8): 1286-1292.
[13] ZHAO Song-Chao,LI Yi-Fan,LIU Bo-Yuan,ZHAO Ming-Qin. Effects of air drying density on membranous lipid peroxidation and quality of cigar tobacco leaf [J]. Acta Agronomica Sinica, 2019, 45(7): 1090-1098.
[14] Li-Na JIANG,Jing-Li MA,Bao-Ting FANG,Jian-Hui MA,Chun-Xi LI,Zhi-Min WANG,Bao-Zhen HAO. Effect of lower water and nitrogen supply on grain yield and dry matter remobilization of organs in different layers of winter wheat plant in northern Henan province [J]. Acta Agronomica Sinica, 2019, 45(6): 957-966.
[15] Xin-Nan HE,Xiang LIN,Shu-Bo GU,Dong WANG. Effects of supplemental irrigation with micro-sprinkling hoses on soil physical properties, water consumption and grain yield of winter wheat [J]. Acta Agronomica Sinica, 2019, 45(6): 879-892.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!