Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (5): 728-739.doi: 10.3724/SP.J.1006.2019.83040

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Responses of photosynthetic characteristics to low light stress in ear leaves of high photosynthetic efficiency maize at narrow row of maize-soybean strip intercropping system

Yong-Fu REN,Guo-Peng CHEN,Tian PU,Cheng CHEN,Jin-Xi ZENG,Xiao PENG,Yan-Wei MA,Wen-Yu YANG,Xiao-Chun WANG()   

  1. College of Agronomy, Sichuan Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture / Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, Sichuan, China
  • Received:2018-05-01 Accepted:2019-01-12 Online:2019-05-12 Published:2019-02-19
  • Contact: Xiao-Chun WANG E-mail:xchwang@sicau.edu.cn
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0300109);the Breeding Research Project of Sichuan(2016NYZ0051-2);the Agricultural Technology Achievement Demonstration Project of Chengdu(2015-NY01-00100-NC)

Abstract:

The photosynthesis of maize is inhibited in narrow row under maize-soybean relay strip intercropping system. In order to explore the internal mechanisms of photosynthesis characteristics responding to low light stress in ear leaf of intercropped maize cultivars with high photosynthetic efficiency, the low (A1: Zhongwangyu 18), middle (A2: Chuandan 418), and high (A3: Rongyu 1210) photosynthetic efficiency maize varieties were grown in maize-soybean strip intercropping system (two rows of maize intercropped with two rows of soybean) with different narrow spaces (B1: 20 cm; B2: 40 cm; B3: monoculture). The photosynthetic rate and PEPCase activity of “Rongyu 1210” were significantly higher than those of “Zhongwangyu 18” and “Chuandan 418”, respectively under the conventional row spacing (40 cm) and low light intensity conditions (before 10 a.m., after 4 p.m.). Additionally, “Rongyu 1210” had more complete chloroplast structure, which might result in lower initial fluorescence (Fo) and maximum fluorescence (Fm) of chlorophyll compared with “Zhongwangyu 18” and “Chuandan 418”. The Pn and activities of key enzymes decreased, but the initial fluorescence (Fo), maximum fluorescence (Fm) and effective photochemical quantum yield (Fv'/Fm') of chlorophyll increased with the decreasing narrow row spacing, Interestingly, the above indexes of “Rongyu 1210” were stable under the variable light environment. The photosynthetic rate, photosynthetic key enzyme activities, and yield of “Rongyu 1210” between monoculture and intercropping were not significantly different. However, the photosynthetic rate and PEPCase activity of “Zhongwangyu 18” and “Chuandan 418” in intercropping decreased by 28.9%, 24.2% and 7.4%, 5.5% compared with that in monoculture, respectively. In conclusion, the response of maize varieties to shade conditions in narrow row under intercropping system is different. Rongyu 1210, with a positive responding, that has better physiological indexes in photosynthesis than the other two maize varieties in the intercropping system. These results provide a theoretical explanation for excellent adaptability to the lower light environment and high yield in Rongyu 1210 under maize-soybean intercropping strip system.

Key words: maize-soybean strip intercropping, high photosynthetic efficiency, ear leaves, low light stress, photosynthetic characteristics

Fig. 1

Schematic diagram of field planting and light distribution MM stands for monoculture."

Fig. 2

Effects of different treatments on photosynthesis parameter in ear leaves of maize at narrow row MM stands for monoculture. Values within a group followed by different letters are significantly different at P < 0.05."

Fig. 3

Effects of different treatments on daily variation of photosynthetic rate in ear leaves of maize at narrow row MM stands for monoculture."

Fig. 4

Effects of different treatments on key enzyme activities in photosynthesis in ear leaves of maize at narrow row MM stands for monoculture. Treatments described as in Fig. 2. Values within a group superscripted by different letters are significantly different at P < 0.05."

Table 1

Effects of different treatments on chlorophyll fluorescence parameters in ear leaves of maize at narrow row"

品种
Variety
行距
Row
spacing
Fo Fm Fv/Fm Fv′/Fm
抽雄期
Tasseling stage
灌浆期
Filling stage
抽雄期
Tasseling stage
灌浆期
Filling
stage
抽雄期
Tasseling stage
灌浆期
Filling stage
抽雄期
Tasseling stage
灌浆期
Filling stage
众望玉18 20 cm 3788.00 a 3438.00 b 19501.00 a 16201.00 a 0.76 c 0.77 c 0.13 a 0.14 b
Zhongwangyu 18 40 cm 2595.00 d 3370.00 c 13788.00 e 15819.00 b 0.78 ab 0.79 b 0.12 ab 0.13 bc
单作MM 2161.00 e 2600.00 e 12092.00 f 13566.00 d 0.79 a 0.81 a 0.10 c 0.12 c
川单418 20 cm 3527.00 b 3635.00 a 17138.00 b 15016.00 b 0.76 c 0.75 d 0.13 a 0.12 c
Chuandan 418 40 cm 3085.00 d 3326.00 c 16187.00 c 14527.00 c 0.77 b 0.76 cd 0.12 ab 0.12 c
单作MM 2345.00 e 2578.00 e 12284.00 f 12310.00 e 0.78 ab 0.79 b 0.12 ab 0.11 d
荣玉1210 20 cm 3481.00 b 2986.00 d 17400.00 b 14413.00 c 0.76 c 0.78 bc 0.11 bc 0.15 a
Rongyu 1210 40 cm 3272.00 c 2775.00 e 16816.00 c 13380.00 d 0.77 b 0.79 b 0.11 bc 0.14 b
单作MM 2964.00 d 1888.00 f 15585.00 d 10094.00 f 0.77 b 0.80 ab 0.10 c 0.12 c
众望玉18-avg. Zhongwangyu 18-avg. 2848.00 c 3136.00 a 15127.00 b 15195.33 a 0.78 a 0.79 a 0.12 a 0.13 a
川单418-avg. Chuandan 418-avg. 3052.33 b 3179.66 a 15203.00 b 13951.00 b 0.77 b 0.77 b 0.12 a 0.12 b
荣玉1210-avg. Rongyu 1210-avg. 3239.00 a 2549.66 b 16600.33 a 12629.00 b 0.77 b 0.79 a 0.11 b 0.13 a
20 cm-avg. 3598.66 a 3353.00 a 18013.00 a 15210.00 a 0.77 c 0.77 c 0.12 a 0.14 a
40 cm-avg. 3050.66 b 3157.00 b 15597.00 b 14575.33 b 0.78 b 0.78 b 0.12 a 0.13 b
MM-avg. 2490.00 c 2355.33 c 13320.33 c 11990.00 c 0.79 a 0.80 a 0.11 b 0.11 c
FF-value
品种 Varieties (V) 1.43* 2.02 0.99 2.36 5.21 4.14 2.23 4.02*
行距 Row spacing (RS) 4.07* 1.14 3.69 1.81 5.96* 0.88* 2.12 0.37*
品种×行距 V×RS 3.01* 1.50 2.61 1.65 4.70 2.18 2.17 1.83*

Table 2

Effects of different treatments on chloroplast ultrastructure in ear leaves of maize at narrow row"

品种
Variety
行距
Row spacing
叶绿体长度Chloroplast length (μm) 叶绿体宽度Chloroplast width (μm) 基粒厚度
Grains thickness (μm)
淀粉颗粒数
Starch granule
嗜锇颗粒数
Osmiophilic
particle
众望玉18 20 cm 7.12 bc 3.33 a 0.73 a 3.33 a 3.67 a
Zhongwangyu 18 40 cm 7.12 bc 3.10 b 0.72 ab 2.67 ab 3.33 a
单作MM 7.00 d 3.09 bc 0.69 b 2.00 b 1.33 bc
川单418 20 cm 7.13 b 3.26 ab 0.73 a 2.33 ab 2.33 b
Chuandan 418 40 cm 7.03 c 3.06 bc 0.68 bc 1.67 bc 1.33 bc
单作MM 6.98 e 3.06 bc 0.63 cd 1.33 bc 0.33 c
荣玉1210 20 cm 7.34 a 3.06 bc 0.65 c 1.00 c 1.00 cd
Rongyu 1210 40 cm 7.28 ab 2.99 d 0.61 d 0 d 0 d
单作MM 7.25 ab 2.98 d 0.61 d 0 d 0 d
FF-value
品种 Varieties (V) 55.28** 8.97* 16.44* 133.42** 16.66*
行距 Row pacing (RS) 11.48* 12.23* 7.18* 31.18** 8.79*
品种×行距 V×RS 0.07 0.11 0.95 0.59 9.09**

Fig. 5

Chloroplast ultrastructure under transmission electron microscope CHL: chloroplast; GT: grana cyst; CCHL: disturbed grana cyst; SG: starch granule; OG: osmiophilic particles; GL: grana lamella; SL: stroma lamella."

Fig. 6

Effects of different treatments on maize yield MM stands for monoculture. Values within a group superscripted by different letters are significantly different at P < 0.05."

Table 3

Effects of different treatments on yield components of maize"

品种
Variety
行距
Row
spacing
2015年 2016年
穗粒数
Grain number
per ear
千粒重
1000-kernel
weight (g)
穗数
Ear number
(×104 hm-2)
穗粒数
Grain number
per ear
千粒重
1000-kernel
weight (g)
穗数
Ear number
(×104 hm-2)
众望玉18 20 cm 406.20 e 290.00 b 49764.30 b 429.12 d 324.04 a 50330.00 e
Zhongwangyu 18 40 cm 449.30 d 294.30 b 50357.10 b 420.80 d 316.20 b 54000.00 d
单作MM 507.20 b 289.10 b 57142.90 a 519.66 b 309.64 c 56000.00 c
川单418 20 cm 347.60 f 300.50 b 49521.40 b 459.47 c 263.06 e 54000.00 d
Chuandan 418 40 cm 468.70 c 292.60 b 57732.12 a 527.37 b 256.00 e 57330.00 b
单作MM 479.00 c 308.00 a 58992.90 a 588.85 a 255.46 e 59330.00 a
荣玉1210 20 cm 452.00 d 295.70 b 49764.30 b 394.54 e 294.60 d 56660.00 c
Rongyu 1210 40 cm 563.80 a 294.00 b 55512.25 ab 442.91 d 305.86 c 57660.00 b
单作MM 588.10 a 295.40 b 56664.30 a 472.68 c 310.20 c 57660.00 b
众望玉18-avg. Zhongwangyu 18-avg. 454.23 b 291.13 a 52421.43 b 456.52 b 316.62 a 53443.33 c
川单418-avg. Chuandan 418-avg. 431.76 b 300.36 a 55415.47 a 525.23 a 258.17 c 56886.66 b
荣玉1210-avg. Rongyu 1210-avg. 534.63 a 295.03 a 53980.28 a 436.71 c 303.55 b 57326.66 a
20 cm-avg. 401.93 c 295.40 a 49683.33 c 427.71 c 293.90 a 53663.33 c
40 cm-avg. 493.93 b 293.63 a 54533.82 b 463.69 b 292.68 a 56330.00 b
MM-avg. 524.76 a 297.50 a 57600.03 a 527.06 a 291.76 a 57663.33 a
FF-value
品种 Varieties (V) 25.78** 185.89** 1.32** 16.72** 66.00** 5.51**
行距 Row spacing (RS) 24.35** 3.49** 38.66* 27.18** 3.55 4.59*
品种×行距 V×RS 24.92** 76.45* 23.72** 1.63 2.00 0.72

Table 4

Correlation between photosynthetic parameters and yield"

光合速率
Photosyn-
thetic rate
气孔导度
Stomatal
conductance
胞间CO2浓度
Intercellular CO2 concentration
蒸腾速率
Transpiration rate
穂粒数
Grain number per ear
千粒重
1000-kernel weight
穗数
Ear number
(×104 hm-2)
产量
Yield
Photosynthetic rate 1.00 0.99** -0.80** 0.90** 0.54* 0.39 0.53* 0.62**
Stomatal conductance 1.00 -0.82** 0.92** 0.58* 0.37 0.54* 0.65**
Intercellular CO2 concentration 1.00 -0.97** -0.74** -0.24 -0.47 -0.73**
Transpiration rate 1.00 0.65** 0.27 0.51* 0.69**
Grain number per ear 1.00 -0.15 0.67** 0.95**
1000-kernel weight 1.00 0.18 0.05
Ear number (×104 hm-2) 1.00 0.85**
Yield 1.00
[1] 高仁才, 杨峰, 廖敦平, 苏本营, 崔亮, 邓传蓉, 杨文钰 . 行距配置对套作大豆冠层光环境及其形态特征和产量的影响. 大豆科学, 2015,34:611-615.
Gao R C, Yang F, Liao D P, Su B Y, Cui L, Deng C R, Yang W Y . Effects of different row spacing of maize on light environment, morphological characteristics and yield of soybeans in a relay intercropping system. Soybean Sci, 2015,34:611-615 (in Chinese with English abstract).
[2] Du J B, Han T F, Gai J Y, Yong T W, Sun X, Wang X C, Yang F, Liu J, Shu K, Liu W G, Yang W Y . Maize-soybean strip intercropping: achieved a balance between high productivity and sustainability. J Intergr Agric, 2018,17:747-754.
doi: 10.1016/S2095-3119(17)61789-1
[3] 张霞 . 玉米-大豆带状套作的物质产出、养分积累及经济效益研究. 四川农业大学硕士学位论文. 四川成都, 2014.
Zhang X . Study on Material Production, Nutrient Accumulation and Economic Benefit in Maize-soybean Relay Strip Intercropping System . MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2014 (in Chinese with English abstract).
[4] Long S P, Zhu X, Naidu S L, Ort D R . Can improvement in photosynthesis increase crop yields. Plant Cell Environ, 2006,29:315-330.
doi: 10.1111/pce.2006.29.issue-3
[5] Zhu X G, Long S P, Ort D R . What is the maximum efficiency with which photosynthesis can convert solar energy into biomass. Curr Opin Biotechnol, 2008,19:153.
doi: 10.1016/j.copbio.2008.02.004
[6] 陈国鹏, 王小春, 蒲甜, 曾红, 陈诚, 彭霄, 丁国辉, 王锐, 杨文钰 . 玉米-大豆带状套作中田间小气候与群体产量的关系. 浙江农业学报, 2016,28:1812-1821.
Chen G P, Wang X C, Pu T, Zeng H, Chen C, Peng X, Ding G H, Wang R, Yang W Y . Relationship of field microclimate and population yield in maize-soybean relay strip intercropping system. Acta Agric Zhejiangensis, 2016,28:1812-1821 (in Chinese with English abstract).
[7] 蒲甜, 张群, 陈国鹏, 陈诚, 曾红, 彭霄, 杨文钰, 王小春 . 行距对玉米-大豆套作体系中玉米产量及干物质积累与分配的影. 浙江农业学报, 2016,28:1277-1286.
Pu T, Zhang Q, Chen G P, Chen C, Zeng H, Peng X, Yang W Y, Wang X C . Effects of row spacing on yield, dry matter accumulation and partitioning of maize in maize soybean relay strip intercropping system. Acta Agric Zhejiangensis, 2016,28:1277-1286 (in Chinese with English abstract).
[8] 张群 . 宽窄行配置对带状套作玉米光合特性及产量的影响. 四川农业大学硕士学位论文, 四川成都, 2014.
Zhang Q . Effects of Wide-narrow Row spacing on Photosynthetic Characteristics and Yield of Maize in the Strip Intercropping. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2014 (in Chinese with English abstract).
[9] 杨吉顺, 高辉远, 刘鹏, 李耕, 董树亭, 张吉旺, 王敬锋 . 种植密度和行距配置对超高产夏玉米群体光合特性的影响. 作物学报, 2010,36:1226-1233.
Yang J S, Gao H Y, Liu P, Li G, Dong S T, Zhang J W, Wang J F . Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn. Acta Agron Sin, 2010,36:1226-1235 (in Chinese with English abstract).
[10] 宁堂原, 焦念元, 赵春, 邵国庆, 尉晶, 金福深, 李增嘉 . 不同品种春夏玉米套作模式中夏玉米光合特性与产量的关系. 中国生态农业学报, 2009,17:459-464.
Ning T Y, Jiao N Y, Zhao C, Shao G Q, Wei J, Jin F S, Li Z J . Effect of intercropping summer and spring maize on photosynthesis and yield of summer maize. Chin J Eco-Agric, 2009,17:459-464 (in Chinese with English abstract).
[11] 赵秀琴, 赵明, 肖俊涛, 张文绪, 关东明, 王美云, 陆军, 臧宁 . 栽野稻远缘杂交高光效后代及其亲本叶片的气孔特性. 作物学报, 2003,29:216-221.
Zhao X Q, Zhao M, Xiao J T, Zhang W X, Guan D M, Wang M Y, Lu J, Zang N . Stomata characteristics of leaves of high-photosynthetic efficiency progenies from a cross between O. sativa and O. rufipogon and their parents. Acta Agron Sin, 2003,29:216-221 (in Chinese with English abstract).
[12] 王强, 张其德, 卢从明, 匡廷云, 李成荃 . 超高产杂交稻不同生育期的光合色素含量、净光合速率和水分利用效率. 植物生态学报, 2002,26:647-651.
Wang Q, Zhang Q D, Lu C M, Kuang Y Y, Li C Q . Pigments content, net photosynthesis rate and water use efficiency of two super high- yield rice hybrids at different developmental stages. Acta Ecol Sin, 2002,26:647-651 (in Chinese with English abstract).
[13] Andrade F H, Calviño P, Cirilo A, Barbieri P . Yield responses to narrow rows depend on increased radiation interception. Agron J, 2002,94:975-980.
doi: 10.2134/agronj2002.0975
[14] Retasánchez D G, Fowler J L . Canopy light environment and yield of narrow-row cotton as affected by canopy architecture. Agron J, 2002,94:1317-1323.
doi: 10.2134/agronj2002.1317
[15] 武志海, 张治安, 陈展宇, 徐克章 . 大垄双行种植玉米群体冠层结构及光合特性的解析. 玉米科学, 2005,13(4):62-65.
Wu Z H, Zhang Z A, Chen Z Y, Xu K Z . Researched on characteristics of canopy structure and photosynthetic characteristic of maize planting in double lines at one width ridge. Maize Sci, 2005,13(4):62-65 (in Chinese with English abstract).
[16] 王敬亚, 齐华, 梁熠, 王晓波, 吴亚男, 白向历, 刘明, 孟显华, 许晶 . 种植方式对春玉米光合特性、干物质积累及产量的影响. 玉米科学, 2009,17(5):113-115.
Wang J Y, Hua Q I, Liang Y, Wang X B, Wu Y N, Bai X L, Liu M, Meng X H, Xu J . Effects of different planting patterns on the photosynthesis capacity dry matter accumulation and yield of spring maize. Maize Sci, 2009,17(5):113-115 (in Chinese with English abstract).
[17] Lilley R M, Walker D A . The reduction of 3-phosphoglycerate by reconstituted chloroplasts and by chloroplast extracts. Biochi. Biophys, 1974,368:269-278.
[18] 施教耐, 吴敏贤, 查静娟 . 植物磷酸烯醇式丙酮酸羧化酶的研究. PEP羧化酶同功酶的分离和变构特性的比较. 植物生理学报, 1979, ( 3):44-54.
Shi J N, Wu M X, Cha J J . Studies on plant phosphoenolpyruvate carboxylase. Separtion and properties of PEP carboxylase isoenzymes.Acta Phytophysiol Sin, 1979, ( 3):44-54 (in Chinese with English abstract).
[19] Arnozis P A, Nelemans J A, Findenegg G R . Phosphoenolpyruvate carboxylase activity in plants grown with either NO3 - or NH4 + as inorganic nitrogen source . J Plant Physiol, 1988,132:23-27.
doi: 10.1016/S0176-1617(88)80177-9
[20] 吕丽华, 王璞, 易镇邪, 魏凤桐, 刘明 . 密度对夏玉米品种光合特性和产量性状的影响. 玉米科学, 2007,15(2):79-81.
Lyu L H, Wang P, Yi Z X, Wei F T, Liu M . Effects of plant density on photosynthetic character and yield trait in summer corn. Maize Sci, 2007,15(2):79-81 (in Chinese with English abstract).
[21] 满为群, 杜维广, 张桂茹, 栾晓燕, 戈巧英, 郝乃斌, 陈怡 . 高光效大豆品种光合作用的日变化. 中国农业科学, 2002,35:860-862.
Man W Q, Du W G, Zhang G R, Luan X Y, Ge Q Y, Hao N B, Chen Y . Photosynthetic diurnal variation of soybean cultivars high photosynthetic efficiency. Sci Agric Sin, 2002,35:860-862 (in Chinese with English abstract).
[22] 满为群, 杜维广, 张桂茹, 李卫华, 栾晓燕, 戈巧英, 郝乃斌 . 高光效大豆几项光合生理指标的研究. 作物学报, 2003,29:697-700.
Man W Q, Du W G, Zhang G R , Li W H Luan X Y, Ge Q Y, Hao N B . Photosynthetic characteristics of soybean cultivars with high photosynthetic efficiency. Acta Agron Sin, 2003,29:697-700 (in Chinese with English abstract).
[23] 时向东, 蔡恒, 焦枫, 时映, 孙家利 . 光质对作物生长发育影响研究进展. 中国农学通报, 2008,24:226-230.
Shi X D, Cai H, Jiao F , Shi Y. Sun J L . Research advances in effects of light qualities on crop growth and development. Chin Agric Sci Bull, 2008,24:226-230 (in Chinese with English abstract).
[24] 崔海岩, 靳立斌, 李波, 赵斌, 董树亭, 刘鹏, 张吉旺 . 大田遮阴对夏玉米光合特性和叶黄素循环的影响. 作物学报, 2013,39:478-485.
Cui H Y, Jin L B, Li B, Zhao B, Dong S T, Liu P, Zhang J W . Effects of shading on photosynthetic characteristics and xanthophyll cycle of summer maize in the field. Acta Agron Sin, 2013,39:478-485 (in Chinese with English abstract).
[25] Liu X, Rahmana T, Song C, Yang F, Sua B, Cuia L, Bua W Z, Yang W Y . Relationships among light distribution, radiation use efficiency and land equivalent ratio in maize-soybean strip intercropping. Field Crops Res, 2018,224:91-101.
doi: 10.1016/j.fcr.2018.05.010
[26] Gou F, Ittersum M K V, Couëdel A, Zhang Y, Wang Y, Putten, P, Zhang L, Wopke V D W. Intercropping with wheat lowers nutrient uptake and biomass accumulation of maize, but increases photosynthetic rate of the ear leaf. Aob Plants, 2018, 10(1): ply010.
[27] 张吉旺, 董树亭, 王空军, 胡昌浩, 刘鹏 . 大田遮荫对夏玉米光合特性的影响. 作物学报, 2007,33:216-222.
Zhang J W, Dong S T, Wang K J, Hu C H, Liu P . Effects of shading in field on photosynthetic characteristics in summer corn. Acta Agron Sin, 2007,33:216-222 (in Chinese with English abstract).
[28] 贾士芳, 董树亭, 王空军, 张吉旺, 刘鹏 . 弱光胁迫对玉米产量及光合特性的影响. 应用生态学报, 2007,18:2456-2461.
Jia S F, Dong S T, Wang K J, Zhang J W, Liu P . Effects of weak light stress on grain yield and photosynthetic traits of maize. Chin J Appl Ecol, 2007,18:2456-2461 (in Chinese with English abstract).
[29] 李植, 秦向阳, 王晓光, 李兴涛, 王建辉, 曹敏建 . 大豆/玉米间作对大豆叶片光合特性和叶绿素荧光动力学参数的影响. 大豆科学, 2010,29:808-811.
Li Z, Qin X Y, Wang X G, Li X T, Wang J H, Cao M J . Effect of intercropping with maize on photosynthesis and chlorophyll fluorescence parameters of soybean. Soybean Sci, 2010,29:808-811 (in Chinese with English abstract).
[30] 杜成凤, 李潮海, 刘天学, 赵亚丽 . 遮荫对两个基因型玉米叶片解剖结构及光合特性的影响. 生态学报, 2011,31:6633-6640.
Du C F, Li C H, Liu T X, Zhao Y L . Response of anatomical structure and photosynthetic characteristics to low light stress in leaves of different maize genotypes. Acta Ecol Sin, 2011,31:6633-6640 (in Chinese with English abstract).
[31] 沈允钢 . 动态光合作用. 北京: 科学出版社, 1998. p 127.
Shen Y G . Dynamic Photosynthesis. Beijing: Science Press, 1998. p 127 (in Chinese).
[32] 余叔文, 汤章城 . 植物生理与分子生物学(第2版). 北京: 科学出版社, 1998. p 68.
Yu S W, Tang Z C. Plant Physiology and Molecular Biology, 2nd edn. Beijing: Science Press, 1998. p 68 (in Chinese)
[33] 李潮海, 栾丽敏, 王群, 李宁, 赵亚丽 . 苗期遮光及光照转换对不同玉米杂交种光合效率的影响. 作物学报, 2005,31:381-385.
Li C H, Luan L M, Wang Q, Li N, Zhao Y L . Effects of seedling shading and light intensity transfer on photosynthetic efficiency of different maize hybrids. Acta Agron Sin, 2005,31:381-385 (in Chinese with English abstract).
[34] 牟会荣, 姜东, 戴廷波, 荆奇, 曹卫星 . 遮荫对小麦旗叶光合及叶绿素荧光特性的影响. 中国农业科学, 2008,41:599-606.
Mu H R, Jiang D, Dai T B, Jing Q, Cao W X . Effect of shading on photosynthesis and chlorophyll fluorescence characters in wheat flag leaves. Sci Agric Sin, 2008,41:599-606 (in Chinese with English abstract).
[35] 魏珉, 邢禹贤, 王秀峰, 马红 . CO2加富对黄瓜叶片显微和亚显微结构的影响. 园艺学报, 2002,29:30-34.
Wei M, Xing Y X, Wang X F, Ma H . Effects of CO2 enrichment on the microstructure and ultrastructure of leaves in cucumber. Acta Hortic Sin, 2002,29:30-34 (in Chinese with English abstract).
[1] XU Tian-Jun, ZHANG Yong, ZHAO Jiu-Ran, WANG Rong-Huan, LYU Tian-Fang, LIU Yue-E, CAI Wan-Tao, LIU Hong-Wei, CHEN Chuan-Yong, WANG Yuan-Dong. Canopy structure, photosynthesis, grain filling, and dehydration characteristics of maize varieties suitable for grain mechanical harvesting [J]. Acta Agronomica Sinica, 2022, 48(6): 1526-1536.
[2] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[3] ZHANG Yun, WANG Dan-Mei, WANG Xiao-Yuan, REN Qing-Wen, TANG Ke, ZHANG Li-Yu, WU Yu-Huan, LIU Peng. Effects of exogenous jasmonic acid on photosynthetic characteristics and cadmium accumulation of Helianthus tuberosus L. under cadmium stress [J]. Acta Agronomica Sinica, 2021, 47(12): 2490-2500.
[4] FENG Ke-Yun, WANG Ning, NAN Hong-Yu, GAO Jian-Gang. Effects of chemical fertilizer reduction with organic fertilizer application under water deficit on photosynthetic characteristics and yield of cotton [J]. Acta Agronomica Sinica, 2021, 47(1): 125-137.
[5] DU Jin-Yong,CHAI Qiang,WANG Yi-Fan,FAN Hong,HU Fa-Long,YIN Wen,LI Deng-Ye. Effect of above- and below-ground interaction intensity on photosynthetic characteristics of wheat-maize intercropping [J]. Acta Agronomica Sinica, 2019, 45(9): 1398-1406.
[6] LI Chao-Su,WU Xiao-Li,TANG Yong-Lu,LI Jun,MA Xiao-Ling,LI Shi-Zhao,HUANG Ming-Bo,LIU Miao. Response of yield and associated physiological characteristics for different wheat cultivars to nitrogen stress at mid-late growth stage [J]. Acta Agronomica Sinica, 2019, 45(8): 1260-1269.
[7] Si-Long CHEN,Zeng-Shu CHENG,Ya-Hui SONG,Jin WANG,Yi-Jie LIU,Peng-Juan ZHANG,Yu-Rong LI. Leaf photosynthesis and matter production dynamic characteristics of peanut varieties with high yield and high oil content [J]. Acta Agronomica Sinica, 2019, 45(2): 276-288.
[8] Hai-Yue YU,Yan YAN,Yu-Shi ZHANG,Ming-Cai ZHANG,Zhao-Hu LI. Regulatory effects of coronatine on photosynthetic characteristics and yield of soybean under different irrigation conditions [J]. Acta Agronomica Sinica, 2019, 45(12): 1851-1858.
[9] Yang GAO,Wei-Guo LIU,Shu-Xian LI,Ting LIU,Tao ZHOU,Yong-Li DU,Yi ZHANG,Bi-Qin LI,Wen-Yu YANG. Effect of shade priming on photosynthetic characteristics of soybean seedlings [J]. Acta Agronomica Sinica, 2019, 45(1): 91-99.
[10] Hong-Liang SHI,Qing-Qing YAN,Ju-Song ZHANG,Chun-Yan LI,Hai-Tao DOU. Compensation Effect of Nitrogen Fertilizer on Photosynthetic Characteristics and Yield during Cotton Flowering Boll-setting Stage under Non-sufficient Drip Irrigation [J]. Acta Agronomica Sinica, 2018, 44(8): 1196-1204.
[11] Dan-Dan HU,Ji-Wang ZHANG,Peng LIU,Bin ZHAO,Shu-Ting DONG. Effects of Mixed-cropping with Different Varieties on Photosynthetic Characteristics and Yield of Summer Maize under Close Planting Condition [J]. Acta Agronomica Sinica, 2018, 44(6): 920-930.
[12] Ya-Jiao CHENG,Yuan-Fang FAN,Jun-Xu CHEN,Zhong-Lin WANG,Ting-Ting TAN,Jia-Feng LI,Sheng-Lan LI,Feng YANG,Wen-Yu YANG. Effects of Light Intensity on Photosynthetic Characteristics and Assimilates of Soybean Leaf [J]. Acta Agronomica Sinica, 2018, 44(12): 1867-1874.
[13] Tian-Jun XU, Tian-Fang LYU, Jiu-Ran ZHAO, Rong-Huan WANG, Chuan-Yong CHEN, Yue-E LIU, Xiu-Zhi LIU, Yuan-Dong WANG, Chun-Ge LIU. Photosynthetic Characteristics, Dry Matter Accumulation and Translocation, Grain Filling Parameter of Three Main Maize Varieties in Production [J]. Acta Agronomica Sinica, 2018, 44(03): 414-422.
[14] LIU Hong-Yan, ZHOU Fang, LI Jun, YANG Min-Min, ZHOU Ting, HAO Guo-Cun,ZHAO Ying-Zhong . Anatomical Structure and Photosynthetic Characteristics of a Yellow Leaf Mutant YL1 in Sesame (Sesamum indicum L.) [J]. Acta Agron Sin, 2017, 43(12): 1856-1863.
[15] LIU Zhao-Xin,LIU Yan,LIU Ting-Ru,HE Mei-Juan,YAO Yuan,YANG Jian-Qun,ZHEN Xiao-Yu,LI Xin-Xin,YANG Dong-Qing,LI Xing-Dong*. Effect of Controlled-Release Compound Fertilized on Photosystem II Performance, Yield and Quality of Intercropped Peanut with Wheat [J]. Acta Agron Sin, 2017, 43(11): 1667-1676.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!