Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (3): 704-715.doi: 10.3724/SP.J.1006.2022.11007

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application

FENG Jian-Chao1(), XU Bei-Ming1, JIANG Xue-Li1, HU Hai-Zhou1, MA Ying1, WANG Chen-Yang1,2, WANG Yong-Hua1, MA Dong-Yun1,2,*()   

  1. 1National Engineering Research Center for Wheat/Agronomy College of Henan Agricultural University, Zhengzhou 450046, Henan, China
    2National Key Laboratory of Wheat and Maize Crop Science/Henan Agricultural University, Zhengzhou 450046, Henan, China
  • Received:2021-01-13 Accepted:2021-06-16 Online:2021-07-22 Published:2021-07-22
  • Contact: MA Dong-Yun E-mail:fjc000@163.com;xmzxmdy@126.com
  • Supported by:
    National Key Research and Development Program of China(2016YFD0300404);Science and Technology Project of Henan Province(152102110067)

Abstract:

Clarifying the distribution of phenolic compounds in layered grinding wheat flour and its response to nitrogen fertilizer application would provide useful information for wheat quality improvement and high-quality cultivation. Two wheat cultivars, purple wheat (Jizi 439) and white wheat (Xinhuamai 818), were planted with two nitrogen application rate (HN, N 210 kg hm-2; LN, N 105 kg hm-2) in Zhengzhou and Yuanyang experimental sites during growing period in 2019 and 2020. The mature grains were ground into five milling fractionations (LY1, LY2 LY3, LY4, and LY5) from the bran layer to the endospermic layer by layered grinding, and the total phenolic content (TPC), the total flavonoids content (TFC), and the anthocyanin content (AC), and their antioxidant activity were determined. The results showed that the TPC, TFC, AC, and antioxidant activity (TEAC, FRAP) in free phenols and conjugated phenols extracts decreased from the outer layer flour fractionation to the inner layer flour fractionation. The purple wheat, named as Jizi 439, had a higher antioxidant content and antioxidant activity than white wheat (Xinhuamai 818), but the difference between the two cultivars displayed a decreasing trend from the bran layer flour fractionation to endosperm layer flour fractionation. The TPC, TFC, and AC of LY1 to LY3 flour fractionation increased with the increase of nitrogen fertilizer application except for TPC of LY1 in Yuanyang. However, the contents of total phenolics and total flavonoids of LY4 to LY5 flour fractionation had a weak response to nitrogen fertilizer application. The content of ferulic acid accounted for more than 93% of the TPC in wheat grains and had a higher value under low nitrogen condition. In conclusion, purple wheat had higher antioxidant substances such as phenolics than white wheat, and the difference between purple wheat and white wheat decreased with the deepening of grinding degree. The content and activity of antioxidants in the outer layer flour fractionation were significantly responsive to nitrogen regulation, and the content increased with the increase of nitrogen.

Key words: wheat, layered grinding wheat flour, antioxidant substance, phenolic acid, nitrogen fertilizer

Fig. 1

Variation of precipitation and monthly mean temperature in 2019 and 2020"

Fig. 2

Grain shape of Jizimai 439 after layer-by-layer grinding LY1: 100%-90%; LY2: 90%-70%; LY3: 70%-50%; LY4: 50%- 30%; LY5: 30%-0."

Fig. 3

Total phenol content in wheat grain flour with different grinding degrees XH-N105, XH-N210, JZ-N105, and JZ-N210 represent Xinhua 818 under 105 N hm-2, Xinhua 818 under 210 N hm-2, Jizi 439 under 105 N hm-2, and Jizi 439 under 210 N hm-2 treatment, respectively. Different lowercase letters above the column indicate significant difference at P < 0.05 between different varieties and treatments among the same layer. LY1: 100%-90%; LY2: 90%-70%; LY3: 70%-50%; LY4: 50%-30%; LY5: 30%-0; WG: whole grain flour."

Fig. 4

Total flavonoids content in wheat grain flour with different grinding degrees XH-N105, XH-N210, JZ-N105, and JZ-N210 represent Xinhua 818 under 105 N hm-2, Xinhua 818 under 210N hm-2, Jizi 439 under 105 N hm-2, and Jizi 439 under 210 N hm-2 treatment, respectively. Different lowercase letters above the column indicate significant difference at P < 0.05 between different varieties and treatments among the same layer. Treatments are the same as those given in Fig. 3."

Fig. 5

Anthocyanin content in wheat grain flour with different grinding degrees XH-N105, XH-N210, JZ-N105, and JZ-N210 represent Xinhua 818 under 105 N hm-2, Xinhua 818 under 210N hm-2, Jizi 439 under 105 N hm-2, and Jizi 439 under 210 N hm-2 treatment, respectively. Different lowercase letters above the column indicate significant difference at P < 0.05 between different varieties and treatments among the same layer. Treatments are the same as those given in Fig. 3."

Fig. 6

TEAC value of flour with different grinding degrees XH-N105, XH-N210, JZ-N105, and JZ-N210 represent Xinhua 818 under 105 N hm-2, Xinhua 818 under 210 N hm-2, Jizi 439 under 105 N hm-2, and Jizi 439 under 210 N hm-2 treatment, respectively. Different lowercase letters above the column indicate significant difference at P < 0.05 between different varieties and treatments among the same layer. Treatments are the same as those given in Fig. 3."

Fig. 7

FRAP value of flour with different grinding degrees XH-N105, XH-N210, JZ-N105, and JZ-N210 represent Xinhua 818 under 105 N hm-2, Xinhua 818 under 210 N hm-2, Jizi 439 under 105 N hm-2, and Jizi 439 under 210 N hm-2 treatment, respectively. Different lowercase letters above the column indicate significant difference at P < 0.05 between different varieties and treatments among the same layer. Treatments are the same as those given in Fig. 3."

Table 1

Effects of nitrogen fertilizer on phenolic acid components contents of wheat grain (μg g-1)"

地点
Site
酚类
Phenols
品种
Cultivar
处理
Treatment
香草酸
Vanilic
acid
咖啡酸
Caffeic
acid
丁香酸
Syringic
acid
对香豆酸
p-Coumaric
acid
阿魏酸
Ferulic
acid
总酚酸
Total phenolic
acid
郑州
Zhengzhou
游离酚
Free phenol
鑫华麦818
Xinhua 818
N105 1.81 f 0.18 d 0.16 f 2.37 e 0.48 d 4.99 e
N210 2.72 e 0.23 d 0.26 e 0.17 f 0.46 d 3.83 e
冀紫439
Jizi 439
N105 2.78 e 0.38 d 0.33 d 2.25 e 1.49 d 7.22 e
N210 2.65 e 0.64 cd 0.27 e 0.05 f 0.75 d 4.35 e
结合酚
Bound phenol
鑫华麦818
Xinhua 818
N105 8.81 c 2.44 a 1.34 c 14.61 a 440.45 bc 467.65 c
N210 5.58 d 1.07 bc 1.97 a 11.38 c 433.60 c 453.59 d
冀紫439
Jizi 439
N105 15.96 a 1.59 b 1.54 b 12.84 b 517.85 a 549.77 a
N210 10.30 b 2.31 a 1.92 a 10.13 d 455.89 b 480.54 b
原阳
Yuanyang
游离酚
Free phenol
鑫华麦818
Xinhua 818
N105 2.23 f 0.155 e 0.22 e 0.63 de 1.16 e 4.39 e
N210 2.35 f 0.20 e 0.31 d 0.43 de 1.16 e 4.45 e
冀紫439
Jizi 439
N105 3.05 e 0.82 d 0.39 d 1.11 d 0.94 e 6.30 e
N210 3.71 d 0.64 d 0.21 e 0.14 e 0.86 e 5.55 e
结合酚
Bound phenol
鑫华麦818
Xinhua 818
N105 6.18 b 2.42 b 1.74 c 9.57 b 383.27 c 403.18 c
N210 4.14 d 1.96 c 1.78 c 8.31 c 339.56 d 355.75 d
冀紫439
Jizi 439
N105 15.54 a 2.27 bc 1.81 b 11.85 a 533.25 a 564.73 a
N210 15.42 a 2.82 a 1.98 a 11.92 a 503.03 b 535.17 b

Fig. 8

DPPH value of flour with different grinding degrees XH-N105, XH-N210, JZ-N105, and JZ-N210 represent Xinhua 818 under 105 N hm-2, Xinhua 818 under 210 N hm-2, Jizi 439 under 105 N hm-2, and Jizi 439 under 210 N hm-2 treatment, respectively. Different lowercase letters above the column indicate significant difference at P < 0.05 between different varieties and treatments among the same layer. Treatments are the same as those given in Fig. 3."

[1] 赵广才, 常旭虹, 王德梅, 陶志强, 王艳杰, 杨玉双, 朱英杰. 小麦生产概况及其发展. 作物杂志, 2018, (4):1-7.
Zhao G C, Chang X H, Wang D M, Tao Z Q, Wang Y J, Yang Y S, Zhu Y J. General situation and development of wheat production. Crops, 2018, (4):1-7 (in Chinese with English abstract).
[2] Brandolini A, Castoldi P, Plizzari L, Hidalgo A. Triticum monococcum, Triticum turgidum and Triticum aestivum: a two-years evaluation Triticum monococcum, Triticum turgidum and Triticum aestivum: a two-years evaluation. J Cereal Sci, 2013, 58:123-131.
doi: 10.1016/j.jcs.2013.03.011
[3] Xiao J, Kai G, Yamamoto K, Chen X. Advance in dietary polyphenols as α-glucosidases inhibitors: a review on structure-activity relationship aspect. Crit Rev Food Sci, 2013, 53:818-836.
doi: 10.1080/10408398.2011.561379
[4] Mozaffarian D, Kumanyika S K, Lemaitre R N, Olson J L, Siscovick D S. Cereal, fruit, and vegetable fiber intake and the risk of cardiovascular disease in elderly individuals. JAMA, 2003, 289:1659-1666.
doi: 10.1001/jama.289.13.1659
[5] Dykes L, Rooney L W. Phenolic compounds in cereal grains and their health benefits. Cereal Foods World, 2007, 52:105-111.
[6] Pérez-Jiménez J, Torres J L. Analysis of nonextractable phenolic compounds in foods: the current state of the art. J Agric Food Chem, 2011, 59:12713-12724.
doi: 10.1021/jf203372w
[7] Fardet A, Rock E, Rémésy C. Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo? J Cereal Sci, 2008, 48:258-276.
doi: 10.1016/j.jcs.2008.01.002
[8] Li L, Shewry P R, Ward J L. Phenolic acids in wheat varieties in the HEALTHGRAIN Diversity Screen. J Agric Food Chem, 2008, 56:9732-9739.
doi: 10.1021/jf801069s
[9] Naczk M, Shahidi F. Extraction and analysis of phenolics in food. J Chromatogr A, 2004, 1054:95-111.
doi: 10.1016/S0021-9673(04)01409-8
[10] Bunzel M, Ralph J, Marita J M, Hatfield R D, Steinhart H. Diferulates as structural components in soluble and insoluble cereal dietary fibre. J Sci Food Agric, 2001, 81:653-660.
doi: 10.1002/(ISSN)1097-0010
[11] 宗学凤, 张建奎, 李帮秀, 余国东, 石有明, 王三根. 小麦籽粒颜色与抗氧化作用. 作物学报, 2006, 32:237-242.
Zong X F, Zhang J K, Li B X, Yu G D, Shi Y M, Wang S G. Relationship between antioxidation and grain colors of wheat (Triticum aestivum L.). Acta Agron Sin, 2006, 32:237-242 (in Chinese with English abstract).
[12] Liu Z H, Wang H Y, Wang X E, Zhang G P, Chen P D, Liu D J. Phytase activity, phytate, iron, and zinc contents in wheat pearling fractions and their variation across production locations. J Cereal Sci, 2007, 45:319-326.
doi: 10.1016/j.jcs.2006.10.004
[13] 郭明明, 赵广才, 郭文善, 常旭虹, 王德梅, 杨玉双, 王美, 范仲卿, 亓振, 王雨. 施氮量与行距对冬小麦品质性状的调控效应. 中国生态农业学报, 2015, 23:668-675.
Guo M M, Zhao G C, Guo W S, Chang X H, Wang D M, Yang Y S, Wang M, Fan Z Q, Qi Z, Wang Y. Effects of nitrogen rate and row spacing on winter wheat grain quality. Chin J Eco-Agric, 2015, 23:668-675 (in Chinese with English abstract).
[14] 赵俊晔, 于振文. 高产条件下施氮量对冬小麦氮素吸收分配利用的影响. 作物学报, 2006, 32:484-490.
Zhao J Y, Yu Z W. Effects of nitrogen fertilizer rate on uptake, distribution and utilization of nitrogen in winter wheat under high yielding cultivated condition. Acta Agron Sin, 2006, 32:484-490.
[15] 陆增根, 戴廷波, 姜东, 荆奇, 吴正贵, 周培南, 曹卫星. 氮肥运筹对弱筋小麦群体指标与产量和品质形成的影响. 作物学报, 2007, 33:590-597.
Lu Z G, Dai T B, Jiang D, Jing Q, Wu Z G, Zhou P N, Cao W X. Effects of nitrogen strategies on population quality index and grain yield & quality in weak-gluten wheat. Acta Agron Sin, 2007, 33:590-597 (in Chinese with English abstract).
[16] 代新俊, 杨珍平, 陆梅, 李慧, 樊攀, 宋佳敏, 高志强. 不同形态氮肥及其用量对强筋小麦氮素转运, 产量和品质的影响. 植物营养与肥料学报, 2019, 25:701-720.
Dai X J, Yang Z P, Lu M, Li H, Fan P, Song J M, Gao Z Q. Effects of nitrogen forms and amounts on nitrogen translocation, yield and quality of strong-gluten wheat. Plant Nutr Fert Sci, 2019, 25:701-720 (in Chinese with English abstract).
[17] 石玉, 张永丽, 于振文. 施氮量对不同品质类型小麦子粒蛋白质组分含量及加工品质的影响. 植物营养与肥料学报, 2010, 16:33-40.
Shi Y, Zhang Y L, Yu Z W. Effects of nitrogen fertilization on protein components contents and processing quality of different wheat genotypes. Plant Nutr Fert Sci, 2010, 16:33-40 (in Chinese with English abstract).
[18] Engert N, John A, Henning W, Honermeier B. Triticum aestivum ssp. aestivum L.) in dependency of nitrogen fertilization Triticum aestivum ssp. aestivum L.) in dependency of nitrogen fertilization. J Appl Bot Food Qual, 2011, 84:111-118.
[19] 孙德祥, 马冬云, 王晨阳, 李耀光, 刘卫星, 李秋霞, 冯伟, 郭天财. 不同水氮处理对豫麦49-198籽粒抗氧化物含量的影响. 作物学报, 2014, 40:2046-2051.
doi: 10.3724/SP.J.1006.2014.02046
Sun D X, Ma D Y, Wang C Y, Li Y G, Liu W X, Li Q X, Feng W, Guo T C. Effects of irrigation and nitrogen on antioxidant contents in Yumai 49-198 grains. Acta Agron Sin, 2014, 40:2046-2051 (in Chinese with English abstract).
[20] Wang Y, Li C, Wang Q, Wang H, Duan B, Zhang G. Environmental behaviors of phenolic acids dominated their rhizodeposition in boreal poplar plantation forest soils. J Soil Sediment, 2016, 16:1858-1870.
doi: 10.1007/s11368-016-1375-8
[21] He J, Penson S, Powers S J, Hawes C, Tosi P. Spatial patterns of gluten protein and polymer distribution in wheat grain. J Agric Food Chem, 2013, 61:6207-6215.
doi: 10.1021/jf401623d
[22] Wan Y, Gritsch C S, Hawkesford M J, Shewry P R. Effects of nitrogen nutrition on the synthesis and deposition of the ω-gliadins of wheat. Ann Bot, 2014, 4:607-615.
doi: 10.1093/aob/4.3.607
[23] Adom K K, Liu R H. Antioxidant activity of grains. J Agric Food Chem, 2002, 50:6182-6187.
doi: 10.1021/jf0205099
[24] Yu L, Haley S, Perret J, Harris M. Antioxidant properties of hard winter wheat extracts. Food Chem, 2002, 78:457-461.
doi: 10.1016/S0308-8146(02)00156-5
[25] Chlopicka J, Pasko P, Gorinstein S, Jedryas A, Zagrodzki P. Total phenolic and total flavonoid content, antioxidant activity and sensory evaluation of pseudocereal breads. LWT-Food Sci Technol, 2012, 46:548-555.
doi: 10.1016/j.lwt.2011.11.009
[26] Sochor J, Ryvolova M, Krystofova O, Salas P, Kizek R. Fully automated spectrometric protocols for determination of antioxidant activity. advantages and disadvantages. Molecules, 2010, 15:8618-8640.
doi: 10.3390/molecules15128618 pmid: 21116230
[27] Huang D, Ou B, Prior R L. The chemistry behind antioxidant capacity assays. J Agric Food Chem, 2005, 53:1841-1856.
doi: 10.1021/jf030723c
[28] Abdel-Aal E S M, Young J C, Rabalski I. Anthocyanin composition in black, blue, pink, purple, and red cereal grains. J Agric Food Chem, 2006, 54:4696-4704.
doi: 10.1021/jf0606609
[29] Žilić S, Serpen A, Akıllıoğlu G, Janković M, Gökmen V. Distributions of phenolic compounds, yellow pigments and oxidative enzymes in wheat grains and their relation to antioxidant capacity of bran and rebranded flour. J Cereal Sci, 2012, 56:652-658.
doi: 10.1016/j.jcs.2012.07.014
[30] Hung P V, Maeda T, Miyatake K, Morita N. Total phenolic compounds and antioxidant capacity of wheat graded flours by polishing method. Food Res Int, 2009, 42:185-190.
doi: 10.1016/j.foodres.2008.10.005
[31] Ma D Y, Li Y G, Zhang J, Wang C Y, Qin H X, Ding H N, Xie Y X, Guo T C. Accumulation of phenolic compounds and expression profiles of phenolic acid biosynthesis-related genes in developing grains of white, purple, and red wheat. Front Plant Sci, 2016, 7:528.
[32] Liu Q, Qiu Y, Beta T. Comparison of antioxidant activities of different colored wheat grains and analysis of phenolic compounds. J Agric Food Chem, 2010, 58:9235.
doi: 10.1021/jf101700s
[33] 刘富明, 母婷婷, 王彩霞, 李诚, 蒲至恩. 蓝色和紫色小麦多酚提取物的体外抗氧化活性评价. 食品与发酵工业, 2019, 45:202-206.
Liu F M, Mu T T, Wang C X, Li C, Pu Z E. Evaluation of in vitro antioxidant activities of polyphenol extracts from blue and purple wheat. Food Ferment Ind, 2019, 45:202-206 (in Chinese with English abstract).
[34] Adom K K, Sorrells M E, Liu R H. Phytochemical profiles and antioxidant activity of wheat varieties. J Agric Food Chem, 2003, 51:7825-7834.
doi: 10.1021/jf030404l
[35] 胡一晨, 赵钢, 秦培友, 成颜芬, 曹亚楠, 邹亮, 任贵兴. 藜麦活性成分研究进展. 作物学报, 2018, 44:1579-1591.
Hu Y C, Zhao G, Qin P Y, Cheng Y F, Cao Y N, Zou L, Ren G X. Research progress on bioactive components of quinoa (Chenopodium quinoa Willd.). Acta Agron Sin, 2018, 44:1579-1591 (in Chinese with English abstract).
[36] Engert N, John A, Henning W, Honermeier B. Triticum aestivum ssp. aestivum L.) in dependency of nitrogen fertilization Triticum aestivum ssp. aestivum L.) in dependency of nitrogen fertilization. J Appl Bot Food Qual, 2011, 84:111-118.
[37] Langenkmper G, Zrb C, Seifert M, Mder P, Betsche T. Nutritional quality of organic and conventional wheat. J Appl Bot Food Qual, 2006, 80:150-154.
[38] Fares C, Menga V, Codianni P, Russo M, Perrone D, Suriano S, Michele S, Rascio A. Phenolic acids variability and grain quality of organically and conventionally fertilised old wheats under a warm climate. J Sci Food Agric, 2019, 99:4615-4623.
doi: 10.1002/jsfa.2019.99.issue-10
[39] Stracke B A, Eitel J, Watzl B, Mäder P, Rüfer C. Triticum aestivum L.): a comparative study Triticum aestivum L.): a comparative study. J Agric Food Chem, 2009, 57:10116-10121.
doi: 10.1021/jf901267z
[40] Pandino G, Mattiolo E, Lombardo S, Lombardo G M, Mauromicale G. Organic cropping system affects grain chemical composition, rheological and agronomic performance of durum wheat. Agriculture-Basel, 2020, 10:46.
[1] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[2] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[3] ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
[4] ZHANG Jun, ZHOU Dong-Dong, XU Ke, LI Bi-Zhong, LIU Zhong-Hong, ZHOU Nian-Bing, FANG Shu-Liang, ZHANG Yong-Jin, TANG Jie, AN Li-Zheng. Nitrogen fertilizer reduction and precise application model on mechanical transplanting japonica rice with good taste quality under straw returning in Huaibei Area [J]. Acta Agronomica Sinica, 2022, 48(2): 410-422.
[5] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[6] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[7] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[8] XU Long-Long, YIN Wen, HU Fa-Long, FAN Hong, FAN Zhi-Long, ZHAO Cai, YU Ai-Zhong, CHAI Qiang. Effect of water and nitrogen reduction on main photosynthetic physiological parameters of film-mulched maize no-tillage rotation wheat [J]. Acta Agronomica Sinica, 2022, 48(2): 437-447.
[9] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
[10] MENG Ying, XING Lei-Lei, CAO Xiao-Hong, GUO Guang-Yan, CHAI Jian-Fang, BEI Cai-Li. Cloning of Ta4CL1 and its function in promoting plant growth and lignin deposition in transgenic Arabidopsis plants [J]. Acta Agronomica Sinica, 2022, 48(1): 63-75.
[11] WEI Yi-Hao, YU Mei-Qin, ZHANG Xiao-Jiao, WANG Lu-Lu, ZHANG Zhi-Yong, MA Xin-Ming, LI Hui-Qing, WANG Xiao-Chun. Alternative splicing analysis of wheat glutamine synthase genes [J]. Acta Agronomica Sinica, 2022, 48(1): 40-47.
[12] LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62.
[13] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[14] WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679.
[15] LUO Jiang-Tao, ZHENG Jian-Min, PU Zong-Jun, FAN Chao-Lan, LIU Deng-Cai, HAO Ming. Chromosome transmission in hybrids between tetraploid and hexaploid wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1427-1436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!