欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (10): 2821-2835.doi: 10.3724/SP.J.1006.2025.54011

• 研究简报 • 上一篇    下一篇

贝莱斯芽孢杆菌YCH92对棉花根际土壤微生物群落及棉花产量的影响

陈佳伟1,2,3(), 林艳1,2,3, 张明星2,3, 周诗晶2,3, 饶力群1, 周池1,2,3,*(), 李鑫2,3,*()   

  1. 1湖南农业大学生物科学技术学院, 湖南长沙 410125
    2湖南省微生物研究所, 湖南长沙 410125
    3植物内生微生物资源挖掘与利用湖南省工程研究中心, 湖南长沙 410125
  • 收稿日期:2025-01-15 接受日期:2025-07-09 出版日期:2025-10-12 网络出版日期:2025-07-16
  • 通讯作者: *周池, E-mail: 492946136@qq.com;李鑫, E-mail: s2007203272@yeah.net
  • 作者简介:E-mail: 1223245355@qq.com
  • 基金资助:
    湖南省科技创新计划项目(2023NK2015);政策性项目-科技援疆、科技援藏科技援藏(2024WK4003)

Effects of Bacillus velezensis YCH92 on the rhizosphere microbial community and yield of cotton

CHEN Jia-Wei1,2,3(), LIN Yan1,2,3, ZHANG Ming-Xing2,3, ZHOU Shi-Jing2,3, RAO Li-Qun1, ZHOU Chi1,2,3,*(), LI Xin2,3,*()   

  1. 1College of Bioscience Science and Technology, Hunan Agricultural University, Changsha 410125, Hunan, China
    2Hunan Microbiology Research Institute, Changsha 410125, Hunan, China
    3Hunan Engineering Research Center on Excavation and Utilization of the Endophytic Microbial Resources of Plants, Changsha 410125, Hunan, China
  • Received:2025-01-15 Accepted:2025-07-09 Published:2025-10-12 Published online:2025-07-16
  • Contact: *E-mail: 492946136@qq.com;E-mail: s2007203272@yeah.net
  • Supported by:
    Science and Technology Innovation Project of Hunan Province(2023NK2015);Policy-Oriented Project Science and Technology Aid to Xinjiang and Xizang(2024WK4003)

摘要:

为了探究内生菌贝莱斯芽孢杆菌(Bacillus velezensis) YCH92对棉花根际微生物群落结构变化及棉花产量的影响。本研究开展全基因组测序, 进行了基因功能注释和基因组比较分析; 研究YCH92对棉花根际土壤理化性质、棉花农艺性状及产量的影响, 利用高通量测序分析YCH92对微生物群落结构的影响。研究表明, 菌株YCH92具有解磷、产淀粉酶和产铁载体能力, 同时携带大量抑菌物质合成基因。在大田试验中, 施加YCH92菌液能够增加土壤有机质、水解氮、有效磷和速效钾含量, 降低土壤pH; 施加稀释200倍的YCH92菌液后会增加土壤微生物多样性和丰富度; 与未施加菌液组相比, YCH92菌液处理提高了放线菌门相对丰度, 降低了酸杆菌门的相对丰度; 属水平上, YCH92菌液处理提高了鞘氨醇单胞菌属(Sphingomonas)和诺尔氏菌属(Knoellia)相对丰度, 降低了赭黄嗜盐囊菌属(Haliangium)相对丰度; YCH92菌液处理后, 棉花单株铃数、单铃重和籽棉产量均显著高于未施加菌液组, 稀释100倍菌液组的单株铃数、单铃重和籽棉产量较未施加菌液组分别增加17.3%、6.6%、25.0%; 稀释200倍菌液组的单株铃数、单铃重和籽棉产量较未施加菌液组分别增加15.5%、6.7%、23.2%。贝莱斯芽孢杆菌YCH92能够改善棉田土壤环境, 增加棉花产量, 为棉花科学栽培和棉花产业绿色高效发展提供科学指导。

关键词: 棉花, 贝莱斯芽孢杆菌, 内生菌, 全基因组, 微生物多样性

Abstract:

To explore the potential functions of endophytic Bacillus velezensis YCH92 and its influence on the structure of the cotton rhizosphere microbial community, as well as to improve the soil microenvironment and enhance cotton yield, this study conducted whole-genome sequencing, gene function annotation, and comparative genomic analysis. The effects of YCH92 on the physicochemical properties of rhizosphere soil, cotton agronomic traits, and yield were systematically investigated. In addition, high-throughput sequencing was employed to assess changes in microbial community structure following YCH92 application. The results showed that strain YCH92 possesses the abilities to solubilize phosphate, produce amylase and siderophores, and harbors numerous genes involved in the biosynthesis of antimicrobial compounds. In field experiments, application of YCH92 significantly increased soil organic matter, hydrolyzable nitrogen, available phosphorus, and available potassium, while reducing soil pH. A 200-fold dilution of YCH92 also enhanced microbial diversity and richness in the rhizosphere. Compared with the untreated control, YCH92 treatment increased the relative abundance of Actinobacteriota and decreased that of Acidobacteria. At the genus level, it promoted the abundance of Sphingomonas and Knoellia, while reducing that of Haliangium. Application of YCH92 also significantly improved boll number per plant, boll weight, and seed cotton yield. Specifically, the 100-fold dilution increased boll number, boll weight, and seed cotton yield by 17.3%, 6.6%, and 25.0%, respectively, while the 200-fold dilution resulted in increases of 15.5%, 6.7%, and 23.2%. These findings indicate that Bacillus velezensis YCH92 can enhance soil quality and promote cotton yield, offering a theoretical basis for sustainable cotton cultivation and the green, efficient development of the cotton industry.

Key words: cotton, Bacillus velezensis, endophytes, whole genome, microbial diversity

图1

菌株YCH92的生理生化特性 A: 解磷能力测定; B: 产铁载体能力测定; C: 淀粉酶水解能力测定。"

图2

菌株YCH92基因圈图与KEGG注释结果 A: 菌株YCH92的基因圈图, 最外圈是基因组序列位置坐标, 由外到里分别是基因功能注释结果、ncRNA、基因组GC含量和基因组GC skew值。B: KEGG数据库注释结果。"

表1

贝莱斯芽孢杆菌YCH92、FZB42、CBMB205、SQR9的基因组特征比较"

贝莱斯芽孢杆菌
Bacillus velezensis
GenBank登录号
GeneBank No.
基因组大小
Genome size (Mb)
G+C含量
G+C content (%)
rRNA tRNA 蛋白质编码序列
Protein coding sequences
YCH92 CP187936.1 4.01 46.5 27 87 3889
FZB42 CP000560.2 3.92 46.5 29 88 3724
CBMB205 CP014838.1 3.93 46.5 27 86 3745
SQR9 CP006890.1 4.12 46.0 21 72 3956

图3

菌株YCH92、FZB42、CBMB205、SQR9的比较基因组分析 A: 共线性分析; 具有相同颜色的框表示共线区域, 重排由彩色线条表示。B: YCH92、CBMB205、YCH92和SQR9的基因组共有、特有的基因数韦恩图。C: YCH92、CBMB205、YCH92和SQR9次生代谢产物基因簇共线性分析。"

表2

YCH92的次级代谢产物合成基因簇分类表"

基因簇编号
Cluster ID
类型
Type
起始位置
Start
终止位置
End
推测产物
Putative production
相似度
Similarity (%)
1 NPRS 304,502 369,909 表面活性素 Surfactin 78
2 LAP, thiopeptide 568,189 597,909 基雅尼霉素 Kijanimicin 4
3 LAP, RRE-containing 680,426 703,603 植物唑霉素 Plantazolicin 91
4 PKS-like 914,585 955,829 布替罗星A/布替罗星B Butirosin A/ B 7
5 Terpene 1,037,866 1,058,606 未知 Unknow
6 transAT-PKS 1,397,774 1,485,977 大环内酰亚胺H Macrolactin H 100
7 NRPS, T3PKS, transAT-PKS 1,704,793 1,814,904 芽孢杆菌烯 Bacillaene 100
8 NRPS, betalactone, transAT-PKS 1,871,618 2,009,450 丰原素 Fengycin 100
9 Terpene 2,032,019 2,053,902 未知 Unknow
10 T3PKS 2,122,532 2,163,632 未知 Unknow
11 TransAT-PKS 2,279,161 2,385,339 达菲菌素 Difficidin 100
12 NRPS, RiPP-like 3,095,727 3,147,519 杆菌素 Bacillibactin 100
13 其他 Other 3,675,804 3,717,222 溶杆菌素 Bacilysin 100

表3

各处理对土壤理化性质的影响"

时期
Period
处理
Treatment
pH 有机质
Organic matter
(g kg-1)
全氮
Total nitrogen
(g kg-1)
全磷
Total
phosphorus
(g kg-1)
全钾
Total
potassium
(g kg-1)
水解氮
Hydrolyzed nitrogen
(mg kg-1)
有效磷
Available phosphorus
(mg kg-1)
速效钾
Available potassium
(mg kg-1)
灌根后
第10天
The 10th day after root irrigation
CK 8.05±
0.03 a
26.01±
1.21 a
1.58±
0.04 a
0.848±
0.012 a
24.35±
0.19 b
130.00±
4.00 b
28.80±
0.20 a
167.00±
4.00 a
T100
10d
7.65±
0.03 c
20.65±
0.70 b
1.52±
0.04 b
0.787±
0.003 b
24.97±
0.32 a
146.00±
2.00 a
24.50±
1.40 b
137.00±
4.00 c
T200
10d
7.71±
0.05 b
20.11±
0.83 b
1.47±
0.02 c
0.790±
0.004 b
24.26±
0.22 b
127.00±
2.00 b
25.10±
1.50 b
149.00±
3.00 b
采收期
Harvest period
CKH 8.31±
0.02 a
17.24±
0.33 b
1.35±
0.05 b
0.732±
0.002 c
24.62±
0.02 b
115.00±
4.00 b
19.30±
0.50 b
137.00±
8.00 c
T100H 7.97±
0.03 c
21.50±
1.22 a
1.60±
0.03 a
0.856±
0.006 b
25.05±
0.14 a
134.00±
4.00 a
30.80±
0.30 a
203.00±
6.00 a
T200H 8.03±
0.02 b
21.24±
1.66 a
1.54±
0.03 a
0.870±
0.004 a
24.30±
0.22 c
136.00±
4.00 a
31.30±
1.10 a
168.00±
2.00 b

表4

不同处理土壤细菌α多样性指数"

时期
Period
处理
Treatment
Chao1指数
Chao1 index
ACE指数
Abundance-based coverage estimator
Shannon指数
Shannon index
Simpson指数
Simpson's diversity index
灌根后
第10天
The 10th day after
root irrigation
CK 2555.00±211.80 a 2567.13±211.13 a 10.07±0.09 ab 0.998,00±0.000,10 a
T10010d 2438.20±205.34 a 2451.47±205.91 a 10.00±0.17 b 0.997,70±0.000,81 a
T20010d 2610.98±88.24 a 2623.95±87.88 a 10.21±0.04 a 0.998,50±0.000,06 a
采收期
Harvest period
CKH 2540.67±146.36 a 2551.16±146.83 a 10.16±0.08 a 0.998,40±0.000,13 a
T100H 2250.53±273.81 b 2247.50±269.35 b 9.73±0.25 b 0.996,30±0.001,04 b
T200H 2601.84±102.80 a 2613.01±102.20 a 10.20±0.05 a 0.998,30±0.000,05 a

图4

YCH92处理第10天与收获时OTU水平主坐标分析 处理同表3。"

图5

不同处理下棉花根际土壤细菌群落构成 A: 根际土壤微生物门水平组成。B: 土壤细菌OTU(括号中数字为属水平)韦恩图。C~M: 属水平下组间相对丰度ANOVA方差分析; C: 诺尔式菌属; D: 克雷伯式菌属; E: unclassified_Euzebyaceae; F: 鱼孢菌属; G: uncultured_Acidobacterium_sp.; H: Polycyclovorans; I: uncultured_Actinomycetales_bacterium; J: unclassified_Gaiellales; K: 赭黄嗜盐囊菌属; L: 鞘氨醇单胞菌属; M: Anaeromyxobacter。柱上标以不同小写字母表示在0.05水平差异显著。处理同表3。"

图6

基于FAPROTAX预测不同处理细菌功能群组成的变化 处理同表3。"

图7

土壤理化性质与土壤属水平微生物群落相关性分析 TK: 全钾; pH: pH值; AK: 速效钾; TP: 全磷; AN: 水解性氮; OM: 有机质; TN: 全氮; AP: 有效磷。*、**、***分别表示在0.05、0.01、0.001水平相关性显著。"

表5

菌液灌根处理对棉花农艺性状及产量的影响"

处理
Treatment
株高
Height (cm)
果枝数
Fruit branch number
单株铃数
Number of bolls per plant
单铃重
Single bell weight (g)
籽棉产量
Seed cotton yield (kg hm-2)
CKH 114.7±4.5 a 17.3±0.6 a 36.7±1.5 b 4.70±0.11 b 4294.14±154.15 b
T100H 119.7±3.1 a 17.3±0.6 a 43.0±1.0 a 5.01±0.07 a 5367.78±167.76 a
T200H 119.3±3.1 a 17.7±0.6 a 42.3±2.5 a 5.02±0.11 a 5291.58±202.40 a
[1] 马乾. “十四五”期间新疆棉花产业发展与棉花公证检验的建议. 中国纤检, 2023, (3): 54-55.
Ma Q. Suggestions on the development of cotton industry in Xinjiang and cotton notarization and inspection during the 14th Five-Year Plan period. Chin Fiber Inspect, 2023, (3): 54-55 (in Chinese with English abstract).
[2] 黄东风, 王果, 李卫华, 邱孝煊. 菜地土壤氮磷面源污染现状、机制及控制技术. 应用生态学报, 2009, 20: 991-1001.
Huang D F, Wang G, Li W H, Qiu X X. Present status, mechanisms, and control techniques of nitrogen and phosphorus non-point source pollution from vegetable fields. Chin J Appl Ecol, 2009, 20: 991-1001 (in Chinese with English abstract).
[3] Lalloo R, Maharajh D, Görgens J, Gardiner N. A downstream process for production of a viable and stable Bacillus cereus aquaculture biological agent. Appl Microbiol Biotechnol, 2010, 86: 499-508.
[4] 杨明国, 刘淑雯, 芦俊佳, 马云强, 古旭. 两株内生真菌对多年生黑麦草及早熟禾抗旱性的影响. 北方园艺, 2024, (21): 52-60.
Yang M G, Liu S W, Lu J J, Ma Y Q, Gu X. Effects of two endophytic fungi on drought resistance of Lolium perenne and Poa pratensis. North Hortic, 2024, (21): 52-60 (in Chinese with English abstract).
[5] 王林林, 腊贵晓, 苏秀红, 杨林林, 初雷霞, 郭军旗, 练从龙, 张宝, 董诚明, 陈随清, 等. 基于基因组信息挖掘的内生细菌Kocuria rosea促进地黄生长的机制研究. 中国中药杂志, 2024, 49: 6119-6128.
Wang L L, La G X, Su X H, Yang L L, Chu L X, Guo J Q, Lian C L, Zhang B, Dong C M, Chen S Q, et al. Genomic information mining reveals Rehmannia glutinosa growth-promoting mechanism of endophytic bacterium Kocuria rosea. China J Chin Mater Med, 2024, 49: 6119-6128 (in Chinese with English abstract).
[6] 李社增, 鹿秀云, 马平, 刘杏忠, Huang H C. 棉花黄萎病生防细菌NCD-2抑菌物质提取初步研究. 棉花学报, 2004, 16(1): 62-63.
Li S Z, Lu X Y, Ma P, Liu X Z, Huang H C.Isolation and partial purification of an extracellular metabolite from a Bacillus subtilis NCD-2 strain against Verticillium dahliae. Acta Gossypii Sin, 2004, 16(1): 62-63 (in Chinese with English abstract).
[7] Bacon C W, Yates I E, Hinton D M, Meredith F. Biological control of Fusarium moniliforme in maize. Environ Health Perspect, 2001, 109: 325-332.
[8] 陈雨薇, 王喜刚, 郭成瑾, 沈瑞清, 刘东川. 贝莱斯芽胞杆菌GZ8-6对马铃薯根际土壤酶活性的影响及促生作用. 植物保护, 2024, 50(1): 48-55.
Chen Y W, Wang X G, Guo C J, Shen R Q, Liu D C. Effects of Bacillus velezensis GZ8-6 on the enzyme activities in potato rhizosphere soil and potato growth. Plant Prot, 2024, 50(1): 48-55 (in Chinese with English abstract).
[9] 朱芝宜, 李培根, 陆晓彤, 贺菲雪, 王中华, 李晓刚, 董彩霞, 徐阳春, 沈其荣. 假单胞菌与褐藻寡糖协同提高梨果实产量及品质. 植物营养与肥料学报, 2024, 30: 1964-1973.
Zhu Z Y, Li P G, Lu X T, He F X, Wang Z H, Li X G, Dong C X, Xu Y C, Shen Q R. Synergistic effects of Pseudomonas CD1 and brown algal oligosaccharides on pear fruit yield and quality. J Plant Nutr Fert, 2024, 30: 1964-1973 (in Chinese with English abstract).
[10] 任津莹, 陈鹏. 一株贝莱斯芽孢杆菌的分离鉴定及其生物学特性研究. 饲料研究, 2022, 45(2): 79-82.
Ren J Y, Chen P. Isolation, identification and biological characteristics of a Bacillus Vé lez. Feed Res, 2022, 45(2): 79-82 (in Chinese).
[11] 侯莹莹, 胡小梅. 3株玉米根际解磷菌筛选鉴定及促生作用研究. 东北农业大学学报, 2024, 55(5): 46-55.
Hou Y Y, Hu X M. Screening and identification of three strains of phosphate-solubilizing bacteria from maize rhizosphere and their roles in plant growth promoting effect. J Northeast Agric Univ, 2024, 55(5): 46-55 (in Chinese with English abstract).
[12] 刘丽辉, 彭桂香, 黄淑芬, 王祖城, 庭友卫, 谭志远. 落地生根内生固氮菌多样性和促生特性. 微生物学通报, 2019, 46: 2538-2547.
Liu L H, Peng G X, Huang S F, Wang Z C, Ting Y W, Tan Z Y. Diversity and growth promotion of endophytic diazotrophic bacteria isolated from Bryophyllum pinnatum. Microbiol China, 2019, 46: 2538-2547 (in Chinese with English abstract).
[13] 邵嘉朱, 吕雯, 廖鑫琳, 袁歆瑜, 宋振, 蒋冬花. 大豆根际促生菌的分离、鉴定及其耐盐促生作用. 中国农业科学, 2024, 57: 4248-4263.
doi: 10.3864/j.issn.0578-1752.2024.21.007
Shao J Z, Lyu W, Liao X L, Yuan X Y, Song Z, Jiang D H. Isolation and identification of soybean rhizosphere growth-promoting bacteria and their salt tolerance and growth-promoting effects. Sci Agric Sin, 2024, 57: 4248-4263 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2024.21.007
[14] 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000.
Bao S D.Soil and Agricultural Chemistry Analysis, 3rd edn. Beijing: China Agriculture Press, 2000 (in Chinese).
[15] Mbuthia L W, Acosta-Martínez V, DeBruyn J, Schaeffer S, Tyler D, Odoi E, Mpheshea M, Walker F, Eash N. Long term tillage, cover crop, and fertilization effects on microbial community structure, activity: implications for soil quality. Soil Biol Biochem, 2015, 89: 24-34.
[16] 沈仁芳, 赵学强. 土壤微生物在植物获得养分中的作用. 生态学报, 2015, 35: 6584-6591.
Shen R F, Zhao X Q. Role of soil microbes in the acquisition of nutrients by plants. Acta Ecol Sin, 2015, 35: 6584-6591 (in Chinese with English abstract).
[17] 唐岷宸, 李文静, 宋天顺, 谢婧婧. 一株高效解磷菌的筛选及其解磷效果验证. 生物技术通报, 2020, 36(6): 102-109.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0969
Tang M C, Li W J, Song T S, Xie J J. Screening of a highly efficient phosphate-solubilizing bacterium and validation of its phosphate-solubilizing effect. Biotechnol Bull, 2020, 36(6): 102-109 (in Chinese with English abstract).
[18] 陈忠男, 王志刚, 徐伟慧. 贝莱斯芽胞杆菌WB对西瓜植株的促生效应和机制. 农业生物技术学报, 2024, 32: 2228-2242.
Chen Z N, Wang Z G, Xu W H. Promoting promoting effects and mechanism of Bacillus velezensis WB on watermelon (Citrullus lanatus) plants. J Agric Biotechnol, 2024, 32: 2228-2242 (in Chinese with English abstract).
[19] 王琦, 陈秀玲, 王傲雪. 一株具有促生作用的生防细菌YN-2A的分离、鉴定及全基因组测序分析. 微生物学通报, 2024, 51: 2986-3003.
Wang Q, Chen X L, Wang A X. A biocontrol bacterium YN-2A with growth-promoting effect: isolation, identification, and genome sequencing. Microbiol China, 2024, 51: 2986-3003 (in Chinese with English abstract).
[20] Liu Y N, Lu J, Sun J, Lu F X, Bie X M, Lu Z X.Membrane disruption and DNA binding of Fusarium graminearum cell induced by C16-Fengycin A produced by Bacillus amyloliquefaciens. Food Control, 2019, 102: 206-213.
[21] 任鹏举, 谢永丽, 张岩, 伍辉军, 高学文. 枯草芽孢杆菌OKB105产生的surfactin防治烟草花叶病毒病及其机理研究. 中国生物防治学报, 2014, 30(2): 216-221.
Ren P J, Xie Y L, Zhang Y, Wu H J, Gao X W.Effect and mechanism of controlling TMV disease on tobacco by surfactin produced by Bacillus subtilis OKB105. Chin J Biol Control, 2014, 30(2): 216-221 (in Chinese with English abstract).
[22] Ali S A M, Sayyed R Z, Mir M I, Khan M Y, Hameeda B, Alkhanani M F, Haque S, Mohammad Al Tawaha A R, Poczai P.Induction of systemic resistance in maize and antibiofilm activity of surfactin from Bacillus velezensis MS20. Front Microbiol, 2022, 13: 879739.
[23] Chowdhury S P, Hartmann A, Gao X W, Borriss R. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42: a review. Front Microbiol, 2015, 6: 780.
doi: 10.3389/fmicb.2015.00780 pmid: 26284057
[24] 宋以玲, 于建, 陈士更, 肖承泽, 李玉环, 苏秀荣, 丁方军. 复合微生物菌剂对棉花生理特性及根际土壤微生物和化学性质的影响. 土壤, 2019, 51: 477-487.
Song Y L, Yu J, Chen S G, Xiao C Z, Li Y H, Su X R, Ding F J. Effects of complex microbial agent on cotton physiological characteristics, microorganism and physicochemical properties in rhizosphere soil. Soils, 2019, 51: 477-487 (in Chinese with English abstract).
[25] 中国农业科学院棉花研究所. 中国棉花栽培学. 上海: 上海科学技术出版社, 1983.
Cotton Research Institute. Chinese Academy of Agricultural Sciences. Cotton Cultivation in China. Shanghai: Shanghai Scientific & Technical Publishers, 1983 (in Chinese).
[26] 周桔, 雷霆. 土壤微生物多样性影响因素及研究方法的现状与展望. 生物多样性, 2007, 15: 306-311.
doi: 10.1360/biodiv.070069
Zhou J, Lei T. Review and prospects on methodology and affecting factors of soil microbial diversity. Biodivers Sci, 2007, 15: 306-311 (in Chinese with English abstract).
[27] Chamberlain L A, Bolton M L, Cox M S, Suen G, Conley S P, Ané J M. Crop rotation, but not cover crops, influenced soil bacterial community composition in a corn-soybean system in southern Wisconsin. Appl Soil Ecol, 2020, 154: 103603.
[28] 王超, 李刚, 黄思杰, 张弛, 田伟, 田然, 王磊, 席运官. 枯草芽胞杆菌菌肥对有机冬瓜根区土壤微生态的影响. 微生物学通报, 2019, 46: 563-576.
Wang C, Li G, Huang S J, Zhang C, Tian W, Tian R, Wang L, Xi Y G. Effect of Bacillus subtilis microbial fertilizer on root-zone soil microbial ecology of organic Chinese watermelon. Microbiol China, 2019, 46: 563-576 (in Chinese with English abstract).
[29] 乔清华, 张传云, 袁哲诚, 王芙蓉, 张军. 多年连作土壤中棉花根际细菌群落结构及其动态. 棉花学报, 2018, 30(2): 128-135.
doi: 10.11963/1002-7807.qqhwfr.20180317
Qiao Q H, Zhang C Y, Yuan Z C, Wang F R, Zhang J. Dynamics of cotton rhizosphere bacterial community structure in cotton continuous cropping field soil. Cotton Sci, 2018, 30(2): 128-135 (in Chinese with English abstract).
doi: 10.11963/1002-7807.qqhwfr.20180317
[30] 曲远航, 刘天聪, 鹿秀云, 李社增, 郭庆港, 马平. 菌糠对棉花黄萎病及棉花根际微生物群落组成的影响. 棉花学报, 2023, 35: 274-287.
doi: 10.11963/cs20220039
Qu Y H, Liu T C, Lu X Y, Li S Z, Guo Q G, Ma P. Effects of spent mushroom substrate on cotton Verticillium wilt and the cotton rhizosphere microbiome. Cotton Sci, 2023, 35: 274-287 (in Chinese with English abstract).
[31] Fierer N, Bradford M A, Jackson R B. Toward an ecological classification of soil bacteria. Ecology, 2007, 88: 1354-1364.
doi: 10.1890/05-1839 pmid: 17601128
[32] Sims A, Zhang Y Y, Gajaraj S, Brown P B, Hu Z Q. Toward the development of microbial indicators for wetland assessment. Water Res, 2013, 47: 1711-1725.
doi: 10.1016/j.watres.2013.01.023 pmid: 23384515
[33] 吕宁, 石磊, 刘海燕, 司爱君, 李全胜, 张国丽, 陈云. 生物药剂滴施对棉花黄萎病及根际土壤微生物数量和多样性的影响. 应用生态学报, 2019, 30: 602-614.
doi: 10.13287/j.1001-9332.201902.032
Lyu N, Shi L, Liu H Y, Si A J, Li Q S, Zhang G L, Chen Y. Effects of biological agent dripping on cotton Verticillium wilt and rhizosphere soil microorganism. Chin J Appl Ecol, 2019, 30: 602-614 (in Chinese with English abstract).
[34] 沙月霞, 黄泽阳, 李云翔, 赵沛. 生物菌剂对土壤微生物群落结构和功能的影响. 农业环境科学学报, 2022, 41: 2752-2762.
Sha Y X, Huang Z Y, Li Y X, Zhao P. Impact of microbial agents on the structure and function of the soil microbial community. J Agro-Environ Sci, 2022, 41: 2752-2762 (in Chinese with English abstract).
[35] Khodadad C L M, Zimmerman A R, Green S J, Uthandi S, Foster J S. Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. Soil Biol Biochem, 2011, 43: 385-392.
[36] 王炫栋, 宋振, 兰赫婷, 江樱姿, 齐文杰, 刘晓阳, 蒋冬花. 杨梅园土壤优势放线菌的分离及其防病促生功能. 中国农业科学, 2023, 56: 275-286.
doi: 10.3864/j.issn.0578-1752.2023.02.006
Wang X D, Song Z, Lan H T, Jiang Y Z, Qi W J, Liu X Y, Jiang D H. Assessment of disease prevention, growth promotion, and inhibition mechanisms by inter-rhizosphere isolated PGPR Actinomycetes from myrica rubra. Sci Agric Sin, 2023, 56: 275-286 (in Chinese with English abstract).
[37] Liu B R, Jia G M, Chen J, Wang G. A review of methods for studying microbial diversity in soils. Pedosphere, 2006, 16: 18-24.
[38] 刘佳琪.外施功能菌剂对烟草抗低温胁迫及促生作用研究. 湖南农业大学硕士学位论文, 湖南长沙, 2022.
Liu J Q. Effects of External Application of Functional Bacteria on Tobacco Resistance to Low Temperature Stress and Growth Promotion. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2022 (in Chinese with English abstract).
[39] 袁宗胜. 复合微生物菌剂对毛竹土壤细菌群落结构的影响. 福建农业学报, 2024, 39: 438-447.
Yuan Z S. Soil microbiome at Phyllostachys edulis forest affected by application of bioagent. Fujian J Agric Sci, 2024, 39: 438-447 (in Chinese with English abstract).
[40] Asaf S, Numan M, Khan A L, Al-Harrasi A. Sphingomonas: from diversity and genomics to functional role in environmental remediation and plant growth. Crit Rev Biotechnol, 2020, 40: 138-152.
doi: 10.1080/07388551.2019.1709793 pmid: 31906737
[41] Li W L, Zhang Z Z, Li D P, Guo C Y, Li Y J, Yang M, Shi X J, Zhang Y Q. Effects of three nitrification inhibitors on the nitrogen conversion in purple soil and its effect on the nitrogen uptake of Citrus seedlings. Agric Sci, 2018, 9: 655-669.
[42] Thamdrup B. New pathways and processes in the global nitrogen cycle. Annu Rev Ecol Evol Syst, 2012, 43: 407-428.
[43] Coskun D, Britto D T, Shi W M, Kronzucker H J. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat Plants, 2017, 3: 17074.
doi: 10.1038/nplants.2017.74 pmid: 28585561
[44] 刘国辉, 买文选, 田长彦. 施用有机肥对盐碱土的改良效果: Meta分析. 农业资源与环境学报, 2023, 40(1): 86-96.
Liu G H, Mai W X, Tian C Y. Effects of organic fertilizer application on the improvement of saline soils: Meta analysis. J Agric Res Environ, 2023, 40(1): 86-96 (in Chinese with English abstract).
[45] Abdel-Fattah W R, Chen Y H, Eldakak A, Marion Hulett F. Bacillus subtilis phosphorylated PhoP: direct activation of the E(sigma)A- and repression of the E(sigma)E-responsive phoB- PS+V promoters during pho response. J Bacteriol, 2005, 187: 5166-5178.
pmid: 16030210
[46] Vadivelu V M, Keller J, Yuan Z. Free ammonia and free nitrous acid inhibition on the anabolic and catabolic processes of Nitrosomonas and Nitrobacter. Water Sci Technol, 2007, 56: 89-97.
pmid: 17951872
[47] 保善存, 吕亮雨, 龙启辰, 樊光辉. 不同促生菌剂对柴达木枸杞土壤生物学特性的影响. 江苏农业科学, 2023, 51(1): 168-175.
Bao S C, Lyu L Y, Long Q C, Fan G H. Effects of different growth-promoting microbial agents on soil biological characteristics of Lycium barbarum cultivated in Qaidam. Jiangsu Agric Sci, 2023, 51(1): 168-175 (in Chinese with English abstract).
[48] 于鲲鹏, 张焕, 谷雅文, 赵孜乾, 周晓辉. 枯草芽孢杆菌代谢产物对香菇生长的影响. 北方园艺, 2021, (1): 132-136.
Yu K P, Zhang H, Gu Y W, Zhao Z Q, Zhou X H. Effects of metabolites from Bacillus subtilis on the growth of Lentinula edodes. North Hortic, 2021, (1): 132-136 (in Chinese with English abstract).
[49] 罗林毅, 陈瑞杰, 阮向阳, 任晓辉, 曲奥, 苏海婷, 冶军. 微生物菌剂对滴灌棉田土壤养分和棉花产量及品质的影响. 新疆农业科学, 2024, 61(1): 26-33.
doi: 10.6048/j.issn.1001-4330.2024.01.004
Luo L Y, Chen R J, Ruan X Y, Ren X H, Qu A, Su H T, Ye J. Effects of microbial agents on soil nutrients, cotton yield and quality in drip irrigation cotton fields. Xinjiang Agric Sci, 2024, 61(1): 26-33 (in Chinese with English abstract).
[50] Huang C M, Chen W C, Lin S H, Wang Y N, Shen F T. Exploration of root-associated bacteria from the medicinal plant Platycodon grandiflorum. Microbes Environ, 2019, 34: 413-420.
[51] 刘健, 李俊, 葛诚. 微生物肥料作用机理的研究新进展. 微生物学杂志, 2001, 21(1): 33-36.
Liu J, Li J, Ge C. Advance in role mechanism of microbial fertilizer. J Microbiol, 2001, 21(1): 33-36 (in Chinese with English abstract).
[52] 邱媛媛.两株芽孢杆菌提高棉花黄萎病抗性与促生作用的机制的研究. 南京农业大学硕士学位论文, 江苏南京, 2024.
Qiu Y Y. Studies on Mechanisms of Two Bacillus Strains in Improving Resistance to Verticillium Wilt and Promoting Growth of Cotton. MS Thesis of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2024 (in Chinese with English abstract).
[1] 李云香, 郭千纤, 侯万伟, 张小娟. 引进ICARDA小麦苗期根系抗旱性状的全基因组关联分析[J]. 作物学报, 2025, 51(9): 2387-2398.
[2] 李璐琪, 程宇坤, 白斌, 雷斌, 耿洪伟. 小麦叶片气孔相关性状全基因组关联分析[J]. 作物学报, 2025, 51(9): 2266-2284.
[3] 陈惠莹, 何嘉欣, 朱斌, 黄士轩, 周星佑, 伍君权, 杨美艳. 水稻黄单胞菌噬菌体vB_XaS_HDB2的全基因组分析和生物学特性研究[J]. 作物学报, 2025, 51(8): 2087-2099.
[4] 李宜谦, 徐守振, 刘萍, 马麒, 谢斌, 陈红. 基于40K SNP芯片的陆地棉产量构成因素全基因组关联分析及单铃重位点挖掘[J]. 作物学报, 2025, 51(8): 2128-2138.
[5] 蔡金珊, 李超男, 王景一, 李宁, 柳玉平, 景蕊莲, 李龙, 孙黛珍. 小麦幼苗根系性状全基因组关联分析及TaSRL-3B优异等位基因发掘[J]. 作物学报, 2025, 51(8): 2020-2032.
[6] 高梦娟, 赵贺莹, 陈家辉, 陈晓倩, 牛萌康, 钱琪润, 崔陆飞, 邢江敏, 银庆淼, 郭雯, 张宁, 孙丛苇, 阳霞, 裴丹, 贾奥琳, 陈锋, 余晓东, 任妍. 小麦抗纹枯病新位点Qse.hnau-5AS的定位及其候选基因鉴定[J]. 作物学报, 2025, 51(8): 2240-2250.
[7] 赵超男, 王金凤, 张玉, 张丽, 李瑞琦, 王鹏飞, 李鸽子, 张宏军, 虞波, 康国章. 全基因组关联分析定位与挖掘小麦氮高效基因[J]. 作物学报, 2025, 51(7): 1801-1813.
[8] 郭栋财, 吕涛, 蔡永生, 买吾鲁达·艾合买提, 全家, 曲延英, 郑凯. 棉花纤维品质相关性状QTL元分析及候选基因鉴定[J]. 作物学报, 2025, 51(6): 1445-1466.
[9] 梁红凯, 赵苏蒙, 陆琼, 周鹏, 智慧, 刁现民, 贺强. 谷子微核心种质的构建[J]. 作物学报, 2025, 51(6): 1435-1444.
[10] 王琼, 邹丹霞, 陈兴运, 张威, 张红梅, 刘晓庆, 贾倩茹, 魏利斌, 崔晓艳, 陈新, 王学军, 陈华涛. 大豆开花时间和成熟期性状全基因组关联分析与候选基因预测[J]. 作物学报, 2025, 51(6): 1558-1568.
[11] 王亚雯, 戚正阳, 尤佳琦, 聂新辉, 曹娟, 杨细燕, 涂礼莉, 张献龙, 王茂军. 棉花60K功能位点基因芯片的制备及应用[J]. 作物学报, 2025, 51(5): 1178-1188.
[12] 李文佳, 廖泳俊, 黄璐, 鲁清, 李少雄, 陈小平, 金晶炜, 王润风. 花生开花时间的全基因组关联分析及候选基因筛选[J]. 作物学报, 2025, 51(5): 1400-1408.
[13] 徐建霞, 丁延庆, 曹宁, 程斌, 高旭, 李文贞, 张立异. 中国高粱株高和节间数全基因组关联分析及候选基因预测[J]. 作物学报, 2025, 51(3): 568-585.
[14] 郭淑慧, 潘转霞, 赵战胜, 杨六六, 皇甫张龙, 郭宝生, 胡晓丽, 录亚丹, 丁霄, 吴翠翠, 兰刚, 吕贝贝, 谭逢平, 李朋波. 陆地棉D11染色体一个纤维长度主效位点的遗传解析[J]. 作物学报, 2025, 51(2): 383-394.
[15] 赵斐斐, 李少雄, 刘浩, 李海芬, 王润风, 黄璐, 余倩霞, 洪彦彬, 陈小平, 鲁清, 曹玉曼. 花生主茎节间和侧枝节间长度的关联作图及候选基因分析[J]. 作物学报, 2025, 51(2): 548-556.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!