欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (11): 3122-3130.doi: 10.3724/SP.J.1006.2023.23076

• 研究简报 • 上一篇    下一篇

玉米小籽粒突变体mn-Mu的基因克隆与转录组分析

丁孟丽(), 王茹茵, 施栋晟, 李莹博, 雷洁, 陈洪宇, 申清文(), 王桂凤   

  1. 河南农业大学农学院 / 省部共建小麦玉米作物学国家重点实验室 / CIMMYT-中国(河南)小麦玉米联合研究中心, 河南郑州 450046
  • 收稿日期:2022-11-14 接受日期:2023-05-24 出版日期:2023-11-12 网络出版日期:2023-05-31
  • 通讯作者: 申清文, E-mail: shenqingwen@henau.edu.cn
  • 作者简介:E-mail: 1669279049@qq.com
  • 基金资助:
    国家自然科学基金项目(32001562);国家自然科学基金项目(U22A20466);河南农业大学科技创新基金项目(KJCX2020A04)

Map-based cloning and transcriptomic analysis of a maize miniature kernel mutant mn-Mu

DING Meng-Li(), WANG Ru-Yin, SHI Dong-Sheng, LI Ying-Bo, LEI Jie, CHEN Hong-Yu, SHEN Qing-Wen(), WANG Gui-Feng   

  1. College of Agronomy, Henan Agricultural University / State Key Laboratory of Wheat and Maize Crops Science / CIMMYT-China (Henan) Joint Research Center of Wheat and Maize, Zhengzhou 450046, Henan, China
  • Received:2022-11-14 Accepted:2023-05-24 Published:2023-11-12 Published online:2023-05-31
  • Supported by:
    National Natural Science Foundation of China(32001562);National Natural Science Foundation of China(U22A20466);Science and Technology Innovation Fund of Henan Agricultural University(KJCX2020A04)

摘要:

玉米籽粒大小是影响产量形成的关键因素。本研究鉴定了一个转座子随机插入的小籽粒突变体mn-Mu; 该突变体相较野生型籽粒变小、种皮皱缩、淀粉含量下降, 而醇溶蛋白含量升高。石蜡切片观察发现mn-Mu突变体胚乳发育迟缓, 胚乳基底转移层细胞发育缺陷。遗传分析表明mn-Mu是由隐性单基因控制的突变, 通过图位克隆将突变基因定位在2号染色体57.83~61.91 Mb的区间, 其中已克隆的编码细胞壁转化酶的Zm00001d003776 (Miniature 1, Mn1)基因在第5个外显子上存在一个1442 bp的转座子插入。等位测试证实, mn-Mu为一个新的Mn1基因等位突变体。转录组分析表明, Mn1基因功能缺失影响碳水化合物代谢、储藏物质积累、糖基转移酶活性、细胞壁生物合成和细胞周期调控等生物学过程。本研究鉴定的新的mn1等位突变体为深入解析籽粒发育的分子调控网络提供了新的遗传材料。

关键词: 玉米, 籽粒发育, mn-Mu, 图位克隆, 细胞壁转化酶, 转录组分析

Abstract:

Kernel is the main storage organ, which accumulates nutritional compounds and determinates maize yield. In this study, we identified a miniature kernel mutant, mn-Mu, caused by a random mutator’s insertion. Compared with wild type, mn-Mu had smaller kernels, shrunken pericarp, and decreased significantly kernel weight. Compared with wild type, starch content of mn-Mu kernels decreased slightly, while zein content increased. Cytological observation showed that the development of the central endosperm and the basal endosperm transfer layer (BETL) was impaired in mn-Mu mutant compared with the wild type. Genetic analysis revealed that mn-Mu was a single gene-controlled recessive mutant. Map-based cloning indicated that the mutant gene was positioned in 57.83-61.91 Mb on chromosome 2. In this interval, Zm00001d003776 gene, which encoded CELL WALL INVERTASE 2 (INCW2, Miniature 1, Mn1) previously reported, was found that a 1442 bp transposon derived from Bronze 1 locus inserted into its 5th exon. Allelic test validated that mn-Mu was a new allelic mutant of mn1. Furthermore, transcriptomic analysis revealed that the loss of Mn1 affected gene expression in the processes of carbohydrate metabolism, storage material accumulation, glycosyltransferase activity, cell wall biosynthesis, and cell cycle regulation. In conclusion, a new allelic mutant of maize Mn1 (mn-Mu) was identified and transcriptomic analysis was further performed, which providing a novel maize germplasm and clues toward comprehensive understanding of molecular regulation mechanism of Mn1 on kernel development.

Key words: maize, kernel development, mn-Mu, gene mapping, cell wall invertase, transcriptomic analysis

表1

基因定位及克隆引物序列"

引物名称
Primer name
正向引物
Forward sequence (5'-3')
反向引物
Reverse sequence (5'-3')
Indel-26.11 ACTTGCCTGCTGCGACTGG TCCTGCCCGTCCCGACAG
Indel-34.89 TCGTGGCTGGCTGGAGTG CGGGAAATCGGGTTGTTGATTG
Indel-43.19 TGGTAGGCAGGGCGTTGG TGTCCGTGTAGACTGTAGGAAC
Indel-53.27 GGGAGAGCATCGACAGATACTG GACAATGACTTCGTACCTTCGG
Indel-55.89 GCCGCACACACCCTATGAAG AGCGTGCATGTATCTGGAAGTG
Indel-57.83 GCAATCCCCTTGTCCTGAAAAG CTTCCAACGCAGCAGCAATG
Indel-61.91 AGGTCAACCATCGAATCGAAGC ATCTGCATGGTTCAGAGTCTCC
Indel-83.16 TCCATCTATGGGGAGCGAGTAC GCAGTCCGTGACGACAACC
PDC1R/2F GCAACGGTGCAAGTGAACAA GCGGTACGACTACTACACCG
PDC1F/2R GTCGTAAGTTTCGCTTCGGC TCGTAGAACGTCTTGGACGC

图1

玉米mn-Mu籽粒的表型特征 A: F1自交成熟果穗; B: 野生型(上排)和mn-Mu (下排)粒长对比; C: 野生型(上排)和mn-Mu (下排)粒宽对比; D: 单粒野生型(左)和突变体(右)籽粒对比; E: 野生型(左)和mn-Mu (右)籽粒纵切; F: 野生型和mn-Mu籽粒百粒重统计。**表示Student’s t检验在0.01概率水平差异显著, 图中标尺为1 cm。"

表2

F2成熟果穗正常和突变籽粒分离比"

果穗
Ear
正常籽粒数
Wild type
突变籽粒数
Mutant
χ2
1 330 89 2.9602
2 295 100 0.0076
3 297 92 0.3093
总计 Total 922 281 1.6428

图2

玉米mn-Mu突变体籽粒的组织学观察 A: 野生型籽粒, 标尺为1 mm; B: mn-Mu突变体籽粒, 标尺为1 mm; C: 野生型籽粒胚, 标尺为1 mm; D: mn-Mu突变体籽粒胚, 标尺为500 μm; E: 野生型籽粒BETL观察, 标尺为200 μm; F: mn-Mu突变体籽粒BETL观察, 标尺为200 μm。样品为授粉后18 d发育中籽粒。"

图3

玉米mn-Mu突变体籽粒的储藏物质分析 A: 野生型和mn-Mu籽粒的总淀粉含量测定; B: 野生型和mn-Mu成熟籽粒醇溶蛋白含量对比; C: 野生型和mn-Mu成熟籽粒非醇溶蛋白含量对比。M: 蛋白分子量标记; WT: 野生型; Re1/Re2/Re3代表3个生物学重复。"

图4

玉米mn-Mu的基因定位与克隆 A: 玉米mn-Mu的图位克隆。n: 定位所用的群体数目, 与InDel标记相对应的数值为交换籽粒数目; B: Mn1基因结构示意图。三角符号代表mn-Mu中转座子插入位置; C: Mn1基因DNA全长扩增。M: DNA分子量标记; WT: 野生型; Z58: 自交系郑58对照。"

图5

mn-Mu突变体与mn1突变体等位测试 A: mn-Mu/+ × mn1/+杂交果穗表型, 标尺为1 cm; B: mn1/+ × mn-Mu/+杂交果穗表型, 标尺为1 cm。"

图6

玉米mn-Mu突变体转录组测序分析 A: RNA-seq检测mn-Mu差异表达基因; B: 差异表达基因KEGG富集分析; C: 差异表达基因GO富集分析。"

[1] 赵久然, 王帅, 李明, 吕慧颖, 王道文, 葛毅强, 魏珣, 杨维才. 玉米育种行业创新现状与发展趋势. 植物遗传资源学报, 2018, 19: 435-446.
doi: 10.13430/j.cnki.jpgr.2018.03.008
Zhao J R, Wang S, Li M, Lyu H Y, Wang D W, Ge Y Q, Wei X, Yang W C. Current status and perspective of maize breeding. J Plant Genet Resour, 2018, 19: 435-446 (in Chinese with English abstract).
[2] Wu H, Becraft P W, Dannenhoffer J M. Maize endosperm development: tissues, cells, molecular regulation and grain quality improvement. Front Plant Sci, 2022, 13: 852082.
doi: 10.3389/fpls.2022.852082
[3] Sabelli P A, Larkins B A. The development of endosperm in grasses. Plant Physiol, 2009, 149: 14-26.
doi: 10.1104/pp.108.129437 pmid: 19126691
[4] Li X J, Zhang Y F, Hou M, Sun F, Shen Y, Xiu Z H, Wang X, Chen Z L, Sun S S, Small I, Tan B C. Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa). Plant J, 2014, 79: 797-809.
doi: 10.1111/tpj.2014.79.issue-5
[5] Yang Y Z, Ding S, Wang Y, Li C L, Shen Y, Meeley R, McCarty D R, Tan B C. Small kernel2 encodes a glutaminase in Vitamin B(6) biosynthesis essential for maize seed development. Plant Physiol, 2017, 174: 1127-1138.
doi: 10.1104/pp.16.01295 pmid: 28408540
[6] Pan Z Y, Ren X M, Zhao H L, Liu L, Tan Z D, Qiu F Z. A mitochondrial transcription termination factor, ZmSmk3, is required for nad1 intron4 and nad4 intron1 splicing and kernel development in maize. Genes Genet Genomic, 2019, 9: 2677-2686.
[7] Wang H C, Sayyed A, Liu X Y, Yang Y Z, Sun F, Wang Y, Wang M, Tan B C. SMALL KERNEL4 is required for mitochondrial cox1 transcript editing and seed development in maize. J Integr Plant Biol, 2020, 62: 777-792.
doi: 10.1111/jipb.v62.6
[8] Ding S, Liu X Y, Wang H C, Wang Y, Tang J J, Yang Y Z, Tan B C. SMK6 mediates the C-to-U editing at multiple sites in maize mitochondria. J Plant Physiol, 2019, 240: 152992.
doi: 10.1016/j.jplph.2019.152992
[9] Zhao H L, Qin Y, Xiao Z Y, Li Q, Yang N, Pan Z Y, Gong D M, Sun Q, Yang F, Zhang Z X, Wu Y R, Xu C, Qiu F Z. Loss of function of an RNA polymerase III subunit leads to impaired maize kernel development. Plant Physiol, 2020, 184: 359-373.
doi: 10.1104/pp.20.00502 pmid: 32591429
[10] Pan Z Y, Liu M, Xiao Z Y, Ren X M, Zhao H L, Gong D M, Liang K, Tan Z D, Shao Y Q, Qiu F Z. ZmSMK9, a pentatricopeptide repeat protein, is involved in the cis-splicing of nad5, kernel development and plant architecture in maize. Plant Sci, 2019, 288: 110205.
doi: 10.1016/j.plantsci.2019.110205
[11] Lowe J, Nelson O E. Miniature seed: a study in the development of a defective caryopsis in maize. Genetics, 1946, 31: 525-533.
doi: 10.1093/genetics/31.5.525 pmid: 17247216
[12] Dai D W, Ma Z Y, Song R T. Maize endosperm development. J Integr Plant Biol, 2021, 63: 613-627.
doi: 10.1111/jipb.13069
[13] Cheng W H, Taliercio E W, Chourey P S. The Miniature1 seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. Plant Cell, 1996, 8: 971-983.
doi: 10.2307/3870209
[14] Chourey P S, Jain M, Li Q B, Carlson S J. Genetic control of cell wall invertases in developing endosperm of maize. Planta, 2006, 223: 159-167.
doi: 10.1007/s00425-005-0039-5 pmid: 16025339
[15] Yi F, Gu W, Li J F, Chen J, Hu L, Cui Y, Zhao H M, Guo Y, Lai J S, Song W B. Miniature Seed6, encoding an endoplasmic reticulum signal peptidase, is critical in seed development. Plant Physiol, 2021, 185: 985-1001.
doi: 10.1093/plphys/kiaa060
[16] Miller M E, Chourey P S. The maize invertase-deficient miniature-1 seed mutation is associated with aberrant pedicel and endosperm development. Plant Cell, 1992, 4: 297-305.
doi: 10.2307/3869541
[17] Vilhar B, Kladnik A, Blejec A, Chourey P S, Dermastia M. Cytometrical evidence that the loss of seed weight in the miniature1seed mutant of maize is associated with reduced mitotic activity in the developing endosperm. Plant Physiol, 2002, 129: 23-30.
[18] LeClere S, Schmelz E A, Chourey P S. Cell wall invertase-deficient miniature1 kernels have altered phytohormone levels. Phytochemistry, 2008, 69: 692-699.
doi: 10.1016/j.phytochem.2007.09.011 pmid: 17964617
[19] Chourey P S, Li Q B, Kumar D. Sugar-hormone cross-talk in seed development: two redundant pathways of IAA biosynthesis are regulated differentially in the invertase-deficient miniature1 (mn1) seed mutant in maize. Mol Plant, 2010, 3: 1026-1036.
doi: 10.1093/mp/ssq057 pmid: 20924026
[20] Doll N M, Depège-Fargeix N, Rogowsky P M, Widiez T. Signaling in early maize kernel development. Mol Plant, 2017, 10: 375-388.
doi: S1674-2052(17)30009-6 pmid: 28267956
[21] Rijavec T, Kovac M, Kladnik A, Chourey P S, Dermastia M. A comparative study on the role of cytokinins in caryopsis development in the maize miniature1 seed mutant and its wild type. J Integr Plant Biol, 2009, 51: 840-849.
doi: 10.1111/jipb.2009.51.issue-9
[22] Chourey P S, Li Q B, Cevallos-Cevallos J. Pleiotropy and its dissection through a metabolic gene Miniature1 (Mn1) that encodes a cell wall invertase in developing seeds of maize. Plant Sci, 2012, 184: 45-53.
doi: 10.1016/j.plantsci.2011.12.011 pmid: 22284709
[23] Le C S, Schmelz E A, Chourey P S. Sugar levels regulate tryptophan-dependent auxin biosynthesis in developing maize kernels. Plant Physiol, 2010, 153: 306-318.
doi: 10.1104/pp.110.155226 pmid: 20237017
[24] Li B, Liu H, Zhang Y, Kang T, Zhang L, Tong J H, Xiao L T, Zhang H X. Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize. Plant Biotechnol J, 2013, 11: 1080-1091.
doi: 10.1111/pbi.12102 pmid: 23926950
[25] Tian Q Z, Wang G, Ma X X, Shen Q W, Ding M L, Yang X Y, Luo X L, Li R R, Wang Z H, Wang X Y, Fu Z Y, Yang Q H, Tang J H, Wang G F. Riboflavin integrates cellular energetics and cell cycle to regulate maize seed development. Plant Biotechnol J, 2022, 20: 1487-1501.
doi: 10.1111/pbi.v20.8
[26] Li C B, Song R T. The regulation of zein biosynthesis in maize endosperm. Theor Appl Genet, 2020, 133: 1443-1453.
doi: 10.1007/s00122-019-03520-z pmid: 31897513
[27] Carlson S J, Shanker S, Chourey P S. A point mutation at the Miniature1seed locus reduces levels of the encoded protein, but not its mRNA, in maize. Mol Gene Genet, 2000, 263: 367-373.
[28] Kang B H, Xiong Y, Williams D S, Pozueta-Romero D, Chourey P S. Miniature1-encoded cell wall invertase is essential for assembly and function of wall-in-growth in the maize endosperm transfer cell. Plant Physiol, 2009, 151: 1366-1376.
doi: 10.1104/pp.109.142331
[29] Silva-Sanchez C, Chen S X, Li J X, Chourey P S. A comparative glycoproteome study of developing endosperm in the hexose-deficient miniature1 (mn1) seed mutant and its wild type Mn1 in maize. Front Plant Sci, 2014, 5: 63.
doi: 10.3389/fpls.2014.00063 pmid: 24616729
[30] Taliercio E, Kim J Y, Mahé A, Shanker S, Choi J, Cheng W H, Prioul J L, Chourey P. Isolation, characterization and expression analyses of two cell wall invertase genes in maize. J Plant Physiol, 1999, 155: 197-204.
doi: 10.1016/S0176-1617(99)80007-8
[31] Cheng W H, Chourey P S. Genetic evidence that invertase-mediated release of hexoses is critical for appropriate carbon partitioning and normal seed development in maize. Theor Appl Genet, 1999, 98: 485-495.
doi: 10.1007/s001220051096
[32] Liao S J, Wang L, Li J, Ruan Y L. Cell wall invertase is essential for ovule development through sugar signaling rather than provision of carbon nutrients. Plant Physiol, 2020, 183: 1126-1144.
doi: 10.1104/pp.20.00400 pmid: 32332089
[33] Silva-Sanchez C, Chen S, Zhu N, Li Q B, Chourey P S. Proteomic comparison of basal endosperm in maize miniature1 mutant and its wild-type Mn1. Front Plant Sci, 2013, 4: 211.
doi: 10.3389/fpls.2013.00211 pmid: 23805148
[34] Weber H, Borisjuk L, Wobus U. Molecular physiology of legume seed development. Annu Rev Plant Biol, 2005, 56: 253-279.
pmid: 15862096
[35] Thompson R D, Hueros G, Becker H, Maitz M. Development and functions of seed transfer cells. Plant Sci, 2001, 160: 775-783.
pmid: 11297774
[36] Zheng Y, Wang Z. Current opinions on endosperm transfer cells in maize. Plant Cell Rep, 2010, 29: 935-942.
doi: 10.1007/s00299-010-0891-z pmid: 20585949
[37] Bergareche D, Royo J, Muñiz L M, Hueros G. Cell wall invertase activity regulates the expression of the transfer cell-specific transcription factor ZmMRP-1. Planta, 2018, 247: 429-442.
doi: 10.1007/s00425-017-2800-y pmid: 29071379
[38] Wang E T, Wang J J, Zhu X D, Hao W, Wang L Y, Li Q, Zhang L X, He W, Lu B R, Lin H X, Ma H, Zhang G Q, He Z H. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet, 2008, 40: 1370-1374.
doi: 10.1038/ng.220 pmid: 18820698
[39] Zanor M I, Osorio S, Nunes-Nesi A, Carrari F, Lohse M, Usadel B, Kühn C, Bleiss W, Giavalisco P, Willmitzer L, Sulpice R, Zhou Y H, Fernie A R. RNA interference of LIN5 in tomato confirms its role in controlling Brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiol, 2009, 150: 1204-1218.
doi: 10.1104/pp.109.136598
[40] Jin Y, Ni D A, Ruan Y L. Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. Plant Cell, 2009, 21: 2072-2089.
doi: 10.1105/tpc.108.063719 pmid: 19574437
[41] Li J, Foster R, Ma S, Liao S J, Bliss S, Kartika D, Wang L, Wu L M, Eamens A L, Ruan Y L. Identification of transcription factors controlling cell wall invertase gene expression for reproductive development via bioinformatic and transgenic analyses. Plant J, 2021, 106: 1058-1074.
doi: 10.1111/tpj.v106.4
[42] Zha K Y, Xie H X, Ge M, Wang Z M, Wang Y, Si W N, Gu L J. Expression of maize MADS transcription factor ZmES22 negatively modulates starch accumulation in rice endosperm. Int J Mol Sci, 2019, 20: 483.
doi: 10.3390/ijms20030483
[1] 杨文宇, 吴成秀, 肖英杰, 严建兵. 基于Adaptive Lasso的两阶段全基因组关联分析方法[J]. 作物学报, 2023, 49(9): 2321-2330.
[2] 艾蓉, 张春, 悦曼芳, 邹华文, 吴忠义. 玉米转录因子ZmEREB211对非生物逆境胁迫的应答[J]. 作物学报, 2023, 49(9): 2433-2445.
[3] 黄钰杰, 张啸天, 陈会丽, 王宏伟, 丁双成. 玉米ZmC2s基因家族鉴定及ZmC2-15耐热功能分析[J]. 作物学报, 2023, 49(9): 2331-2343.
[4] 白岩, 高婷婷, 卢实, 郑淑波, 路明. 近四十年来我国玉米大品种的历史沿革与发展趋势[J]. 作物学报, 2023, 49(8): 2064-2076.
[5] 王兴荣, 张彦军, 涂奇奇, 龚佃明, 邱法展. 一个新的玉米细胞核雄性不育突变体ms6的鉴定与基因定位[J]. 作物学报, 2023, 49(8): 2077-2087.
[6] 王娟, 徐相波, 张茂林, 刘铁山, 徐倩, 董瑞, 刘春晓, 关海英, 刘强, 汪黎明, 何春梅. 一个新的玉米Miniature1基因等位突变体的鉴定与遗传分析[J]. 作物学报, 2023, 49(8): 2088-2096.
[7] 韦金贵, 郭瑶, 柴强, 殷文, 樊志龙, 胡发龙. 水氮减量密植玉米的产量及产量构成[J]. 作物学报, 2023, 49(7): 1919-1929.
[8] 李凌雨, 周琦锐, 李洋, 张安民, 王贝贝, 马尚宇, 樊永惠, 黄正来, 张文静. 外源6-BA调控孕穗期低温后小麦幼穗发育的转录组分析[J]. 作物学报, 2023, 49(7): 1808-1817.
[9] 李荣, 勉有明, 侯贤清, 李培富, 王西娜. 施氮对还田秸秆腐解及养分释放、土壤肥力与玉米产量的影响[J]. 作物学报, 2023, 49(7): 2012-2022.
[10] 梅秀鹏, 赵子堃, 贾欣瑶, 白洋, 李梅, 甘宇玲, 杨秋悦, 蔡一林. 热诱导转录因子ZmNF-YC13调控热胁迫应答基因提高玉米耐热性[J]. 作物学报, 2023, 49(7): 1747-1757.
[11] 常丽娟, 梁晋刚, 宋君, 刘文娟, 付成平, 代晓航, 王东, 魏超, 熊梅. 转基因玉米ND207转化事件特异性定性PCR检测方法及其标准化[J]. 作物学报, 2023, 49(7): 1818-1828.
[12] 张振博, 贾春兰, 任佰朝, 刘鹏, 赵斌, 张吉旺. 氮磷配施对夏玉米产量和叶片衰老特性的影响[J]. 作物学报, 2023, 49(6): 1616-1629.
[13] 刘佳, 邹晓悦, 马继芳, 王永芳, 董志平, 李志勇, 白辉. 谷子MAPK家族成员的鉴定及其对生物胁迫的响应分析[J]. 作物学报, 2023, 49(6): 1480-1495.
[14] 李璐璐, 明博, 高尚, 谢瑞芝, 王克如, 侯鹏, 薛军, 李少昆. 不同熟期玉米品种籽粒田间脱水特征差异性分析[J]. 作物学报, 2023, 49(6): 1643-1652.
[15] 王玉珑, 于爱忠, 吕汉强, 吕奕彤, 苏向向, 王鹏飞, 柴健. 绿洲灌区麦后复种绿肥并还田对翌年玉米根系性状及水分利用效率的影响[J]. 作物学报, 2023, 49(5): 1350-1362.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[3] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[4] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[5] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[6] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[7] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[8] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[9] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[10] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .