Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (3): 682-694.doi: 10.3724/SP.J.1006.2022.14015

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Characteristics of microbial community in the rhizosphere soil of continuous potato cropping in arid regions of the Loess Plateau

TAN Xue-Lian1(), GUO Tian-Wen1,*(), HU Xin-Yuan2, ZHANG Ping-Liang1, ZENG Jun1, LIU Xiao-Wei1   

  1. 1Institute of Dryland Agriculture, Gansu Academy of Agricultural Sciences/Key Laboratory of Efficient Utilization of Water in Dry Farming, Lanzhou 730070, Gansu, China
    2Gansu Academy of Agricultural Sciences/Innovation Engineering Laboratory of Potato Germplasm Resources of Gansu, Lanzhou 730070, Gansu, China
  • Received:2021-01-26 Accepted:2021-06-16 Online:2021-07-14 Published:2021-07-14
  • Contact: GUO Tian-Wen E-mail:tanxuelian_2002@163.com;guotianw2007@hotmail.com
  • Supported by:
    Public Welfare(Agriculture)Scientific Research Project(201503120);Science and Technology Innovation Project of Gansu Academy of Agricultural Sciences(2017GAAS28);NSFC Regional Science Foundation Project(31560172);Science and Technology Support Plan of Gansu Academy of Agricultural Sciences(2017GAAS41);Science and Technology Project of Gansu Province (20YF3WA010).(20YF3WA010)

Abstract:

The response of soil microorganisms to continuous cropping of potato was discussed in this study, aiming at revealing the microbial characteristics of continuous cropping soil degradation. Pot experiments and MiSeq high-throughput sequencing technology were used to study the characteristics of microbial communities in the rhizosphere soil of potato continuous cropping for 1 year (1_rh), 3 years (3_rh), and 5 years (5_rh), with fallow (CK) and rotation (R_rh) as controls. The results showed that compared with CK and rotation, Ace index, Chao index, and Shannon index of 3_rh and 5_rh soil samples decreased significantly. Compared with rotation, the relative abundance of Proteobacteria, Actinobacteria, and Acidobacteria in soil bacteria of continuous potato cropping was higher, while the relative abundance of Ascomycota in soil fungi was lower. In the bacterial community, compared with rotation, the number of Aeromicrobium in 1_rh, 3_rh, 5_rh increased by 258.01%, 625.93%, 76.04%, Arthrobacter increased by 245.42%, 1258.12%, 58.89%, Streptomyces increased by 203.83%, 116.74%, and 311.61%, respectively. In the fungal community, compared with rotation, the number of Fusarium in 3_rh increased by 225.00%, the number of Chaetomium in 5_rh decreased by 31.58%, and the number of Guehomyces in 1_rh, 3_rh, and 5_rh decreased by 55.40%, 58.14%, and 78.37%, respectively. Spizellomyces had a large number in fallow and rotation soils, but a small number in continuous cropping soils for three years and five years, which was close to the detection limit. The results indicated that long-term continuous cropping of potato reduced the diversity of soil microorganisms, changed the dominant population of microorganisms, and unbalanced the structure of soil microbial community.

Key words: potato, continuous cropping, microbial community structure, species abundance, beneficial microorganisms, pathogenic microorganism

Table 1

Test designs and treatments"

种植模式
Cropping pattern
处理代码
Treatment code
种植方法
Cultivation method
休耕
Fallow
CK 不种植作物的休耕土壤
Fallow soil where no crops were planted
马铃薯-小麦轮作
Potato-wheat rotation
R_rh 马铃薯种植1年的土壤上种植小麦
Wheat was planted on the soil where potato was planted for one year
马铃薯连作1年
Potato continuous cropping for one year
1_rh 马铃薯种植1年的土壤上继续种植马铃薯
Potatoes continued to grow potatoes on soil for one year
马铃薯连作3年
Potato continuous cropping for three years
3_rh 马铃薯种植3年的土壤上继续种植马铃薯
Potatoes continued to grow potatoes on soil for three years
马铃薯连作5年
Potato continuous cropping for five years
5_rh 马铃薯种植5年的土壤上继续种植马铃薯
Potatoes continued to grow potatoes on soil for five years

Table 2

Comparison of the estimated OTU richness and diversity indices of the 16S rRNA and its gene libraries for clustering at 97% identity, as obtained from the pyrosequencing analysis"

类别
Type
处理
Treatment
Reads OTUs Ace Chao Shannon
细菌 Bacteria CK 33,177±0.21 a 2253±0.15 a 2496±0.23 a 2502±0.32 a 6.67±0.0 1a
R_rh 36,151±0.23 a 2291±0.08 a 2545±0.15 a 2589±0.27 a 6.68±0.03 a
1_rh 20,981±0.28 b 1947±0.10 a 2285±0.17 a 2299±0.28 a 6.55±0.03 a
3_rh 16,610±0.24 b 1146±0.12 b 1545±0.19 b 1574±0.26 b 4.90±0.02 b
5_rh 38,178±0.22 a 2182±0.07 a 2444±0.20 a 2467±0.25 a 6.54±0.04 a
真菌 Fungi CK 15,547±0.48 a 565±0.13 a 664±0.65 b 648±0.38 b 4.00±0.01 a
R_rh 13,895±0.52 b 518±0.14 a 657±0.63 b 653±0.34b 4.26±0.03 a
1_rh 12,981±0.56 b 549±0.13 a 707±0.61 a 706±0.35 a 4.34±0.05 a
3_rh 11,064±0.49 c 385±0.16 b 541±0.59 c 520±0.36 c 3.54±0.02 b
5_rh 10,705±0.53 c 350±0.18 b 468±0.66 d 446±0.38 d 2.83±0.01 c

Fig. 1

OTU Venn diagram of soil bacterial with five soils samples Treatments are the same as those given in Table 1."

Fig. 2

Comparison of the bacterial communities composition and relative abundance of five soils samples at the phylum level Treatments are the same as those given in Table 1."

Fig. 3

Comparison of the dominant bacterial communities composition and relative abundance of five soils samples at the class level Treatments are the same as those given in Table 1."

Table 3

Analysis of soil bacteria groups"


Phylum

Class

Genus
相对丰度百分比Relative abundance (%)
CK R_rh 1_rh 3_rh 5_rh
放线菌门
Actinobacteria
放线菌纲
Actinobacteria
气微菌属
Aeromicrobium
0.21±0.03 c 0.10±0.01 c 0.36±0.02 b 0.73±0.01 a 0.18±0.01 c
壤霉菌属
Agromyces
0.26±0.01 b 0.06±0.01 d 0.17±0.01 c 0.40±0.02 a 0.24±0.01 b
节杆菌属
Arthrobacter
1.61±0.07 c 0.69±0.02 d 2.37±0.07 b 9.31±0.08 a 1.09±0.06 c
芽球菌属
Blastococcus
1.13±0.03 a 0.29±0.01 c 1.39±0.02 a 1.59±0.02 a 0.70±0.03 b
分枝杆菌属
Mycobacterium
0.4±0.015 a 0.10±0.01 b 0.47±0.03 a 0.38±0.01 a 0.30±0.01 a
链霉菌属
Streptomyces
0.32±0.04 b 0.13±0.02 c 0.41±0.02 b 1.71±0.06 a 0.56±0.02 b
假诺卡氏菌属
Pseudonocardia
0.32±0.01 a 0.04±0.01 b 0.28±0.01 a 0.25±0.01 a 0.16±0.01 a
变形菌门
Proteobacteria
α-变形菌纲
Alphaproteobacteria
红菌属
Rhodobium
0.54±0.02 a 0.07±0.01 b 0.32±0.02 a 0.40±0.02 a 0.44±0.02 a
红游动菌属
Rhodoplanes
0.27±0.02 a 0.1±0.010 b 0.34±0.02 a 0.17±0.01 b 0.19±0.01 b
博斯氏菌属
Bosea
0.18±0.01 a 0.09±0.01 b 0.20±0.03 a 0.22±0.04 a 0.19±0.01 a
慢生根瘤菌属
Bradyrhizobium
0.75±0.04 a 0.20±0.02 c 0.82±0.03 a 0.46±0.05 b 0.41±0.03 b
戴沃斯菌属
Devosia
0.22±0.08 b 0.10±0.01 c 0.36±0.06 b 0.54±0.07 a 0.60±0.02 a
生丝微菌属
Hyphomicrobium
0.24±0.06 a 0.03±0.01 b 0.24±0.04 a 0.14±0.03 a 0.18±0.03 a
根瘤菌属
Rhizobium
0.22±0.11 c 0.08±0.08 d 2.19±0.12 a 0.760.12 b 0.40±0.10 c
斯科曼氏球菌属
Skermanella
1.17±0.32 a 0.16±0.26 c 1.10±0.27 a 0.26±0.26 c 0.45±0.28 b
鞘脂单胞菌属
Sphingomonas
2.78±0.33 a 0.79±0.29 c 3.01±0.35 a 1.98±0.31 b 3.32±0.37 a
β-变形菌
Betaproteobacteria
产育菌属
Ramlibacter
0.16±0.04 b 0.06±0.01 c 0.30±0.02 a 0.14±0.03 b 0.38±0.06 a
δ-变形菌纲
Deltaproteobacteria
类固醇杆菌属
Steroidobacter
0.83±0.07 a 0.20±0.03 b 0.93±0.09 a 0.25±0.05 b 0.99±0.07 a

Phylum

Class

Genus
相对丰度百分比Relative abundance (%)
CK R_rh 1_rh 3_rh 5_rh
绿弯菌门
Chloroflexi
绿弯菌纲
Chloroflexia
玫瑰弯菌属
Roseiflexus
1.12±0.10 b 3.81±0.15 a 1.23±0.11 b 0.10±0.09 c 0.50±0.09 c
芽单胞菌门
Gemmatimonadetes
芽单胞菌纲
Gemmatimonadetes
芽单胞菌属
Gemmatimonas
0.42±0.06 a 0.10±0.01 b 0.31±0.04 a 0.08±0.03 b 0.34±0.07 a
硝化螺旋菌门
Nitrospirae
硝化螺旋菌纲
Nitrospira
硝化螺旋菌属
Nitrospira
2.15±0.21 a 0.28±0.09 b 1.84±0.26 a 0.42±0.08 b 1.71±0.24 a
厚壁菌门
Firmicutes
芽孢杆菌纲
Bacilli
芽孢杆菌属
Bacillus
1.66±0.12 a 0.19±0.06 d 0.88±0.06 b 0.30±0.05 c 0.83±0.07 b
合计 Total 16.99±0.45 a 7.66±0.41 c 19.53±0.47 a 20.59±0.44 a 14.13±0.43 b

Fig. 4

OTU Venn diagram of soil fungi with five soils samples Treatments are the same as those given in Table 1."

Fig. 5

Comparison of the fungal communities composition and relative abundance with five soils samples at the phylum level Treatments are the same as those given in Table 1."

Fig. 6

Comparison of the fungal communities composition and relative abundance with five soils samples at the class level Treatments are the same as those given in Table 1."

Table 4

Analysis of soil fungi groups under different rotation system"


Class

Genus
相对丰度百分比Relative abundance (%)
CK R_rh 1_rh 3_rh 5_rh
座囊菌纲
Dothideomycetes
光黑壳属
Preussia
0.26±0.04 a 0.05±0.01 b 0.32±0.03 a 0.04±0.01 b 0.03±0.01 b
核菌纲
Pyrenomycetes
叉丝单囊壳属
Podosphaera
0 0 0.02±0.01 a 0.02±0.01 a 0.01±0.01 a
散囊菌纲
Eurotiomycetes
青霉属
Penicillium
0.10±0.02 a 0.08±0.06 a 0.10±0.05 a 0.01±0.01 a 0.01±0.01 a
梭孢壳属
Thielavia
2.66±0.56 b 2.09±0.48 b 2.74±0.52 b 5.74±0.49 a 6.69±0.54 a
粪壳菌纲
Sordariomycetes
镰孢属
Fusarium
0.71±0.09 b 0.84±0.07 b 0.78±0.08 b 2.73±0.12 a 0.11±0.06 b
毛壳属
Chaetomium
0.78±0.06 a 0.19±0.02 c 0.51±0.01 b 0.52±0.06 b 0.25±0.03 c
子囊菌纲
Ascomycetes
子囊菌属
Ascomycota_norank
1.54±0.29 a 0.83±0.26 b 1.23±0.27 a 0.61±0.25 b 0.17±0.24 c
赤霉菌属
Gibberella
0.32±0.08 b 0.49±0.09 a 0.37±0.09 b 0.50±0.12 a 0.04±0.07 c
壶菌纲
Chrtridiomycetes
壶菌属
Spizellomyces
0.17±0.03 b 0.93±0.05 a 0.13±0.05 b 0.01±0.01 b 0.01±0.01 b
腐质霉属
Humicola
0.29±0.10 a 0.16±0.13 b 0.26±0.15 a 0.19±0.11 ab 0.32±0.16 a
丝胞纲
Hyphomycetes
矛束霉属
Doratomyces
0.03±0.01 b 0.03±0.01 b 0.12±0.04 b 0.06±0.01 b 1.80±0.06 a
链格孢属
Alternaria
0.33±0.22 c 2.25±0.26 a 2.91±0.25 a 1.20±0.21 b 1.07±0.20 b
银耳纲
Tremellomycetes
隐球菌属
Cryptococcus
1.93±0.36 a 0.67±0.30 b 1.36±0.32 a 0.33±0.29 b 0.29±0.29 b
合计
Total
9.14±0.68 ab 8.61±0.62 b 10.85±0.64 a 11.94±0.70 a 10.80±0.66 a

Fig. 7

Comparison of potato blight incidence in different rotation system with four soils samples Treatments are the same as those given in Table 1."

[1] 张绪成, 王红丽, 于显枫, 候慧芝, 方彦杰, 马一凡. 半干旱区全膜覆盖垄沟间作种植马铃薯和豆科作物的水热及产量效应. 中国农业科学, 2016, 49:468-481.
Zhang X C, Wang H L, Yu X F, Hou H Z, Fang Y J, Ma Y F. The study on the effect of potato and beans intercropping with whole field plastics mulching and ridge-furrow planting on soil thermal-moisture status and crop yield on semi-arid area. Sci Agric Sin, 2016, 49:468-481 (in Chinese with English abstract).
[2] 周华兰, 彭亚丽, 李婷, 谢鹰飞, 唐丽梅, 王榕, 熊兴耀, 王万兴, 胡新喜. 马铃薯连作对土壤理化性质和生物学特性的影响. 湖南农业大学学报(自然科学版), 2019, 45:611-616.
Zhou H L, Peng Y L, Li T, Xie Y F, Tang L M, Wang R, Xiong X Y, Wang W X, Hu X X. Effects of potato continuous cropping on soil physicochemical and biological properties. J Hunan Agric Univ (Nat Sci Edn), 2019, 45:611-616 (in Chinese with English abstract).
[3] Wu A L, Jiao X Y, Fan F F, Wang J S, Guo J, Dong E W, Wang L G, Shen X M. Bacillus amyloliquefaciens in altering the microbial composition Bacillus amyloliquefaciens in altering the microbial composition. Plant Growth Regul, 2019, 89:299-308.
doi: 10.1007/s10725-019-00533-y
[4] 杨敏, 和明东, 段杰, 郑元仙, 王继明, 钟宇, 黄飞燕, 童文杰, 邓小鹏, 莫笑晗, 陈小龙, 周厚发, 余磊, 何元胜. 生物炭对连作烤烟根际土壤酚酸类物质及微生物群落结构的影响. 福建农业学报, 2020, 35(1):103-110.
Yang M, He M D, Duan J, Zheng Y X, Wang J M, Zhong Y, Huang F Y, Tong W J, Deng X P, Mo X H, Chen X L, Zhou H F, Yu L, He Y S. Effects of biochar addition on phenolic acids and microbial community in rhizosphere soil at continuous cropping field of tobacco. Fujian J Agric Sci, 2020, 35(1):103-110 (in Chinese with English abstract).
[5] Egamberdieva D, Renella G, Wirth S, Islam R. Secondary salinity effects on soil microbial biomass. Trans CSAE, 2010, 46:445-449.
[6] Glick B R. Soil microbes and sustainable agriculture. Trans CSAE, 2018, 28:167-169.
[7] Xu N, Tan G G, Wang H Y, Gai X P. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur J Soil Biol, 2016, 74:1-8.
doi: 10.1016/j.ejsobi.2016.02.004
[8] Gao J, Pei H, Xie H. Synergistic effects of organic fertilizer and corn straw on microorganisms of pepper continuous cropping soil in China. Bioengineered, 2020, 11:1258-1268.
doi: 10.1080/21655979.2020.1840753
[9] Zhang P, Chen X, Wei T, Yang Z, Jia Z K, Yang B P, Han Q F, Ren X L. Effects of straw incorporation on the soil nutrient contents, enzyme activities, and crop yield in a semiarid region of China. Soil Tillage Res, 2016, 160:65-72.
doi: 10.1016/j.still.2016.02.006
[10] 李瑞琴, 刘星, 邱慧珍, 张文明, 张春红, 王蒂, 张俊莲, 沈其荣. 发生马铃薯立枯病土壤中立枯丝核菌的荧光定量PCR快速检测. 草业学报, 2013, 22(5):136-144.
Li R Q, Liu X, Qiu H Z, Zhang W M, Zhang C H, Wang D, Zhang J L, Shen Q R. Rapid detection of Rhizoctonis in rhizosphere soil of potato using real-time quantitative PCR. Acta Pratac Sin, 2013, 22(5):136-144 (in Chinese with English abstract).
[11] Yao H Y, Jiao X D, Wu F Z. Effects of continuous cucumber cropping and alternative rotations under protected cultivation on soil microbial community diversity. Plant Soil, 2006, 284:195-203.
doi: 10.1007/s11104-006-0023-2
[12] Xiong W, Zhao Q, Zhao J, Xun W, Li R, Zhang R, Wu H, Shen Q. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla grown soil as revealed by deep pyrosequencing. Microbial Ecol, 2015, 70:209-218.
doi: 10.1007/s00248-014-0516-0
[13] Perez-Brandan C, Arzeno J L, Huidobro J, Conforto C, Vargas- Gil S. The effect of crop sequences on soil microbial, chemical and physical indicators and its relationship with soybean sudden death syndrome (complex of Fusarium species). Spanish J Agric Res, 2014, 12:252-264.
doi: 10.5424/sjar/2014121-4654
[14] Zhang X, Zhang R, Gao J, Wang X, Fan F, Ma X, Yin H, Zhang C, Feng K, Deng Y. Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria. Soil Biol Biochem, 2017, 104:208-217.
doi: 10.1016/j.soilbio.2016.10.023
[15] Meriles J M, Gil S V, Conforto C, Figoni G, Lovera E, March G J, Guzmán C A. Soil microbial communities under different soybean cropping systems: characterization of microbial population dynamics, soil microbial activity, microbial biomass, and fatty acid profiles. Soil Tillage Res, 2009, 103:271-281.
doi: 10.1016/j.still.2008.10.008
[16] 孟品品, 刘星, 邱慧珍, 张文明, 张春红, 王蒂, 张俊莲, 沈其荣. 连作马铃薯根际土壤真菌种群结构及其生物效应. 应用生态学报, 2012, 23:3079-3086.
Meng P P, Liu X, Qiu H Z, Zhang W M, Zhang C H, Wang D, Zhang J L, Shen Q R. Fungal population structure and its biological effect in rhizosphere soil of continuously cropped potato. Chin J Appl Ecol, 2012, 23:3079-3086 (in Chinese with English abstract).
[17] 刘星, 邱慧珍, 王蒂, 张俊莲, 沈其荣. 甘肃省中部沿黄灌区轮作和连作马铃薯根际土壤真菌群落的结构性差异评估. 生态学报, 2015, 35:3938-3948.
Liu X, Qiu H Z, Wang D, Zhang J L, Shen Q R. Evaluation on fungal community structure of rhizosphere soils of potato under rotation and continuous cropping systems in Yellow River irrigation areas of middle Gansu province. Acta Ecol Sin, 2015, 35:3938-3948 (in Chinese with English abstract).
[18] Mendes R, Garbeva P, Raaijmakers J M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev, 2013, 37:634-663.
doi: 10.1111/1574-6976.12028
[19] Berendsen R L, Pieterse M J, Bakker P A H M. The rhizosphere microbiome and plant health. Trends Plant Sci, 2012, 17:478-486.
doi: 10.1016/j.tplants.2012.04.001 pmid: 22564542
[20] 沈宝云, 刘星, 王蒂, 梦品品, 张俊莲, 邱慧珍. 甘肃省中部沿黄灌区连作对马铃薯植株生理生态特性的影响. 中国生态农业学报, 2013, 21:689-699.
Shen B Y, Liu X, Wang D, Meng P P, Zhang J L, Qiu H Z. Effects of continuous cropping on potato eco-physiological characteristics in the Yellow River irrigation area of the central Gansu Province. Chin J Eco-Agric, 2013, 21:689-699 (in Chinese with English abstract).
[21] Oliver J D. The viable but nonculturable state in bacteria. J Microbiol, 2005, 43:93-100
[22] 马玲, 马琨, 杨桂丽, 牛红霞, 代晓华. 马铃薯连作栽培对土壤微生物多样性的影响. 中国生态农业学报, 2015, 23:589-596.
Ma L, Ma K, Yang G L, Niu H X, Dai X H. Effects of continuous potato cropping on the diversity of soil microorganisms. Chin J Eco-Agric, 2015, 23:589-596 (in Chinese with English abstract).
[23] 马琨, 张丽, 杜茜, 宋乃平. 马铃薯连作栽培对土壤微生物群落的影响. 水土保持学报, 2010, 24(4):229-233.
Ma K, Zhang L, Du Q, Song N P. Effect of potato continuous cropping on soil microorganism community structure and function. J Soil Water Conserv, 2010, 24(4):229-233 (in Chinese with English abstract).
[24] 李国庆, 郭华春. 连作对马铃薯根际土壤细菌群落结构的影响. 分子植物育种, 2014, 12:914-928.
Li G Q, Guo H C. Effect of potato continuous cropping on the rhizosphere soil bacteria community structure. Mol Plant Breed, 2014, 12:914-928 (in Chinese with English abstract).
[25] Janssen P H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rDNA genes. Appl Environ Microbiol, 2006, 72:1719-1728.
doi: 10.1128/AEM.72.3.1719-1728.2006
[26] 李昌明. 青藏高原多年冻土区土壤微生物及其与环境关系的研究. 兰州大学硕士学位论文, 甘肃兰州, 2012.
Li C M. Phylogenetic and Functional Diversity of Bacterial Community in Tibet Plateau Permafrost Soils. MS Thesis of Lanzhou University, Lanzhou, Gansu, China, 2012 (in Chinese with English abstract).
[27] Glaring M A, Vester J K, Lylloff J E, Al-Soud W A, Sørensen S J, Stougaard P. Microbial diversity in a permanently cold and alkaline environment in greenland. PLoS One, 2015, 10:e0124863.
doi: 10.1371/journal.pone.0124863
[28] Mendes R, Garbeva P, Raaijmakers J M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic and human pathogenic microorganisms. FEMS Microbiol Rev, 2013, 37:634-663.
doi: 10.1111/1574-6976.12028
[29] 张丽红, 符建平, 高丽红, 吕建. 不同蔬菜轮作对日光温室土壤微生物的影响. 中国农学通报, 2010, 26(1):140-144.
Zhang L H, Fu J P, Gao L H, Lyu J. Effects of different rotation models on soil micro-organisms in greenhouse. Chin Agric Sci Bull, 2010, 26(1):140-144 (in Chinese with English abstract).
[30] 李继平, 李敏权, 惠娜娜, 王立, 马永强, 漆永红. 马铃薯连作田土壤中主要病原真菌的种群动态变化规律. 草业学报, 2013, 22(4):147-152.
Li J P, Li M Q, Hui N N, Wang L, Ma Y W, Qi Y H. Population dynamics of main fungal pathogens in soil of continuously cropped potato. Acta Pratac Sin, 2013, 22(4):147-152 (in Chinese with English abstract).
[31] Zhang J X, Xue A G, Zhang H J, Nagasawa A E, Tambong J T. Response of soybean cultivars to root rot caused by Fusarium species. Can J Plant Sci, 2010, 90:767-776.
doi: 10.4141/CJPS09133
[32] Wang J L, Li X L, Zhang J L, Yao T, Wei D. Effect of root exudates on beneficial microorganisms-evidence from a continuous soybean monoculture. Plant Ecol, 2013, 213:1883-1892.
doi: 10.1007/s11258-012-0088-3
[33] Kamper J, Kahmann R, Bolker M, Ma L J. Ustilago maydis Ustilago maydis. Nature, 2006, 444:97-101.
doi: 10.1038/nature05248
[34] Huang L F, Song L X, Xia X J, Mao W H, Shi Z. Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture. Trans CSAE, 2013, 39:232-242.
[1] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[2] ZHANG Hai-Yan, XIE Bei-Tao, JIANG Chang-Song, FENG Xiang-Yang, ZHANG Qiao, DONG Shun-Xu, WANG Bao-Qing, ZHANG Li-Ming, QIN Zhen, DUAN Wen-Xue. Screening of leaf physiological characteristics and drought-tolerant indexes of sweetpotato cultivars with drought resistance [J]. Acta Agronomica Sinica, 2022, 48(2): 518-528.
[3] JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98.
[4] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[5] ZHANG Si-Meng, NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan. Identification and index screening of soft rot resistance at harvest stage in sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(8): 1450-1459.
[6] SONG Tian-Xiao, LIU Yi, RAO Li-Ping, Soviguidi Deka Reine Judesse, ZHU Guo-Peng, YANG Xin-Sun. Identification and expression analysis of cell wall invertase IbCWIN gene family members in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(7): 1297-1308.
[7] TANG Rui-Min, JIA Xiao-Yun, ZHU Wen-Jiao, YIN Jing-Ming, YANG Qing. Cloning of potato heat shock transcription factor StHsfA3 gene and its functional analysis in heat tolerance [J]. Acta Agronomica Sinica, 2021, 47(4): 672-683.
[8] LI Peng-Cheng, BI Zhen-Zhen, SUN Chao, QIN Tian-Yuan, LIANG Wen-Jun, WANG Yi-Hao, XU De-Rong, LIU Yu-Hui, ZHANG Jun-Lian, BAI Jiang-Ping. Key genes mining of DNA methylation involved in regulating drought stress response in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 599-612.
[9] QIN Tian-Yuan, LIU Yu-Hui, SUN Chao, BI Zhen-Zhen, LI An-Yi, XU De-Rong, WANG Yi-Hao, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 780-786.
[10] JIANG Wei, PAN Zhe-Chao, BAO Li-Xian, ZHOU Fu-Xian, LI Yan-Shan, SUI Qi-Jun, LI Xian-Ping. Genome-wide association analysis for late blight resistance of potato resources [J]. Acta Agronomica Sinica, 2021, 47(2): 245-261.
[11] WANG Cui-Juan, CHAI Sha-Sha, SHI Chun-Yu, ZHU Hong, TAN Zhong-Peng, JI Jie, REN Guo-Bo. Anatomy characteristics and IbEXP1 gene expression of tuberization under ammonia nitrogen treatment in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(2): 305-319.
[12] LIU Yan-Lan, GUO Xian-Shi, ZHANG Xu-Cheng, MA Ming-Sheng, WANG Hong-Kang. Effects of planting density and fertilization on dry matter accumulation, yield and water-fertilizer utilization of dryland potato [J]. Acta Agronomica Sinica, 2021, 47(2): 320-331.
[13] NIU Na, LIU Zhen, HUANG Peng-Xiang, ZHU Jin-Yong, LI Zhi-Tao, MA Wen-Jing, ZHANG Jun-Lian, BAI Jiang-Ping, LIU Yu-Hui. Genome-wide identification and expression analysis of potato GAUT gene family [J]. Acta Agronomica Sinica, 2021, 47(12): 2348-2361.
[14] MA Meng, YAN Hui, GAO Run-Fei, KOU Meng, TANG Wei, WANG Xin, ZHANG Yun-Gang, LI Qiang. Construction linkage maps and identification of quantitative trait loci associated with important agronomic traits in purple-fleshed sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(11): 2147-2162.
[15] WU Chun-Hua, PU Xue-Ke, ZHOU Yong-Jin, MIAN You-Ming, MIAO Fang-Fang, LI Rong. Effects of ridge-and-furrow rainwater harvesting with mulching on soil water- heat-fertility and potato yield in arid areas of southern Ningxia [J]. Acta Agronomica Sinica, 2021, 47(11): 2208-2219.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!