欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (11): 2787-2800.doi: 10.3724/SP.J.1006.2024.41013

• 耕作栽培·生理生化 • 上一篇    下一篇

二氢赤霉素对不同增密条件下蜀麦133冠层光能截获和产量的影响

刘雨杭1,2(), 赵书宏1,2, 祝婷婷3,4, 梁振宇3,4, 贺大海3,4, 陈佳博3,4, 任勇5, 黄林1,2, 樊高琼1,3,4,*(), 伍碧华1,2,*()   

  1. 1西南作物基因资源发掘与利用国家重点实验室, 四川成都 611130
    2四川农业大学小麦研究所, 四川成都 611130
    3四川农业大学农学院 / 农业农村部西南作物生理生态与耕作重点实验室, 四川成都 611130
    4作物生理生态及栽培四川省重点实验室, 四川成都 611130
    5绵阳市农业科学研究院 / 厅市共建作物特色资源创制及应用四川省重点实验室, 四川绵阳 621023
  • 收稿日期:2024-02-29 接受日期:2024-06-20 出版日期:2024-11-12 网络出版日期:2024-07-10
  • 通讯作者: *伍碧华, E-mail: wubihua2017@126.com; 樊高琼, E-mail: fangao20056@126.com
  • 作者简介:E-mail: yuhangliu8592@163.com
  • 基金资助:
    四川省重大科技专项(2022ZDZX0014)

Effects of 16,17-dihydro gibberellin A5 on canopy radiation interception and yield of Shumai 133 under different planting density

LIU Yu-Hang1,2(), ZHAO Shu-Hong1,2, ZHU Ting-Ting3,4, LIANG Zhen-Yu3,4, HE Da-Hai3,4, CHEN Jia-Bo3,4, REN Yong5, HUANG Lin1,2, FAN Gao-Qiong1,3,4,*(), WU Bi-Hua1,2,*()   

  1. 1State Key Laboratory for Exploration and Utilization of Crop Genetic Resources in Southwest China, Chengdu 611130, Sichuan, China
    2Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    3College of Agronomy, Sichuan Agricultural University / Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    4Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, Sichuan, China
    5Mianyang Academy of Agricultural Sciences / Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Mianyang 621023, Sichuan, China
  • Received:2024-02-29 Accepted:2024-06-20 Published:2024-11-12 Published online:2024-07-10
  • Contact: *E-mail: wubihua2017@126.com; E-mail: fangao20056@126.com
  • Supported by:
    Major Science and Technology Project of Sichuan Province(2022ZDZX0014)

摘要:

为探究新型赤霉素抑制剂“二氢赤霉素”对不同增密条件下小麦冠层光能截获和产量的影响, 于2021—2023两个生长年度选用国审小麦品种蜀麦133在成都大邑县开展二因素裂区大田试验, 主区密度分别为250万株 hm-2 (常规密度, B1)、300万株hm-2 (增密20%, B2)、350万株 hm-2 (增密40%, B3)和400万株 hm-2 (增密60%, B4), 副区分别为喷施清水(CK0)、200 mg L-1多效唑-甲哌鎓混合剂(CK1)、100 mg L-1二氢赤霉素(C2)和200 mg L-1二氢赤霉素(C3)。结果表明,增密导致小麦冠层光环境变差, 从B1增密到B4, 小麦叶面积指数(LAI)和上部光能截获率(IPAR)分别增加16.7%~61.0%和10.3%~17.9%; 旗叶面积、叶夹角、叶绿素含量、下部IPAR和净光合速率分别降低8.5%~16.8%、3.5%~11.2%、1.6%~6.1%、4.2%~12.0%和2.2%~7.3%。喷施二氢赤霉素显著改善小麦冠层结构, C3显著降低各密度下的旗叶叶面积、叶夹角和上部IPAR, 分别达18.5%、17.0%和19.1%; 显著提升叶绿素含量、LAI、下部IPAR、光能转换率和光能利用率, 分别达18.7%、21.5%、62.2%、23.1%和26.6%。二氢赤霉素显著增加籽粒占比和花后干物质积累量, C3显著提升分别达36.4%和13.3%。增密显著增加有效穗数达23.7%, 降低穗粒数和千粒重。喷施二氢赤霉素进一步提升增产潜力, C3显著增加有效穗数、穗粒数、收获指数和产量分别达4.4%、12.4%、10.3%和8.5%。因此, 二氢赤霉素对增密后的小麦冠层光环境具有显著改善作用, 有效提高小麦光能截获率与光能利用率, 增加花后干物质积累, 显著提高籽粒产量。在本试验条件下, 增密到300万株 hm-2配施200 mg L-1二氢赤霉素产量最高。

关键词: 小麦, 二氢赤霉素, 种植密度, 冠层结构, 光能截获率, 产量

Abstract:

The cultivar “Shumai 133” was used to investigate the effects of a new gibberellin inhibitor, 16,17-dihydro gibberellin A5(2HGA5), on canopy radiation capture and wheat yield under different planting densities in Dayi, Chengdu, from 2021 to 2023. A split-plot experiment was designed with two factors: four planting densities (2.5×106 plants hm-2 (B1), 3×106 plants hm-2 (B2), 3.5×106 plants hm-2 (B3) and 4×106 plants hm-2 (B4) and chemical regulator treatments (water control (CK0), 200 mg L-1 paclobutrazol and mepiquat chloride mixture (CK1), 100 mg L-1 2HGA5(C2), and 200 mg L-1 2HGA5(C3)). The results showed that increasing planting density deteriorated the light environment of the wheat canopy. From B1 to B4, leaf area index (LAI) and the upper interception of photosynthetically active radiation (IPAR) of flag leaves increased by 16.7%-61.0% and 10.3%-17.9%, respectively. Conversely, the leaf area, leaf angle, chlorophyll content, lower IPAR, and net photosynthetic rate(Pn) of flag leaves decreased by 8.5%-16.8%, 3.5%-11.2%, 1.6%-6.1%, 4.2%-12.0%, and 2.2%-7.3%, respectively. 2HGA5 significantly improved wheat canopy structure. Under C3 treatment, compared with CK0, flag leaf area, leaf angle, and upper IPAR were significantly reduced by 18.5%, 17.0%, and 19.1%, respectively, while chlorophyll content, LAI, lower IPAR, PAR conversion efficiency (PCE), and PAR use efficiency (PUE) increased significantly by 18.7%, 21.6%, 62.2%, 23.1%, and 26.6%, respectively. 2HGA5 also significantly increased the proportion of dry matter in grains and the accumulation of dry matter post-flowering. Under C3 treatment, these traits increased by 36.4% and 13.3%, respectively, compared to CK0. Effective spikes increased significantly by 23.7% from B1 to B4, although kernels per spike and 1000-grain weight decreased. Grain yield further increased after 2HGA5 was applied. Compared to CK0, effective spikes, kernels per spike, harvest index, and grain yield under C3 treatment increased by 4.4%, 12.4%, 10.3%, and 8.5%, respectively. In conclusion, 2HGA5 significantly improved the light environment of the wheat canopy under high planting density, enhancing traits such as IPAR, PUE, and post-anthesis dry matter accumulation, which resulted in increased grain yield. The highest yield was achieved with the treatment of 3×106 plants hm-2 combined with 200 mg L-1 2HGA5.

Key words: wheat, 16,17-dihydro gibberellin A5, planting density, canopy structure, canopy radiation interception, yield

表1

试验地0~20 cm土壤的基础理化特征"

年份
Year
有机质
Organic matter
(g kg-1)
全氮
Total N
(g kg-1)
速效磷
Available P
(g kg-1)
速效钾
Available K
(g kg-1)
碱解氮
Available N
(g kg-1)
pH
2021-2022 24.05 2.01 1.67 16.39 15.70 5.95
2022-2023 23.23 3.24 1.75 16.73 16.36 6.02

图1

2021-2023小麦生长季日平均气温与降雨量分布"

图2

二氢赤霉素对不同种植密度下小麦冠层相关性状的影响 B1、B2、B3、B4分别是种植密度250万株 hm-2、300万株 hm-2、350万株 hm-2、400万株 hm-2。CK0是清水空白对照, CK1是200 mg L-1多效唑-甲哌鎓混合剂, C2是100 mg L-1二氢赤霉素, C3是200 mg L-1二氢赤霉素。不同小写字母表示在同一密度下不同喷药处理在0.05概率水平差异显著。*和**分别表示在0.05和0.01概率水平差异显著, ns表示无显著差异。"

图3

二氢赤霉素对不同种植密度下小麦叶绿素含量的影响 JT: 拔节期; BT: 孕穗期; AT: 开花期; GF30: 灌浆30 d。B1、B2、B3、B4分别是种植密度250万株 hm-2、300万株 hm-2、350万株 hm-2、400万株 hm-2, CK0是清水空白对照, CK1是200 mg L-1多效唑-甲哌鎓混合剂, C2是100 mg L-1二氢赤霉素, C3是200 mg L-1二氢赤霉素。不同小写字母表示在同一密度下不同喷药处理在0.05概率水平差异显著。"

图4

二氢赤霉素对不同种植密度下小麦叶面积指数的影响 JT: 拔节期; BT: 孕穗期; AT: 开花期; GF30: 灌浆30 d。B1、B2、B3、B4分别是种植密度250万株 hm-2、300万株 hm-2、350万株 hm-2、400万株 hm-2, CK0是清水空白对照, CK1是200 mg L-1多效唑-甲哌鎓混合剂, C2是100 mg L-1二氢赤霉素, C3是200 mg L-1二氢赤霉素。不同小写字母表示在同一密度下不同喷药处理在0.05概率水平差异显著。"

图5

二氢赤霉素对不同种植密度下小麦光能截获率的影响 B1、B2、B3、B4分别是种植密度250万株 hm-2、300万株 hm-2、350万株 hm-2、400万株 hm-2, CK0是清水空白对照, CK1是200 mg L-1多效唑-甲哌鎓混合剂, C2是100 mg L-1二氢赤霉素, C3是200 mg L-1二氢赤霉素。不同小写字母表示在同一密度下不同喷药处理在0.05概率水平差异显著。"

表2

二氢赤霉素对不同种植密度下小麦光能转化率和光能利用率的影响"

密度
Density
化控剂
Chemical regulator
孕穗-开花BT-AT 开花-灌浆30 d AT-GF30 灌浆30 d-成熟 GF30-MT
PCE PUE PCE PUE PCE PUE
B1 CK0 2.5±2.3 d 2.3±0.2 c 2.4±0.2 d 2.0±0.2 d 1.6±0.6 b 1.2±0.4 c
CK1 3.5±0.8 a 3.2±0.8 a 3.3±0.1 a 2.8±1.0 a 1.8±1.0 a 1.4±0.9 a
C2 2.9±1.8 c 2.7±0.2 b 2.8±0.7 c 2.4±0.6 c 1.6±0.3 b 1.3±0.1 b
C3 3.2±1.8 b 3.1±0.2 a 3.1±1.0 b 2.6±0.3 b 1.7±0.6 a 1.4±0.4 a
B2 CK0 2.6±0.7 b 2.5±0.6 b 2.6±0.7 b 2.2±0.6 b 1.7±0.8 c 1.3±0.7 c
CK1 3.6±2.1 a 3.4±0.2 a 3.0±0.8 a 2.7±0.7 a 2.0±0.5 a 1.6±0.3 ab
C2 2.7±0.3 b 2.6±0 b 2.5±0.9 b 2.3±1.0 b 1.9±0.6 b 1.6±0.5 b
C3 3.4±1.3 a 3.3±0.1 a 2.8±0.5 a 2.7±0.3 a 2.0±0.5 ab 1.7±0.4 a
B3 CK0 3.1±0.3 b 2.9±0.6 b 2.6±0.9 c 2.3±0.4 c 1.7±0.4 c 1.5±0.3 c
CK1 3.1±1.5 b 3.0±0.1 b 2.6±0.6 bc 2.4±0.3 bc 1.7±0.4 c 1.5±0.4 c
C2 3.0±0.7 b 2.9±0.7 b 2.8±1.0 ab 2.6±1.2 ab 1.9±0.1 b 1.7±0.1 b
C3 3.6±0.8 a 3.5±0.9 a 2.9±0.8 a 2.7±0.8 a 2.1±0.5 a 2.0±0.5 a
B4 CK0 3.2±0.7 b 3.1±0.5 b 2.4±0.8 b 2.3±0.6 b 1.6±0.6 c 1.5±0.4 d
CK1 3.1±1.3 b 3.0±0.1 b 2.5±0.1 b 2.3±0.9 b 1.7±0.5 bc 1.6±0.4 c
C2 3.2±2.8 b 3.1±0.3 b 2.7±0.2 a 2.6±0.1 a 1.8±0.6 b 1.7±0.6 b
C3 3.7±0.7 a 3.6±0.6 a 2.8±0.2 a 2.7±0.3 a 2.0±0.3 a 1.9±0.3 a
F B 5.1* 11.4** 25.0** 0.7ns 23.9** 73.6**
F-value C 38.2** 44.7** 21.6** 41.3** 36.8** 78.3**
B×C 7.1** 6.9** 6.4** 8.2** 7.1** 7.9**

图6

二氢赤霉素对不同种植密度下小麦净光合速率的影响 B1、B2、B3、B4分别是种植密度250万株 hm-2、300万株 hm-2、350万株 hm-2、400万株 hm-2, CK0是清水空白对照, CK1是200 mg L-1多效唑-甲哌鎓混合剂, C2是100 mg L-1二氢赤霉素, C3是200 mg L-1二氢赤霉素。不同小写字母表示在同一密度下不同喷药处理在0.05水平上的显著性差异。*和**分别表示在0.05和0.01概率水平差异显著, ns表示无显著差异。"

图7

二氢赤霉素对不同种植密度下小麦干物质分配的影响 B1、B2、B3、B4分别是种植密度250万株 hm-2、300万株 hm-2、350万株 hm-2、400万株 hm-2, CK0是清水空白对照, CK1是200 mg L-1多效唑-甲哌鎓混合剂, C2是100 mg L-1二氢赤霉素, C3是200 mg L-1二氢赤霉素。不同小写字母表示在同一密度下不同喷药处理在0.05概率水平差异显著。"

表3

二氢赤霉素对不同种植密度下小麦干物质积累与转运的影响"

密度Density 化控剂
Chemical regulator
2021-2022 2022-2023
花前干物质转运量DBFT(kg hm-2) 对籽粒的贡献率CRDBA(%) 花后干物质积累量DAPA(kg hm-2) 对籽粒的贡献率CRDPA(%) 花前干物质转运量DBFT(kg hm-2) 对籽粒的贡献率CRDBA(%) 花后干物质积累量
DAPA(kg hm-2)
对籽粒的贡献率CRDPA(%)
B1 CK0 2768±99 a 35.9±0.7 a 4932±56 c 64.1±0.7 b 2906±59 a 38.6±0.9 a 4618±82 b 61.4±0.9 b
CK1 2838±57 a 34.7±0.3 a 5342±64 a 65.3±0.3 b 2731±275 a 34.7±3.3 b 5126±237 a 65.3±3.3 a
C2 2829±58 a 35.7±0.3 a 5101±73 b 64.3±0.3 b 2974±252 a 37.6±2.2 ab 4928±182 a 62.4±2.2 ab
C3 2728±122 a 32.9±1.5 b 5362±170 a 67.1±1.5 a 2973±360 a 36.6±4.3 ab 5138±348 a 63.4±4.3 ab
B2 CK0 3487±234 a 40.4±1.9 a 5128±82 c 59.6±1.9 b 3014±124 a 37.3±1.2 a 5065±54 b 62.7±1.2 a
CK1 3330±157 a 37.4±1.3 b 5575±42 b 62.6±1.3 a 2901±266 a 34.3±2.8 a 5550±164 a 65.7±2.8 a
C2 3367±49 a 37.8±0.2 b 5553±68 b 62.3±0.2 a 3125±116 a 36.6±1.3 a 5424±100 a 63.4±1.3 a
C3 3342±298 a 36.5±2.2 b 5808±43 a 63.5±2.2 a 3061±161 a 35.2±1.8 a 5633±155 a 64.8±1.8 a
B3 CK0 2822±18 a 34.8±0.1 a 5285±49 d 65.2±0.1 c 2743±144 a 34.2±1.6 a 5273±124 c 65.8±1.6 b
CK1 2857±139 a 34.2±1.4 a 5497±62 c 65.8±1.4 c 2749±379 a 32.9±3.9 ab 5583±234 bc 67.1±3.9 ab
C2 2727±169 ab 32.0±1.8 b 5793±127 b 68.0±1.8 b 2677±114 a 31.5±1.2 ab 5832±87 ab 68.5±1.2 ab
C3 2488±46 b 29.4±0.6 c 5967±67 a 70.6±0.6 a 2371±180 a 28.1±2.2 b 6062±193 a 71.9±2.2 a
B4 CK0 2365±88 a 31.7±0.7 ab 5097±16 c 68.3±0.7 c 2713±88 a 35.1±0.9 a 5009±50 c 64.9±0.9 b
CK1 2498±91 a 33.0±0.7 a 5068±40 c 67.0±0.7 bc 2741±130 a 34.4±1.4 ab 5230±77 bc 65.6±1.4 ab
C2 2375±139 a 29.8±1.0 b 5601±90 b 70.3±1.0 b 2494±370 a 31.3±4.9 ab 5485±479 ab 68.7±4.9 ab
C3 2288±29 a 27.5±0.1 c 6041±114 a 72.5±0.1 a 2349±111 a 28.8±1.4 b 5794±126 a 71.2±1.4 a
F B 50.3** 38.0** 51.0** 38.0** 11.7** 18.6** 42.9** 18.6**
F-value C 1.6ns 21.8** 94.8** 21.8** 0.7ns 3.1* 12.6** 3.1*
B×C 0.75ns 2.5* 10.1** 2.5* 0.9ns 0.8ns 1.7ns 0.9ns

表4

二氢赤霉素对不同种植密度下两年平均产量及其构成因素的影响"

密度
Density
化控剂
Chemical
regulator
有效穗数
Effective spike number (×104 hm-2)
穗粒数
Grain number per spike (g)
千粒重
1000-grain weight (g)
收获指数
Harvest index
产量
Grain yield
(kg hm-2)
B1 CK0 336±5 h 46.4±0.3 bcde 49.5±0.5 a 0.38±0.01 fg 7612±70 i
CK1 351±5 g 48.5±0.5 ab 49.1±0.4 abc 0.40±0 bcde 8019±78 g
C2 349±7 g 48.5±0.8 ab 49.3±0.5 a 0.41±0.01 bc 7916±215 gh
C3 350±3 g 47.7±0.6 abc 47.8±0.5 cdef 0.42±0 ab 8050±57 fg
B2 CK0 373±5 f 46.3±0.6 cde 49.2±1.1 ab 0.38±0 fg 8347±116 de
CK1 397±1 e 47.8±0.7 abc 47.9±0.2 bcde 0.41±0.01 bcd 8678±106 bc
C2 399±3 de 47.0±0.5 bcd 47.0±0.1 ef 0.41±0.01 abc 8735±67 ab
C3 392±6 e 49.4±0.6 a 46.9±0.4 efg 0.43±0.02 a 8922±143 a
B3 CK0 410±6 cd 44.8±1.4 efg 48.6±0.3 abcd 0.37±0.01 g 8061±56 fg
CK1 430±5 a 46.6±1.0 bcde 47.4±1.0 def 0.39±0 defg 8343±74 de
C2 427±3 ab 45.2±1.0 def 47.8±0.1 cdef 0.39±0 cdefg 8514±36 cd
C3 431±1 a 47.4±0.7 abc 46.5±0.7 fg 0.43±0 a 8444±17 de
B4 CK0 417±4 bc 41.1±1.3 h 47.4±0.2 def 0.38±0 efg 7592±20 i
CK1 417±7 bc 43.0±0.8 g 46.6±1.2 efg 0.40±0 cdef 7769±66 hi
C2 415±8 bc 43.9±1.1 fg 47.1±0 ef 0.40±0 bcdef 7977±157 gh
C3 435±10 a 46.2±1.5 cde 45.7±0.4 g 0.42±0 ab 8236±72 ef
F B 232.9** 23.3** 19.7** 2.5ns 117.5**
F-value C 21.7** 23.4** 14.6** 33.7** 39.0**
B×C 3.2* 3.2* 0.9ns 1.2ns 1.8ns

图8

光合性状与干物质积累量和产量的相关性分析 Chl: 叶绿素含量; LAI: 叶面积指数; IPAR: 光能截获率; PCE: 光能转换率; PUE: 光能利用率; Pn: 净光合速率; DAPA: 花后干物质积累量; *、**和***分别代表P < 0.05, P < 0.01, P < 0.001的显著性差异。"

[1] Yang H K, Xiao Y, He P, Ai D L, Zou Q S, Hu J, Liu Q, Huang X L, Zheng T, Fan G Q. Straw mulch-based no-tillage improves tillering capability of dryland wheat by reducing asymmetric competition between main stem and tillers. Crop J, 2022, 10: 864-878.
doi: 10.1016/j.cj.2021.09.011
[2] Liu F, Zhou F, Wang X, Wang X L, Zhan X X, Guo Z X, Liu Q L, Wei G, Lan T Q, Feng D J, Kong F L, Yuan J C. Optimizing nitrogen management enhances stalk lodging resistance and grain yield in dense planting maize by improving canopy light distribution. Eur J Agron, 2023, 148: 126871.
[3] 刘锟, 江继顺, 石玉, 李美. 不同产量水平麦田小麦冠层光能利用和干物质积累特性研究. 山东农业科学, 2023, 55(9): 39-45.
Liu K, Jiang J X, Shi Y, Li M. Characteristics of light energy utilization and dry matter accumulation in wheat canopy in wheat fields with different yield levels. Shandong Agric Sci, 2023, 55(9): 39-45 (in Chinese with English abstract).
[4] Yao H S, Zhang Y L, Yi X P, Hu Y Y, Luo H H, Gou L, Zhang W F. Plant density alters nitrogen partitioning among photosynthetic components, leaf photosynthetic capacity and photosynthetic nitrogen use efficiency in field-grown cotton. Field Crops Res, 2015, 184: 39-49.
[5] Zhang Q, Zhang L, Evers J, van der Werf W, Zhang W Q, Duan L S. Maize yield and quality in response to plant density and application of a novel plant growth regulator. Field Crops Res, 2014, 164: 82-89.
[6] 冯伟, 李晓, 邱记东, 王晨阳, 郭天财. 种植行距对两种穗型小麦品种籽粒糖代谢及灌浆特性的影响. 麦类作物学报, 2010, 30: 875-880.
Feng W, Li X, Qiu J D, Wang C Y, Guo T C. Effects of row spacing on sugar metabolism and grain filling of two spike types of winter wheat. J Triticeae Crops, 2010, 30: 875-880 (in Chinese with English abstract).
[7] 徐彤, 吕艳杰, 邵玺文, 耿艳秋, 王永军. 不同时期化控对密植玉米冠层结构及籽粒灌浆特性的影响. 作物学报, 2023, 49: 472-484.
doi: 10.3724/SP.J.1006.2023.23028
Xu T, Lyu Y J, Shao X W, Geng Y Q, Wang Y J. Effect of different times of spraying chemical regulator on the canopy structure and grain filling characteristics of high planting densities. Acta Agron Sin, 2023, 49: 472-484 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.23028
[8] Cao Y Y, Zhong Z J, Wang H, Wang H Y, Shen R X. Leaf angle: a target of genetic improvement in cereal crops tailored for high-density planting. Plant Biotechnol J, 2022, 20: 426-436.
doi: 10.1111/pbi.13780 pmid: 35075761
[9] Zhang L X, Luo Z L, Cui S R, Xie L, Yu J, Tang D Y, Ma X J, Mou Y. Residue of paclobutrazol and its regulatory effects on the secondary metabolites of Ophiopogon japonicas. Molecules 2019, 24: 3504.
[10] 姜龙, 曲金玲, 孙国宏, 白艳凤, 孟祥海, 姜宝杰, 孙远卓, 董韩骁骐. 矮壮素、烯效唑和多效唑对水稻倒伏及产量的影响. 中国林副特产, 2018, 153(2): 10-13.
Jiang L, Qu J L, Sun G H, Bai Y F, Meng X H, Jiang B J, Sun Y Z, Dong H X Q. Effects of chlormequat, uniconazole and paclobutrazol on the lodging and yield of rice. Fore By-Prod Spcia Chin, 2018, 153(2): 10-13 (in Chinese with English abstract).
[11] Zhao J H, Lai H J, Bi C, Zhao M J, Liu Y L, Li X D, Yang D Q. Effects of paclobutrazol application on plant architecture, lodging resistance, photosynthetic characteristics, and peanut yield at different single-seed precise sowing densities. Crop J, 2023, 11: 301-310.
doi: 10.1016/j.cj.2022.05.012
[12] Hedden P. The current status of research on gibberellin biosynthesis. Plant Cell Physiol, 2020, 61: 1832-1849.
doi: 10.1093/pcp/pcaa092 pmid: 32652020
[13] Zhou R, Yu M, Pharis R P. 16,17-dihydro gibberellin A5 competitively inhibits a recombinant Arabidopsis GA3 β-hydroxylase encoded by the GA4 gene. Plant Physiol, 2004, 135: 1000-1007.
[14] Evans L T, King R W, Mander L N, Pharis R P, Duncan K A. The differential effects of C-16,17-dihydro gibberellins and related compounds on stem elongation and flowering in Lolium temulentum. Planta, 1994, 193: 107-114.
[15] 李浩然, 李慧玲, 王红光, 李东晓, 李瑞奇, 李雁鸣. 冬小麦叶面积测算方法的再探讨. 麦类作物学报, 2018, 38: 455-459.
Li H R, Li H L, Wang H G, Li D X, Li R Q, Li Y M. Further study on the method of leaf area calculation in winter wheat. J Triticeae Crops, 2018, 38: 455-459 (in Chinese with English abstract).
[16] Wang C, Du Y M, Zhang J X, Ren J T, He P, Wei T, Xie W, Yang H K, Zhang J X. Effects of exposure of the leaf abaxial surface to direct solar radiation on the leaf anatomical traits and photosynthesis of soybean (Glycine max L.) in dryland farming systems. Photosynthetica, 2021, 59: 496-507.
doi: 10.32615/ps.2021.038
[17] 何雨桔, 刘琼, 王焜, 连霁雯, 蔡璐舟, 梁振宇, 樊高琼. 施氮量对不同株叶型小麦旗叶光合及籽粒灌浆特性的影响. 四川农业大学学报, 2022, 40: 707-713.
He Y J, Liu Q, Wang K, Lian J W, Cai L Z, Liang Z Y, Fan G Q. Effects of nitrogen application rate on flag leaf photosynthesis and grain filling characteristics of wheat with different leaf types. J Sichuan Agric Univ, 2022, 40: 707-713 (in Chinese with English abstract).
[18] Zhang J, Zhang Z, Neng F, Xiong S P, Wei Y H, Cao R, Wei Q R, Ma X M, Wang X C. Canopy light distribution effects on light use efficiency in wheat and its mechanism. Front Ecol Evol, 2022, 10: 1023117.
[19] 熊淑萍, 曹文博, 张志勇, 张捷, 高明, 樊泽华, 沈帅杰, 王小纯, 马新明. 行距和播种量对冬小麦冠层光合有效辐射垂直分布、生物量和籽粒产量的影响. 应用生态学报, 2021, 32: 1298-1306.
doi: 10.13287/j.1001-9332.202104.026
Xiong S P, Cao W B, Zhang Z Y, Zhang J, Gao M, Fan Z H, Shen S J, Wang X C, Ma X M. Effects of row spacing and sowing rate on vertical distribution of photosynthetically active radiation, biomass and grain yield in winter wheat canopy. Chin J Appl Ecol, 2021, 32: 1298-1306 (in Chinese with English abstract).
[20] 郑雪娇, 于振文, 张永丽, 石玉. 施氮量对测墒补灌小麦冠层不同层次光截获和干物质分布的影响. 应用生态学报, 2018, 29: 531-537.
doi: 10.13287/j.1001-9332.201802.024
Zheng X J, Yu Z W, Zhang Y L, Shi Y. Effects of nitrogen application rate on light interception and dry matter distribution at different layers in wheat canopy under supplemental irrigation based on measuring soil moisture. Chin J Appl Ecol, 2018, 29: 531-537 (in Chinese with English abstract).
[21] 汤亮, 朱相成, 曹梦莹, 曹卫星, 朱艳. 水稻冠层光截获、光能利用与产量的关系. 应用生态学报, 2012, 23: 1269-1276.
Tang L, Zhu X C, Cao M Y, Cao W X, Zhu Y. Relationships of rice canopy PAR interception and light use efficiency to grain yield. Chin J Appl Ecol, 2012, 23: 1269-1276 (in Chinese with English abstract).
[22] 高仁才, 陈松鹤, 马宏亮, 莫飘, 肖云, 张雪, 樊高琼. 秋闲期秸秆覆盖与氮肥减施对旱地冬小麦干物质积累、结实特性和产量的影响. 植物营养与肥料学报, 2022, 28: 426-439.
Gao R C, Chen S H, Ma H L, Mo P, Xiao Y, Zhang X, Fan G Q. Effects of straw mulching in autumn and reducing nitrogen application on dry matter accumulation, seed-setting characteristics and yield of dryland winter wheat. J Plant Nutr Fert, 2022, 28: 426-439 (in Chinese with English abstract).
[23] Yao H S, Zhang Y L, Yi X P, Zuo W Q, Lei Z Y, Sui L L, Zhang W F. Characters in light-response curves of canopy photosynthetic use efficiency of light and N in responses to plant density in field-grown cotton. Field Crops Res, 2017, 203: 192-200.
[24] 张玲丽, 王辉, 孙道杰, 冯毅. 高产小麦品种冠层形态结构及其与产量性状的关系. 西北植物学报, 2004: 1211-1215.
Zhang L L, Wang H, Sun D J, Feng Y. Canopy morphology structure and its correlation with yield characters of high-yield wheat cultivars. Acta Bot Bor-Occid Sin, 2004: 1211-1215 (in Chinese with English abstract).
[25] Liu Y, Liao Y C, Liu W Z. High nitrogen application rate and planting density reduce wheat grain yield by reducing filling rate of inferior grain in middle spikelets. Crop J, 2021, 9: 412-426.
doi: 10.1016/j.cj.2020.06.013
[26] 颜为, 李芳军, 徐东永, 杜明伟, 田晓莉, 李召虎. 行距与氮肥或甲哌鎓化控对棉花冠层结构、温度和相对湿度的影响. 作物学报, 2021, 47: 1654-1665.
doi: 10.3724/SP.J.1006.2021.04167
Yan W, Li F J, Xu D Y, Du M W, Tian X L, Li Z H. Effects of row spacings and nitrogen or mepiquat chloride application on canopy architecture, temperature and relative humity in cotton. Acta Agron Sin, 2021, 47: 1654-1665 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.04167
[27] Liu T, Wang Z, Cai T. Canopy apparent photosynthetic characteristics and yield of two spike-type wheat cultivars in response to row spacing under high plant density. PLoS One, 2016, 11: e0148582.
[28] 陈晓光, 王振林, 彭佃亮, 李勇, 蔡铁, 王平, 陈二影. 种植密度与喷施多效唑对冬小麦抗倒伏能力和产量的影响. 应用生态学报, 2011, 22: 1465-1470.
Chen X G, Wang Z L, Peng D L, Li Y, Cai T, Wang P, Chen E Y. Effects of planting density and spraying PP333 on winter wheat lodging-resistance and grain yield. Chin J Appl Ecol, 2011, 22: 1465-1470 (in Chinese with English abstract).
[29] 杨阳, 蒯婕, 吴莲蓉, 刘婷婷, 孙盈盈, 左青松, 周广生, 吴江生. 多效唑处理对直播油菜机械收获相关性状及产量的影响. 作物学报, 2015, 41: 938-945.
doi: 10.3724/SP.J.1006.2015.00938
Yang Y, Kuai J, Wu L R, Liu T T, Sun Y Y, Zuo Q S, Zhou G S, Wu J S. Effects of paclobutrazol on yield and mechanical harvest characteristics of winter rapeseed with direct seeding treatment. Acta Agron Sin, 2015, 41: 938-945 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2015.00938
[30] 吴刚, 赵强, 谢佳, 张启越, 占东霞, 田阳青, 李欣欣. 植物生长调节剂复配不同叶面肥对棉花干物质积累及产量品质的影响. 新疆农业科学, 2023, 60: 2646-2652.
doi: 10.6048/j.issn.1001-4330.2023.11.006
Wu G, Zhao Q, Xie J, Zhang Q Y, Zhan D X, Tian Y Q, Li X X. Effects of plant growth regulator combined with different leaf fertilizer on the accumulation of dry material and yield quality in cotton. Xinjiang Agric Sci, 2023, 60: 2646-2652 (in Chinese with English abstract).
doi: 10.6048/j.issn.1001-4330.2023.11.006
[31] 艾代龙, 雷芳, 邹乔生, 贺鹏, 杨洪坤, 樊高琼. 秸秆覆盖与施氮对丘陵旱地小麦根系构型改善及H+、NO3-吸收与利用的影响. 中国农业科学, 2023, 56: 4192-4207.
doi: 10.3864/j.issn.0578-1752.2023.21.005
Ai D L, Lei F, Zou Q S, He P, Yang H K, Fan G Q. Effects of straw mulching and nitrogen application on the improvement of wheat root architecture and the absorption and utilization of H+ and NO3- in hilly dry land. Sci Agric Sin, 2023, 56: 4192-4207 (in Chinese with English abstract)
[32] 陶有凤, 蒲石林, 周伟, 邓飞, 钟晓媛, 秦琴, 任万军. 西南弱光地区机插杂交籼稻“减穴稳苗”栽培的群体冠层质量特征. 中国农业科学, 2021, 54: 4969-4983.
doi: 10.3864/j.issn.0578-1752.2021.23.004
Tao Y F, Pu S L, Zhou W, Deng F, Zhong X Y, Qin Q, Ren W J. Canopy population quality characteristics of mechanical transplanting hybrid indica rice with “reducing hills and stabilizing basic-seedlings” in low-light region of Southwest China. Sci Agric Sin, 2021, 54: 4969-4983 (in Chinese with English abstract).
[1] 徐一帆, 徐彩龙, 李瑞东, 吴宗声, 华建鑫, 杨琳, 宋雯雯, 吴存祥. 侧深施肥通过优化叶片功能与氮素积累来提高大豆产量[J]. 作物学报, 2024, 50(9): 2335-2346.
[2] 杨煜琛, 靳雅荣, 骆金婵, 祝鑫, 李葳航, 贾纪原, 王小珊, 黄德均, 黄琳凯. 珍珠粟WD40基因家族鉴定及表达特征分析[J]. 作物学报, 2024, 50(9): 2219-2236.
[3] 刘志鹏, 苟志文, 柴强, 殷文, 樊志龙, 胡发龙, 范虹, 王琦明. 干旱灌区绿肥对多样化种植小麦玉米产量性能指标的影响[J]. 作物学报, 2024, 50(9): 2415-2424.
[4] 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395.
[5] 彭杰, 谢晓麒, 张钊, 姚晓芬, 邱深, 陈丹丹, 顾晓娜, 王玉洁, 王晨晨, 杨国正. 夏直播棉花产量与冠层微环境的关系[J]. 作物学报, 2024, 50(9): 2371-2382.
[6] 黄林玉, 张潇月, 李豪, 邓梅, 康厚扬, 魏育明, 王际睿, 蒋云峰, 陈国跃. 小麦农家种成株期条锈病抗性QTL定位及其育种效应解析[J]. 作物学报, 2024, 50(9): 2167-2178.
[7] 张贵芹, 王洪章, 郭新送, 朱福军, 高涵, 张吉旺, 赵斌, 任佰朝, 刘鹏, 任昊. 有机物料投入对滨海盐碱地土壤理化性状和夏玉米产量形成的影响[J]. 作物学报, 2024, 50(9): 2323-2334.
[8] 张琪祺, 陈杰昌, 蒯婕, 汪波, 王晶, 徐正华, 赵杰, 赵思明, 贾才华, 周广生. 高密度直播对油菜冷榨菜籽油品质的影响[J]. 作物学报, 2024, 50(9): 2358-2370.
[9] 张振, 何建宁, 石玉, 于振文, 张永丽. 行距和种植方式对小麦光合特性和产量的影响[J]. 作物学报, 2024, 50(9): 2396-2407.
[10] 禹海龙, 吴文雪, 裴星旭, 刘晓宇, 邓跟望, 李西臣, 甄士聪, 望俊森, 赵永涛, 许海霞, 程西永, 詹克慧. 小麦茎秆性状的转录组测序及全基因组关联分析[J]. 作物学报, 2024, 50(9): 2187-2206.
[11] 娄洪祥, 黄肖玉, 江萌, 宁宁, 卞孟磊, 张磊, 罗东旭, 秦梦倩, 蒯婕, 汪波, 王晶, 赵杰, 徐正华, 周广生. 长江流域迟播甘蓝型油菜播种期和播种量优化配置研究[J]. 作物学报, 2024, 50(8): 2091-2105.
[12] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[13] 彭小爱, 卢茂昂, 张玲, 刘童, 曹磊, 宋有洪, 郑文寅, 何贤芳, 朱玉磊. 基于55K SNP芯片的小麦籽粒主要品质性状的全基因组关联分析[J]. 作物学报, 2024, 50(8): 1948-1960.
[14] 高维东, 胡城祯, 张龙, 张艳艳, 张沛沛, 杨德龙, 陈涛. 小麦泛素结合酶TaUBC16基因的克隆与功能分析[J]. 作物学报, 2024, 50(8): 1971-1988.
[15] 梁进宇, 尹嘉德, 侯慧芝, 薛云贵, 郭宏娟, 王硕, 赵绮志, 张绪成, 谢军红. 干旱条件下深施肥对春小麦旗叶生态化学计量特征及其光合碳同化的影响[J]. 作物学报, 2024, 50(8): 2078-2090.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!