欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (9): 2295-2306.doi: 10.3724/SP.J.1006.2025.53016

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

渍水胁迫对玉米幼苗根系代谢的影响

蒋环琪1,2(), 段奥1, 郭超1, 黄晓梦1, 艾德骏1, 刘小雪1, 谭静怡1, 彭成林2, 李曼菲1,*(), 杜何为1,*()   

  1. 1长江大学生命科学学院, 湖北荆州434025
    2湖北省农业科学院植保土肥研究所 / 国家土壤质量洪山观测实验站, 湖北武汉430064
  • 收稿日期:2025-03-02 接受日期:2025-06-01 出版日期:2025-09-12 网络出版日期:2025-06-10
  • 通讯作者: *李曼菲, E-mail: mfli_maize@163.com; 杜何为, E-mail : duhewei666@163.com
  • 作者简介:E-mail: 2664196641@qq.com
  • 基金资助:
    本研究由国家自然科学基金项目(32072069);国家自然科学基金青年项目(32301910);湖北省自然科学基金创新群体项目(2022CFA030);长江大学大学生创新创业项目(Yz2024251)

Effects of waterlogging stress on root metabolism of maize seedlings

JIANG Huan-Qi1,2(), DUAN Ao1, GUO Chao1, HUANG Xiao-Meng1, AI De-Jun1, LIU Xiao-Xue1, TAN Jing-Yi1, PENG Cheng-Lin2, LI Man-Fei1,*(), DU He-Wei1,*()   

  1. 1College of Life Sciences, Yangtze University, Jingzhou 434025, Hubei, China
    2Plant Protection and Soil Fertilizer Institute, Hubei Academy of Agricultural Sciences / National Soil Quality Hongshan Observation and Experimental Station, Wuhan 430064, Hubei, China
  • Received:2025-03-02 Accepted:2025-06-01 Published:2025-09-12 Published online:2025-06-10
  • Contact: *E-mail: mfli_maize@163.com; E-mail : duhewei666@163.com
  • Supported by:
    National Natural Science Foundation of China(32072069);National Natural Science Foundation of China for Young Scientists(32301910);Hubei Provincial Natural Science Foundation Innovation Group Project(2022CFA030);Yangtze University College Students’ Innovation and Entrepreneurship Project(Yz2024251)

摘要: 为探究玉米(Zea mays L.)幼苗根系在渍水胁迫下关键代谢物以及代谢途径的变化, 阐明与渍水胁迫相关的代谢通路, 对玉米幼苗进行0、1、4和7 d共4个渍水胁迫时间梯度处理, 采用转录组学测序(RNA sequencing, RNA-seq)和超高效液相色谱质谱联用技术(ultra performance liquid chromatography tandem mass spectrometry, UPLC-MS/MS), 筛选与渍水胁迫相关的关键代谢物, 并通过KEGG富集分析探究相关代谢通路。结果显示, 代谢组共标注和定量了1361种差异代谢物, 渍水4 d时根系代谢物变化最为显著, 共有414种代谢物发生变化, 其中372种代谢物含量上升, 42种代谢物含量下降; 代谢物差异倍数排名前20的代谢物均呈现上调趋势, 包括阿魏酸-4-O-葡萄糖苷、2-苯乙醇、7-甲基柚皮素和S-烯丙基-L-半胱氨酸等; 差异显著代谢物的KEGG富集分析结果显示, 黄酮类化合物生物合成、类胡萝卜素生物合成、苯丙素生物合成、植物激素信号转导、ABC转运蛋白、脂肪酸降解、淀粉和蔗糖代谢、甘氨酸、丝氨酸和苏氨酸代谢、色氨酸代谢以及糖酵解/糖异生等代谢途径中, 差异基因与差异代谢物较为显著富集。类黄酮生物合成代谢通路与渍水胁迫密切相关, 柚皮素与木犀草素等黄酮类物质, 查尔酮异构酶、黄酮合成酶II与黄酮3',5'-羟化酶/黄酮3'-单氧化酶可能起关键作用。研究结果为探究玉米耐渍胁迫分子机制提供科学支撑与理论依据, 为玉米耐渍育种等相关研究提供理论基础。

关键词: 玉米, 渍水胁迫, 代谢组, 差异代谢物, 代谢通路

Abstract:

To investigate key metabolites and changes in metabolic pathways in maize (Zea mays L.) seedlings under waterlogging stress, plants were subjected to four stress durations (0, 1, 4, and 7 days). Transcriptome sequencing (RNA-seq) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) were employed to identify differentially accumulated metabolites, followed by KEGG enrichment analysis to explore associated metabolic pathways. A total of 1361 differential metabolites were annotated and quantified. The most pronounced metabolic changes were observed at 4 days, with 414 metabolites significantly altered—372 upregulated and 42 downregulated. The top 20 most differentially accumulated metabolites were all upregulated, including ferulic acid-4-O-glucoside, 2-phenylethanol, 7-methyl-ergochalcone, and S-allyl-L-cysteine. KEGG pathway analysis revealed significant enrichment in flavonoid biosynthesis, carotenoid biosynthesis, phenylpropanoid biosynthesis, plant hormone signaling, ABC transporters, fatty acid degradation, starch and sucrose metabolism, glycine, serine and threonine metabolism, tryptophan metabolism, and glycolysis/gluconeogenesis. Among these, flavonoid biosynthesis was found to be closely associated with waterlogging stress, with key flavonoids such as naringenin and luteolin, and enzymes including chalcone isomerase, flavonoid synthase II, and flavonoid 3',5'-hydroxylase/3'-monooxygenase playing critical roles. These findings provide new insights into the molecular mechanisms underlying maize tolerance to waterlogging and offer a theoretical basis for breeding waterlogging-tolerant maize varieties.

Key words: maize, waterlogging stress, metabolomics, differential metabolites, metabolic pathway

图1

数据间差异性与重复性分析 A: PC1表示第1主成分; PC2表示第2主成分; 百分比表示该主成分对数据集的解释率, 图中的每个点表示1个样品, 同一个组的样品使用同一种颜色表示, Group为分组。B: 纵向和对角线上分别代表不同样品的样品名称, 不同的颜色代表不同的皮尔逊相关系数大小: 颜色越红代表正相关性越强, 颜色越绿代表相关性越弱, 颜色越蓝代表负相关性越强, 同时2个样品之间的相关性系数大小标注在方格内。"

图2

玉米渍水胁迫基因与代谢物分析 All sig diff: 差异显著基因或代谢物数目; Down regulated: 下调基因或代谢物数目; Up regulated: 上调基因或代谢物数目。Alkaloids: 生物碱; Amino acids and derivatives: 氨基酸及其衍生物; Flavonoids: 黄酮类; Lignans and coumarins: 木脂素和香豆素; Lipids: 脂类; Nucleotides and derivatives: 核苷酸及其衍生物; Organic acids: 有机酸; Others: 其他; Phenolic acids: 酚酸; Terpenoids: 萜类。D图中每个圈代表1个比较组, 重叠区域数字表示共有差异代谢物数量, 非重叠区域数字表示特有差异代谢物数量。"

图3

玉米苗渍水胁迫表型变化 CK: 对照组; W: 淹水处理组, 标尺为5 cm。*和***分别表示在0.05和0.001水平差异显著; ns表示差异不显著。"

图4

代谢物变化倍数与KEGG富集分析气泡图 A: 横坐标为差异代谢物的log2FC, 即差异代谢物的差异倍数以2为底取对数的值, 纵坐标为差异代谢物。红色代表代谢物含量上调, 绿色代表代谢物含量下调。B: 横坐标代表该通路在不同组学的富集因子(Diff/Background), 纵坐标代表KEGG pathway名称, 红-黄-绿色的渐变代表富集的显著程度由高-中-低的变化, 用P-value表示; 气泡的形状代表不同的组学(圆形气泡代表转录组, 三角形气泡代表代谢组), 气泡的大小代表差异代谢物或基因的数目, 数目越大点越大。"

图5

类黄酮代谢图 方框内是代谢物, 箭头代表酶; 柱状图: 显示对照组(0 d)与渍水胁迫4 d中特点代谢物的相对含量; 热图: 颜色的渐变从绿色到红色, 代表基因表达量的变化(0 d vs 4 d), 其中绿色表示下降, 橙色代表上升。涉及到的代谢物有, Naringenin chalcone: 柚皮素查尔酮; Naringenin: 柚皮素; Apigenin: 芹菜素; Dihydrokaempferol: 二氢山奈酚; Eriodictyol: 桉叶油醇; Luteolin: 木犀草素。涉及到的酶, Chalcone isomerase: 查尔酮异构酶; Flavone synthase II: 黄酮合成酶 II; Naringenin 3-dioxidase: 柚皮素3-二氧化酶; Flavonoid 3',5'-hydroxylase/flavonoids 3'-monooxygenase: 黄酮3',5'-羟化酶/黄酮3'-单氧化酶。***表示在0.001水平差异显著。"

[1] 谢伶俐, 李永铃, 许本波, 张学昆. 油菜耐渍机理解析及遗传改良研究进展. 作物学报, 2025, 51: 287-300.
doi: 10.3724/SP.J.1006.2025.44121
Xie L L, Li Y L, Xu B B, Zhang X K. Mechanisms of waterlogging tolerance and genetic improvement in rapeseed (Brassica napus L.): a review. Acta Agron Sin, 2025, 51: 287-300 (in Chinese with English abstract).
[2] Karlova R, Boer D M, Hayes S, Testerink C. Root plasticity under abiotic stress. Plant Physiol, 2021, 187: 1057-1070.
doi: 10.1093/plphys/kiab392 pmid: 34734279
[3] Milroy S P, Bange M P, Thongbai P. Cotton leaf nutrient concentrations in response to waterlogging under field conditions. Field Crops Res, 2009, 113: 246-255.
[4] Yang M, Yang J, Su L, Sun K, Li D X, Liu Y Z, Wang H, Chen Z Q, Guo T. Metabolic profile analysis and identification of key metabolites during rice seed germination under low-temperature stress. Plant Sci, 2019, 289: 110282.
[5] Song J Y, Chen Y T, Jiang G S, Zhao J Y, Wang W J, Hong X F. Integrated analysis of transcriptome and metabolome reveals insights for low-temperature germination in hybrid rapeseeds (Brassica napus L.). J Plant Physiol, 2023, 291: 154120.
[6] Luo Y, Wang Y, Xie Y Y, Gao Y M, Li W Q, Lang S P. Transcriptomic and metabolomic analyses of the effects of exogenous trehalose on heat tolerance in wheat. Int J Mol Sci, 2022, 23: 5194.
[7] 吾木提汗. 豆科植物骆驼刺盐胁迫适应性研究. 新疆农业大学硕士学位论文, 新疆乌鲁木齐, 2011.
Wu M T H. Study on the Salt Stress Adaptaion of Leguminous Plant Alhagi pseudoalhagi. MS Thesis of Xinjiang Agricultural University, Urumqi, Xinjiang, China, 2011 (in Chinese with English abstract).
[8] Hasegawa P M, Bressan R A, Zhu J K, Bohnert H J. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51: 463-499.
[9] Yu Y A, Wu Y X, He L Y. A wheat WRKY transcription factor TaWRKY17 enhances tolerance to salt stress in transgenic Arabidopsis and wheat plant. Plant Mol Biol, 2023, 113: 171-191.
[10] Khalid M, Rehman H M, Ahmed N, Nawaz S, Saleem F, Ahmad S, Uzair M, Rana I A, Atif R M, Zaman Q U, et al. Using exogenous melatonin, glutathione, proline, and glycine betaine treatments to combat abiotic stresses in crops. Int J Mol Sci, 2022, 23: 12913.
[11] Hasanuzzaman M, Bhuyan M H M B, Zulfiqar F, Raza A, Mohsin S M, Mahmud J A, Fujita M, Fotopoulos V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants, 2020, 9: 681.
[12] Xu K N, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail A M, Bailey-Serres J, Ronald P C, MacKill D J. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature, 2006, 442: 705-708.
[13] Qi H H, Wang J, Wang X, Liang K, Ke M C, Zheng X Q, Tang W B, Chen Z Y, Ke Y G, Yang P F, et al. ZmEREB180 modulates waterlogging tolerance in maize by regulating root development and antioxidant gene expression. Plant Biotechnol J, 2025, 23: 2062-2064.
[14] Li C, Wang L, Su J, Li W, Tang Y, Zhao N, Lou L, Ou X, Jia D, Jiang J, et al. A group VIIIa ethylene-responsive factor, CmERF4, negatively regulates waterlogging tolerance in Chrysanthemum. J Exp Bot, 2024, 75: 1479-1492.
[15] Wang F, Zhou Z, Liu X, Zhu L, Guo B, Lyu C, Zhu J, Chen Z H, Xu R. Transcriptome and metabolome analyses reveal molecular insights into waterlogging tolerance in Barley. BMC Plant Biol, 2024, 24: 385.
doi: 10.1186/s12870-024-05091-8 pmid: 38724918
[16] Chen Y H, Zhang R P, Song Y M, He J M, Sun J H, Bai J F, An Z L, Dong L J, Zhan Q M, Abliz Z. RRLC-MS/MS-based metabonomics combined with in-depth analysis of metabolic correlation network: finding potential biomarkers for breast cancer. Analyst, 2009, 134: 2003-2011.
doi: 10.1039/b907243h pmid: 19768207
[17] Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 2000, 28: 27-30.
doi: 10.1093/nar/28.1.27 pmid: 10592173
[18] Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 2015, 12: 357-360.
doi: 10.1038/nmeth.3317 pmid: 25751142
[19] Liao Y, Smyth G K, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 2014, 30: 923-930.
doi: 10.1093/bioinformatics/btt656 pmid: 24227677
[20] Dennis E S, Dolferus R, Ellis M, Rahman M, Wu Y, Hoeren F U, Grover A, Ismond K P, Good A G, Peacock W J. Molecular strategies for improving waterlogging tolerance in plants. J Exp Bot, 2000, 51: 89-97.
pmid: 10938799
[21] Linić I, Mlinarić S, Brkljačić L, Pavlović I, Smolko A, Salopek-Sondi B. Ferulic acid and salicylic acid foliar treatments reduce short-term salt stress in Chinese cabbage by increasing phenolic compounds accumulation and photosynthetic performance. Plants, 2021, 10: 2346.
[22] Ozfidan-Konakci C, Yildiztugay E, Alp F N, Kucukoduk M, Turkan I. Naringenin induces tolerance to salt/osmotic stress through the regulation of nitrogen metabolism, cellular redox and ROS scavenging capacity in bean plants. Plant Physiol Biochem, 2020, 157: 264-275.
[23] Shah A, Smith D L. Flavonoids in agriculture: chemistry and roles in biotic and abiotic stress responses, and microbial associations. Agronomy, 2020, 10: 1209.
[24] Wang M, Zhang Y, Zhu C Y, Yao X Y, Zheng Z, Tian Z N, Cai X. EkFLS overexpression promotes flavonoid accumulation and abiotic stress tolerance in plant. Physiol Plant, 2021, 172: 1966-1982.
[25] Liang S M, Hashem A, Abd-Allah E F, Wu Q S. Root-associated symbiotic fungi enhance waterlogging tolerance of peach seedlings by increasing flavonoids and activities and gene expression of antioxidant enzymes. Chem Biol Technol Agric, 2023, 10: 124.
[26] 程六龙, 黄永春, 王常荣, 刘仲齐, 黄益宗, 张长波, 王晓丽. S-烯丙基-L-半胱氨酸缓解水稻种子幼根和幼芽镉胁迫机制. 环境科学, 2021, 42: 3037-3045.
pmid: 34032104
Cheng L L, Huang Y C, Wang C R, Liu Z Q, Huang Y Z, Zhang C B, Wang X L. Mechanism of S-allyl-L-cysteine in alleviating cadmium stress in rice seedling roots and shoots. Environ Sci, 2021, 42: 3037-3045 (in Chinese with English abstract).
doi: 10.13227/j.hjkx.202010061 pmid: 34032104
[27] Shomali A, Das S, Arif N, Sarraf M, Zahra N, Yadav V, Aliniaeifard S, Chauhan D K, Hasanuzzaman M. Diverse physiological roles of flavonoids in plant environmental stress responses and tolerance. Plants, 2022, 11: 3158.
[28] Li S X, Yang W Y, Guo J H, Li X N, Lin J X, Zhu X C. Changes in photosynthesis and respiratory metabolism of maize seedlings growing under low temperature stress may be regulated by arbuscular mycorrhizal fungi. Plant Physiol Biochem, 2020, 154: 1-10.
[29] Hartman S, Liu Z G, van Veen H, Vicente J, Reinen E, Martopawiro S, Zhang H T, van Dongen N, Bosman F, Bassel G W, et al. Ethylene-mediated nitric oxide depletion pre-adapts plants to hypoxia stress. Nat Commun, 2019, 10: 4020.
doi: 10.1038/s41467-019-12045-4 pmid: 31488841
[30] 丁宁, 海燕, 王晓晖, 屠鹏飞, 高博文, 史社坡. 白木香查尔酮异构酶基因的克隆鉴定与表达分析. 药学学报, 2021, 56: 630-638.
Ding N, Hai Y, Wang X H, Tu P F, Gao B W, Shi S P. Cloning and expression analysis of Chalcone isomerase from Aquilaria sinensis. Acta Pharm Sin, 2021, 56: 630-638 (in Chinese with English abstract).
[31] Pan J W, Sharif R, Xu X W, Chen X H. Mechanisms of waterlogging tolerance in plants: research progress and prospects. Front Plant Sci, 2021, 11: 627331.
[32] Zou X L, Jiang Y Y, Liu L, Zhang Z X, Zheng Y L. Identification of transcriptome induced in roots of maize seedlings at the late stage of waterlogging. BMC Plant Biol, 2010, 10: 189.
doi: 10.1186/1471-2229-10-189 pmid: 20738849
[33] Gibbs D J, Lee S C, Isa N M, Gramuglia S, Fukao T, Bassel G W, Correia C S, Corbineau F, Theodoulou F L, Bailey-Serres J, et al. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature, 2011, 479: 415-418.
[34] 闫雅如, 杨洪芸, 齐博文, 徐溪平, 刘雨雨, 王晓晖, 赵云芳, 史社坡, 刘晓, 屠鹏飞. 干旱胁迫对管花肉苁蓉组织培养体系中苯乙醇苷类成分含量的影响. 中草药, 2019, 50: 2452-2460.
Yan Y R, Yang H Y, Qi B W, Xu X P, Liu Y Y, Wang X H, Zhao Y F, Shi S P, Liu X, Tu P F. Effect of drought stress on accumulation of two respective phenylethanoid glycosides in tissue culture of Cistanche tubulosa. Chin Tradit Herb Drugs, 2019, 50: 2452-2460 (in Chinese with English abstract).
[35] Zou X R, Wei Y Y, Jiang S, Xu F, Wang H F, Zhan P P, Shao X F. ROS stress and cell membrane disruption are the main antifungal mechanisms of 2-phenylethanol against Botrytis cinerea. J Agric Food Chem, 2022, 70: 14468-14479.
[36] 刘美玲, 刘玉冰, 曹波. 液质联用法测定干旱胁迫下红砂(Reaumuria soongorica)叶片F3H、DFR酶活性. 生态学杂志, 2012, 31: 2158-2162.
Liu M L, Liu Y B, Cao B. Determination of Reaumuria soongorica leaf F3H and DFR activities under drought stress by using RP-HPLC-MS. Chin J Ecol, 2012, 31: 2158-2162 (in Chinese with English abstract).
[37] 火兴宇, 张宇, 王常荣, 齐麟, 刘斌, 黄雁飞, 黄永春. 硫化氢信号分子介导S-烯丙基-L-半胱氨酸调控水稻镉胁迫. 农业环境科学学报, 2025, 44: 1160-1168.
Huo X Y, Zhang Y, Wang C R, Qi L, Liu B, Huang Y F, Huang Y C. Hydrogen sulfide signaling molecule mediates the regulation of cadmium stress in rice by S-allyl-L-cysteine. J Agro-Environ Sci, 2025, 44: 1160-1168 (in Chinese with English abstract).
[38] Huo X Y, Wang C R, Huang Y C, Kong W Y, Wang X L. Effect of s-allyl-L-cysteine on nitric oxide and cadmium processes in rice (Oryza sativa L. sp. Zhongzao 35) seedlings. Toxics, 2024, 12: 805.
[39] Zhou J L, Tian L, Wang S X, Li H P, Zhao Y L, Zhang M B, Wang X L, An P P, Li C H. Ovary abortion induced by combined waterlogging and shading stress at the flowering stage involves amino acids and flavonoid metabolism in maize. Front Plant Sci, 2021, 12: 778717.
[40] Song Z H, Yang Q, Dong B Y, Li N, Wang M Y, Du T T, Liu N, Niu L L, Jin H J, Meng D, et al. Melatonin enhances stress tolerance in pigeon pea by promoting flavonoid enrichment, particularly luteolin in response to salt stress. J Exp Bot, 2022, 73: 5992-6008.
[41] Wang H H, Liang X L, Wan Q, Wang X M, Bi Y R. Ethylene and nitric oxide are involved in maintaining ion homeostasis in Arabidopsis callus under salt stress. Planta, 2009, 230: 293-307.
[42] Wang M Y, Dong B Y, Song Z H, Qi M, Chen T, Du T T, Cao H Y, Liu N, Meng D, Yang Q, et al. Molecular mechanism of naringenin regulation on flavonoid biosynthesis to improve the salt tolerance in pigeon pea (Cajanus cajan (Linn.) Millsp). Plant Physiol Biochem, 2023, 196: 381-392.
[43] Yu F, Tan Z D, Fang T, Tang K Y, Liang K, Qiu F Z. A comprehensive transcriptomics analysis reveals long non-coding RNA to be involved in the key metabolic pathway in response to waterlogging stress in maize. Genes, 2020, 11: 267.
[44] Jackson M, Armstrong W. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol (Stuttg), 1999, 1: 274-287.
[45] Ashraf M, Harris P J C. Photosynthesis under stressful environments: an overview. Photosynthetica, 2013, 51: 163-190.
[46] Drew M C. Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol, 1997, 48: 223-250.
[47] Sairam R K, Kumutha D, Ezhilmathi K, Deshmukh P S, Srivastava G C. Physiology and biochemistry of waterlogging tolerance in plants. Biol Plant, 2008, 52: 401-412.
[48] Yordanova R Y, Popova L P. Flooding-induced changes in photosynthesis and oxidative status in maize plants. Acta Physiol Plant, 2007, 29: 535-541.
[49] Zhao Z X, Qin T, Zheng H J, Guan Y, Gu W, Wang H, Yu D S, Qu J T, Wei J H, Xu W. Mutation of ZmDIR5 reduces maize tolerance to waterlogging, salinity, and drought. Plants, 2025, 14: 785.
[50] Kreuzwieser J, Rennenberg H. Molecular and physiological responses of trees to waterlogging stress. Plant Cell Environ, 2014, 37: 2245-2259.
[51] Loreti E, van Veen H, Perata P. Plant responses to flooding stress. Curr Opin Plant Biol, 2016, 33: 64-71.
doi: S1369-5266(16)30088-7 pmid: 27322538
[52] Licausi F, Kosmacz M, Weits D A, Giuntoli B, Giorgi F M, Voesenek L A C J, Perata P, van Dongen J T. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization. Nature, 2011, 479: 419-422.
[53] Zeng R E, Chen T T, Wang X Y, Cao J, Li X, Xu X Y, Chen L, Xia Q, Dong Y L, Huang L P, et al. Physiological and expressional regulation on photosynthesis, starch and sucrose metabolism response to waterlogging stress in peanut. Front Plant Sci, 2021, 12: 601771.
[54] 王暄, 陈海霞. 植物ABCB转运蛋白研究进展. 生物技术通报, 2020, 36: 223-229.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0899
Wang X, Chen H X. Research progress on plant ABCB transporter. Biotechnol Bull, 2020, 36: 223-229 (in Chinese with English abstract).
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0899
[55] 刘文献, 刘志鹏, 谢文刚, 王彦荣. 脂肪酸及其衍生物对植物逆境胁迫的响应. 草业科学, 2014, 31: 1556-1565.
Liu W X, Liu Z P, Xie W G, Wang Y R. Responses of fatty acid and its derivatives to stress in plants. Pratac Sci, 2014, 31: 1556-1565 (in Chinese with English abstract).
[56] Shu S, Tang Y Y, Yuan Y H, Sun J, Zhong M, Guo S R. The role of 24-epibrassinolide in the regulation of photosynthetic characteristics and nitrogen metabolism of tomato seedlings under a combined low temperature and weak light stress. Plant Physiol Biochem, 2016, 107: 344-353.
[57] Liu W C, Song R F, Zheng S Q, Li T T, Zhang B L, Gao X, Lu Y T. Coordination of plant growth and abiotic stress responses by tryptophan synthase β subunit 1 through modulation of tryptophan and ABA homeostasis in Arabidopsis. Mol Plant, 2022, 15: 973-990.
[58] Kumari A, Fatnani D, Seth C S, Parida A K. Unravelling the metabolic signatures and associated pathways underlying saline-alkali stress resilience in the halophyte Salvadora persica. Physiol Plant, 2025, 177: e70114.
[1] 杨姝, 白伟, 蔡倩, 杜桂娟. 玉米‖紫花苜蓿间作群体光分布特征及对植物性状和产量的影响[J]. 作物学报, 2025, 51(9): 2514-2526.
[2] 高源, 王宇琦, 姜佳宁, 赵健雄, 王雪贺缘, 王浩宇, 张芮嘉, 徐晶宇, 贺琳. 玉米低温响应基因ZmNTL1ZmNTL5的鉴定及功能分析[J]. 作物学报, 2025, 51(9): 2318-2329.
[3] 朱维佳, 王蕊, 薛英杰, 田红丽, 范亚明, 王璐, 李松, 徐丽, 卢柏山, 史亚兴, 易红梅, 陆大雷, 杨扬, 王凤格. 兼容双平台的玉米糯质基因InDel功能标记开发与应用[J]. 作物学报, 2025, 51(9): 2330-2340.
[4] 孔德真, 桑伟, 聂迎彬, 李伟, 徐红军, 李江博, 刘鹏鹏, 田笑明. 小麦AL型细胞质雄性不育系与同型保持系穗花发育时期代谢物变化比较研究[J]. 作物学报, 2025, 51(9): 2454-2466.
[5] 尤根基, 谢昊, 梁毓文, 李龙, 王玉茹, 蒋晨炀, 郭剑, 李广浩, 陆大雷. 氮肥减施措施对江淮春玉米产量和氮素吸收利用的影响[J]. 作物学报, 2025, 51(8): 2152-2163.
[6] 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203.
[7] 许忆葳, 张莹莹, 李瑞, 燕永亮, 刘允军, 孔照胜, 郑军, 王逸茹. 戈壁异常球菌csp2基因提高玉米的抗旱性[J]. 作物学报, 2025, 51(8): 1981-1990.
[8] 张建鹏, 王国瑞, 别海, 叶飞宇, 马晨晨, 梁小菡, 鲁晓民, 尚霄丽, 曹丽茹. 转录因子ZmMYB153通过ABA信号调节气孔运动增强玉米苗期抗旱性[J]. 作物学报, 2025, 51(7): 1827-1837.
[9] 霍建喆, 于爱忠, 王玉珑, 王鹏飞, 尹波, 刘亚龙, 张冬玲, 姜科强, 庞小能, 王凤. 有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响[J]. 作物学报, 2025, 51(7): 1887-1900.
[10] 闫尚龙, 王琦明, 柴强, 殷文, 樊志龙, 胡发龙, 刘志鹏, 韦金贵. 绿洲灌区玉米籽粒产量及品质对密植及间作豌豆的响应[J]. 作物学报, 2025, 51(6): 1665-1675.
[11] 杨晓慧, 晏宣军, 杨文妍, 付俊杰, 杨琴, 谢玉心. 玉米ZmKL1优异等位基因调控籽粒大小的效应评估及分子机制解析[J]. 作物学报, 2025, 51(6): 1501-1513.
[12] 袁鑫, 赵卓凡, 赵瑞清, 刘孝伟, 郑名敏, 刘育生, 董好胜, 邓丽娟, 曹墨菊, 黄强. 一份玉米小籽粒发育突变体mn-like1的遗传分析与分子鉴定[J]. 作物学报, 2025, 51(6): 1569-1581.
[13] 张世博, 李宏岩, 李培富, 任瑞华, 路海东. 自然条件下气温升高3℃至4℃对地膜玉米根-冠衰老和产量的影响[J]. 作物学报, 2025, 51(6): 1599-1617.
[14] 郑浩飞, 杨楠, 杜健, 贾改秀, 邹悦, 麻文浩, 王彦婷, 索东让, 赵建华, 孙宁科, 张建文. 西北灌漠土区长期有机无机配施协同提升玉米产量和品质[J]. 作物学报, 2025, 51(6): 1618-1628.
[15] 蒋雨洲, 王甲, 张宏媛, 冯文豪, 王鹏, 李玉义. 化肥配施有机物料对玉米田土壤细菌和真菌群落结构的影响[J]. 作物学报, 2025, 51(5): 1378-1388.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!