欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (12): 3377-3386.doi: 10.3724/SP.J.1006.2025.51039

• 研究简报 • 上一篇    

8份无芒雀麦种质资源的草产量与营养品质的综合评价

李琰1,2,3(), 李雨晨1,2,3, 于爱萍1,2,3, 陈爱萍1,2,3,*()   

  1. 1新疆农业大学草业学院, 新疆乌鲁木齐 830052
    2西部干旱荒漠区草地资源与生态教育部重点实验室, 新疆乌鲁木齐 830052
    3新疆草地资源与生态实验室, 新疆乌鲁木齐 830052
  • 收稿日期:2025-04-15 接受日期:2025-08-13 出版日期:2025-12-12 网络出版日期:2025-08-25
  • 通讯作者: *陈爱萍, E-mail: xjauchenaiping@sina.com
  • 作者简介:E-mail: 18103305006@163.com
  • 基金资助:
    本研究由财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-34)

Comprehensive evaluation of forage yield and nutritional quality in eight Bromus inermis germplasm resources

LI Yan1,2,3(), LI Yu-Chen1,2,3, YU Ai-Ping1,2,3, CHEN Ai-Ping1,2,3,*()   

  1. 1College of Grassland Science, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    2Key Laboratory for Western Arid Region Grassland Resources and Ecology, Ministry of Education, Urumqi 830052, Xinjiang, China
    3Xinjiang Key Laboratory of Grassland Resources and Ecology, Urumqi 830052, Xinjiang, China
  • Received:2025-04-15 Accepted:2025-08-13 Published:2025-12-12 Published online:2025-08-25
  • Contact: *E-mail: xjauchenaiping@sina.com
  • Supported by:
    China Agriculture Research System of MOF and MARA(CARS-34)

摘要: 为筛选出适合新疆地区种植的高产优质无芒雀麦材料, 本研究于2022—2024年在新疆地区开展连续3年的田间试验, 系统评价了8份不同来源无芒雀麦种质资源的适应性表现。通过农艺性状观测、草产量测定和品质分析, 结合聚类分析、灰色关联度综合评价方法筛选出适宜当地种植的优良种质资源。结果表明, 13个性状的变异系数范围为3.87%~12.02%, 其中干草产量的变异系数最大。从农艺性状来看, 株高和茎粗均随种植年份的增加而显著提高。草产量随种植年限的增加呈先升后降的趋势, 2023年达到峰值, 其中W3在2022—2024年累积产量高于其他种质。品质分析表明, 3年的粗蛋白含量范围为9.14%~13.51%, 粗脂肪和粗灰分含量均在2022年达到最高, 除W7和W8外, 其他种质的中性洗涤纤维含量逐年上升。通过灰色关联度分析, W3的综合评分最高(0.7163), 适合作为新疆地区无芒雀麦育种的优选种质。

关键词: 无芒雀麦, 农艺性状, 草产量, 营养品质, 综合评价

Abstract:

To identify high-yielding and high-quality Bromus inermis germplasm suitable for cultivation in Xinjiang, a three-year field trial was conducted from 2022 to 2024, systematically evaluating the adaptability of eight germplasm sources. Agronomic traits, forage yield, and nutritional quality were assessed, and a comprehensive evaluation was performed using cluster analysis and grey relational analysis to screen for locally adapted superior germplasms. The results showed that the coefficient of variation across 13 traits ranged from 3.87% to 12.02%, with dry forage yield exhibiting the highest variability. In terms of agronomic performance, both plant height and stem diameter increased significantly over successive planting years. Forage yield followed a trend of increasing initially and then declining, peaking in 2023. Notably, germplasm W3 exhibited a significantly higher cumulative yield than the others over the three-year period. Quality analysis revealed that crude protein content ranged from 9.14% to 13.51% across the years, while ether extract and crude ash contents were highest in 2022. Except for W7 and W8, the neutral detergent fiber (NDF) content of the remaining germplasms increased annually. Based on grey relational analysis, W3 achieved the highest comprehensive score (0.7163) and is recommended as a preferred germplasm for Bromus inermis breeding and cultivation in Xinjiang.

Key words: Bromus inermis, agronomic traits, forage yield, nutritional quality, comprehensive evaluation

表1

无芒雀麦来源"

编号
Code
材料来源
Material source
原产地
Origin
W1 新疆乌苏市草原工作站
Grassland station of Wusu city, Xinjiang
新疆乌苏市
Wusu city, Xinjiang
W2 野外采集
Field collection
新疆伊犁哈萨克自治州察布查尔锡伯自治县
Qapqal Xibe autonomous county, Ili Kazakh autonomous prefecture, Xinjiang
W3 中国农业科学院草原研究所
Grassland Research Institute, Chinese Academy of Agricultural Sciences
中国农业科学院草原研究所
Grassland Research Institute, Chinese Academy of Agricultural Sciences
W4 野外采集
Field collection
新疆伊犁哈萨克自治州新源县
Xinyuan county, Ili Kazakh autonomous prefecture, Xinjiang
W5 野外采集
Field collection
新疆伊犁哈萨克自治州
Ili Kazakh autonomous prefecture, Xinjiang
W6 野外采集
Field collection
甘肃省武威市天祝藏族自治县
Tianzhu Tibetan autonomous county, Wuwei city, Gansu province
W7 中国农业科学院北京畜牧兽医研究所
Institute of Animal Sciences of Chinese Academy of Agricultural Sciences
中国农业科学院北京畜牧兽医研究所
Institute of Animal Sciences of Chinese Academy of Agricultural Sciences
W8 中国农业科学院草原研究所
Grassland Research Institute, Chinese Academy of Agricultural sciences
新疆伊犁哈萨克自治州伊宁市
Yining city, Ili Kazakh autonomous prefecture, Xinjiang

表2

8份无芒雀麦变异系数分析"

性状
Trait
平均值
Mean
最大值
Max.
最小值
Min.
标准差
SD
极差
Range
变异系数
CV (%)
株高 Plant height (cm) 88.35 96.18 80.43 4.28 15.75 4.85
茎粗 Stem diameter (mm) 1.70 1.88 1.49 0.11 0.39 6.22
茎节数 Node number (cm) 5.98 7.35 5.23 0.46 2.12 7.65
倒二叶叶长 Inverted second leaf length (cm) 21.63 26.00 19.51 1.77 6.49 8.17
倒二叶叶宽 Inverted second leaf width (cm) 0.84 0.93 0.61 0.09 0.32 10.54
鲜草产量 Fresh yield (kg hm-2) 42,489.79 52,235.00 36,191.11 4253.18 16,043.89 10.01
干草产量 Hay yield (kg hm-2) 13,942.27 18,487.36 11,480.88 1675.50 7006.48 12.02
粗蛋白 Crude protein (%) 11.58 12.54 10.53 0.46 2.01 3.97
粗脂肪 Ether extract (%) 4.30 5.50 3.48 0.50 2.02 11.65
粗灰分 Crude ash (%) 10.04 11.06 9.29 0.48 1.77 4.82
中性洗涤纤维 Neutral detergent fiber (%) 58.60 63.35 53.94 2.39 9.41 4.08
酸性洗涤纤维 Acid detergent fiber (%) 35.88 38.25 33.03 1.39 5.22 3.87
相对饲用价值 Relative feed value 99.37 108.26 92.48 5.20 15.78 5.24

表3

主体间效应检验结果统计"

因变量
Dependent variable
方差来源
Source of variance
III类平方和
Sum of class III squares
均方
Mean square
F
F-value
P
P-value
株高
Plant height
种质材料Germplasm resources (G) 693.472 99.067 2.266 0.045
年份Year (Y) 21,820.578 10,910.289 249.581 <0.001
G×Y 827.207 59.086 1.352 0.214
茎粗
Stem diameter
种质材料Germplasm resources (G) 0.375 0.054 2.763 0.017
年份Year (Y) 77.551 38.775 1997.013 <0.001
G×Y 0.415 0.030 1.528 0.137
倒二叶叶长
Inverted second leaf length
种质材料Germplasm resources (G) 190.179 27.168 11.066 <0.001
年份Year (Y) 137.273 68.636 27.956 <0.001
G×Y 105.531 7.538 3.070 0.002
倒二叶叶宽
Inverted second leaf width
种质材料Germplasm resources (G) 0.456 0.065 10.423 <0.001
年份Year (Y) 1.377 0.689 110.187 <0.001
G×Y 0.211 0.015 2.414 0.012
鲜草产量
Fresh yields
种质材料Germplasm resources (G) 417,020,606.551 59,574,372.364 1.632 0.149
年份Year (Y) 10,847,849,069.793 5,423,924,534.897 148.608 <0.001
G×Y 593,542,760.283 42,395,911.449 1.162 0.334
干草产量
Hay yields
种质材料Germplasm resources (G) 83,845,209.440 11,977,887.063 2.298 0.042
年份Year (Y) 2,224,284,135.063 1,112,142,067.532 213.367 <0.001
G×Y 77,008,108.095 5,500,579.150 1.055 0.419
粗蛋白含量
Crude protein content
种质材料Germplasm resources (G) 6.629 0.947 1.880 0.094
年份Year (Y) 36.122 18.061 35.862 <0.001
G×Y 49.821 3.559 7.066 <0.001
粗脂肪含量
Ether extract content
种质材料Germplasm resources (G) 14.543 2.078 11.419 <0.001
年份Year (Y) 214.046 107.023 588.264 <0.001
G×Y 19.493 1.392 7.653 <0.001
粗灰分含量
Crude ash content
种质材料Germplasm resources (G) 13.310 1.901 8.938 <0.001
年份Year (Y) 63.534 31.767 149.318 <0.001
G×Y 4.974 0.355 1.670 0.094
相对饲用价值
Relative feed value
种质材料Germplasm resources (G) 1267.293 181.042 6.031 <0.001
年份Year (Y) 10,763.329 5381.665 179.273 <0.001
G×Y 759.948 54.282 1.808 0.065

表4

8份无芒雀麦农艺性状的比较"

年份
Year
编号
Code
株高
Plant height
(cm)
茎粗
Stem diameter
(mm)
茎节数
Node number
倒二叶叶长
Inverted second leaf length
(cm)
倒二叶叶宽
Inverted second leaf width (cm)
2022 W1 67.28±4.25 ab 0.25±0.01 a 9.55±1.04 a 22.99±1.25 a 1.14±0.04 a
W2 58.08±0.21 cd 0.24±0.01 a 8.23±0.55 a 21.38±0.52 ab 1.08±0.03 abc
W3 62.47±1.32 bc 0.24±0.01 a 8.52±0.18 a 24.24±1.32 a 0.71±0.02 d
W4 65.93±1.42 ab 0.24±0.01 a 8.68±0.36 a 21.73±1.68 ab 1.13±0.08 ab
W5 68.30±0.76 ab 0.24±0.01 a 9.77±0.39 a 21.90±1.14 ab 1.07±0.08 abc
W6 71.69±2.68 a 0.20±0.01 a 9.20±0.58 a 23.25±0.47 a 0.96±0.05 c
W7 53.14±1.03 d 0.25±0.01 a 8.69±0.56 a 22.65±0.21 a 1.06±0.04 abc
W8 64.40±0.15 b 0.25±0.01 a 8.58±0.59 a 18.93±0.33 b 0.97±0.05 bc
2023 W1 98.85±2.15 abc 2.13±0.05 cd 5.46±0.29 a 18.43±0.57 c 0.76±0.01 a
W2 97.57±2.90 abcd 2.28±0.04 abcd 4.12±0.19 b 21.05±0.72 b 0.72±0.01 ab
W3 90.82±1.57 d 2.10±0.03 cd 3.98±0.03 b 25.47±0.90 a 0.52±0.02 c
W4 102.76±2.53 a 2.47±0.05 a 4.65±0.13 b 18.54±0.62 c 0.69±0.07 ab
W5 97.39±3.21 abcd 2.06±0.11 d 5.42±0.23 a 18.45±0.19 c 0.75±0.04 ab
W6 99.25±1.05 ab 2.37±0.07 abc 4.24±0.12 b 16.09±0.27 d 0.64±0.01 b
W7 91.57±3.53 cd 2.40±0.06 ab 4.05±0.32 b 19.53±0.65 bc 0.69±0.03 ab
W8 94.09±1.65 bcd 2.21±0.12 bcd 4.59±0.27 b 20.43±0.54 b 0.65±0.03 ab
2024 W1 101.81±3.59 b 2.46±0.16 a 4.87±0.26 a 21.98±1.43 b 0.76±0.03 b
W2 100.26±1.16 b 2.48±0.15 a 4.47±0.07 a 22.37±1.03 b 0.94±0.03 a
W3 107.73±1.24 b 2.76±0.10 a 4.34±0.34 a 27.49±0.66 a 0.75±0.10 b
W4 115.29±3.14 a 2.66±0.05 a 4.33±0.38 a 22.05±0.54 b 0.94±0.03 a
W5 102.34±1.49 b 2.50±0.09 a 4.11±0.10 a 24.05±0.63 b 0.77±0.06 b
W6 103.81±3.38 b 2.59 ±0.16 a 4.65±0.15 a 21.07±1.22 b 0.76±0.04 b
W7 99.90±1.27 b 2.79±0.12 a 4.57±0.32 a 22.75±1.40 b 0.89±0.04 ab
W8 105.72±2.60 b 2.54±0.07 a 4.52±0.12 a 22.42±1.01 b 0.84±0.03 ab

图1

8份无芒雀麦的干草产量 缩写同表1。不同小写字母表示同一年份不同材料间差异显著(P < 0.05)。"

表5

8份无芒雀麦营养品质的比较"

年份
Year
编号
Code
粗蛋白含量
Crude protein content (%)
粗脂肪含量
Ether extract
content (%)
粗灰分含量
Crude ash content (%)
中性洗涤纤维含量
Neutral detergent fiber content (%)
酸性洗涤纤维含量
Acid detergent fiber content (%)
相对饲用价值
Relative
feed value
2022 W1 13.10±0.18 a 7.46±0.18 ab 11.35±0.18 abc 53.04±2.11 a 30.78±1.49 a 118.32±6.80 a
W2 11.14±0.16 d 6.35±0.32 cd 11.77±0.44 ab 50.64±2.14 a 30.02±0.53 a 122.07±4.39 a
W3 11.79±0.02 c 5.88±0.38 d 12.13±0.12 a 52.61±0.49 a 32.85±1.65 a 113.79±3.79 a
W4 12.08±0.18 bc 5.60±0.13 d 11.84±0.06 ab 53.59±1.67 a 30.96±0.26 a 114.52±2.42 a
W5 11.35±0.13 d 8.18±0.30 a 10.44±0.41 c 53.46±1.14 a 31.68±1.60 a 113.94±5.16 a
W6 11.84±0.15 c 7.04±0.16 bc 10.95±0.28 bc 54.23±0.30 a 30.60±1.39 a 111.67±2.11 a
W7 12.49±0.13 b 7.12±0.43 bc 11.18±0.36 bc 51.61±0.34 a 30.29±1.76 a 119.42±2.92 a
W8 13.51±0.11 a 6.21±0.13 cd 11.28±0.12 abc 50.93±0.94 a 30.23±1.66 a 119.58±3.94 a
2023 W1 11.92±0.77 ab 2.60±0.01 bc 8.74±0.07 d 61.55±1.18 ab 39.80±0.35 bc 88.79±1.56 abc
W2 10.90±0.39 b 3.80±0.14 a 9.62±0.34 abc 57.26±1.20 c 38.69±0.40 c 96.79 ±2.76 a
W3 11.51±0.56 ab 2.19±0.18 cd 10.25±0.45 a 61.90±0.93 a 42.98±1.28 a 84.86±2.80 c
W4 12.88±0.16 a 2.98±0.09 b 9.56±0.18 abcd 61.56±1.86 ab 40.66±0.71 abc 88.39±4.44 abc
W5 12.16±0.62 ab 3.77±0.27 a 8.83±0.16 cd 58.34±0.83 bc 38.10±0.65 c 95.86±1.36 ab
W6 10.60±0.35 b 2.88±0.11 b 8.99±0.20 bcd 60.77±0.28 ab 42.01±0.90 ab 88.53±1.98 abc
W7 12.75±0.33 a 2.11±0.06 d 9.02±0.25 bcd 62.27±0.45 a 38.20±1.05 abc 87.44±1.45 bc
W8 13.19±0.59 a 2.96±0.13 b 9.82±0.11 ab 59.62±0.96 abc 38.14±0.70 c 93.67±2.68 ab
2024 W1 10.62±0.83 abc 3.03±0.08 bc 8.79±0.48 c 62.29±0.94 b 37.21±0.37 ab 91.03±1.10 bc
W2 11.88±0.13 a 1.88±0.46 bc 9.09±0.11 c 62.22±1.09 b 36.84±0.82 ab 91.30±1.93 bc
W3 9.78±0.38 c 2.73±0.23 c 10.32±0.03 a 65.62±4.22 ab 36.69±1.58 ab 87.17±3.67 bcd
W4 10.17±0.21 bc 2.35±0.26 c 9.18±0.19 c 66.00±0.91 ab 37.88±1.99 a 84.31±2.47 cd
W5 11.83±0.79 a 2.07±0.28 bc 9.54±0.32 abc 60.92±1.74 bc 36.00±0.94 ab 94.30±3.57 b
W6 11.53±0.26 ab 2.50±0.42 ab 8.93±0.12 c 69.03±0.64 a 38.32±0.79 a 79.64±0.54 d
W7 9.70±0.32 c 2.10±0.08 c 9.21±0.40 bc 61.54±0.76 b 36.60±1.33 ab 92.79±2.25 b
W8 9.14±0.35 c 2.96±0.26 a 10.04±0.06 ab 55.46±2.12 c 33.04±1.63 b 106.70±1.99 a

图2

8份无芒雀麦聚类分析"

表6

8份无芒雀麦综合评价"

编号
Code
加权关联度
Weighted gray correlation
排序
Rank
W1 0.6553 5
W2 0.6448 6
W3 0.7163 1
W4 0.7036 2
W5 0.6711 4
W6 0.6399 7
W7 0.6396 8
W8 0.6864 3
[1] 张希山, 代连义, 王志杰, 祖丽菲亚, 莎丽. 禾草饲料之王: 无芒雀麦. 新疆畜牧业, 2002, (4): 28-29.
Zhang X S, Dai L Y, Wang Z J, Zu L F Y, Sha L. The king of grass forage: smooth bromegrass. Xinjiang Animal Husb, 2002, (4): 28-29 (in Chinese with English abstract).
[2] 吴雨涵. 高寒区无芒雀麦种质资源饲草生产性能评价筛选及抗旱性研究. 青海大学硕士学位论文,青海西宁, 2023.
Wu Y H. Evaluation and Screening of Forage Production Performance and Drought Resistance Study on Bromus inermis Germplasm Resources in Alpine Regions. MS Thesis of Qinghai University, Xining, Qinghai, China, 2023 (in Chinese with English abstract).
[3] 袁嘉苗, 曾怡, 李倩, 王玉祥, 张博. 50份无芒雀麦种质资源农艺性状的综合评价. 草业科学, 2025, 42: 1806-1820.
Yuan J M, Zeng Y, Li Q, Wang Y X, Zhang B. Comprehensive evaluation of agronomic traits in 50 Bromus inermis germplasm resources. Pratac Sci, 2025, 42: 1806-1820 (in Chinese with English abstract).
[4] 魏孔涛.陇中黄土高原半干旱区扁蓿豆与无芒雀麦混播对牧草生产性能和土壤性质的影响. 甘肃农业大学硕士学位论文, 甘肃兰州, 2023.
Wei K T. Wei K T. Effects of Mixed Sowing of Medicago ruthenica and Bromus inermis on Forage Production Performance and Soil Properties in the Semi-arid Region of the Loess Plateau, Longzhong. MS Thesis of Gansu Agricultural University, Lanzhou, Gansu, China, 2023 (in Chinese with English abstract).
[5] Saeidnia F, Majidi M M, Mirlohi A. Marker-trait association analysis for drought tolerance in smooth bromegrass. BMC Plant Biol, 2021, 21: 116.
doi: 10.1186/s12870-021-02891-0 pmid: 33632123
[6] 袁嘉苗, 李陈建, 曾怡, 王玉祥, 张博. 19份无芒雀麦种质萌发期的耐盐性评价. 草地学报, 2025, 33: 524-534.
doi: 10.11733/j.issn.1007-0435.2025.02.022
Yuan J M, Li C J, Zeng Y, Wang Y X, Zhang B. Evaluation of salt tolerance at germination stage of 19 smooth bromegrass (Bromus inermis) germplasms. Acta Agrest Sin, 2025, 33: 524-534 (in Chinese with English abstract).
[7] Ou C M, Wang M Y, Hou L Y, Zhang Y Y, Sun M, Sun S J, Jia S G, Mao P S. Responses of seed yield components to the field practices for regulating seed yield of smooth bromegrass (Bromus inermis Leyss.). Agriculture, 2021, 11: 940.
doi: 10.3390/agriculture11100940
[8] 魏孔涛, 鱼小军, 白梅梅, 马凯凯, 刘耀峰, 张选明. 陇中半干旱区不同混播比例对播种当年草地氮产量的影响. 草原与草坪, 网络首发 [2024-06-18], https://link.cnki.net/urlid/62.1156.s.20240618.1042.006.
Wei K T, Yu X J, Bai M M, Ma K K, Liu Y F, Zhang X M. Effects of different mixed sowing ratios on nitrogen yield of grassland in the sowing year in the semi-arid region of Longzhong. Grassland Turf, Published online [2024-06-18], https://link.cnki.net/urlid/62.1156.s.20240618.1042.006 (in Chinese with English abstract). (in Chinese with English abstract).
[9] 李志勇, 师文贵, 等. 无芒雀麦种质资源描述规范和数据标准. 北京: 中国农业出版社, 2007.
Li Z Y, Shi W G, et al. Descriptors and Data Standard for Smooth Bromegrass (Bromus inermis) Germplasm Resources. Beijing: China Agriculture Press, 2007 (in Chinese).
[10] 全国饲料工业标准化技术委员会. 饲料中粗蛋白的测定: 凯氏定氮法:GB/T6432-2018. 北京: 中国标准出版社, 2018.
National Technical Committee for Standardization of Feed Industry. Determination of Crude Protein in Feed: Kjeldahl method:GB/T 6432-2018. Beijing: Standards Press of China, 2018 (in Chinese).
[11] Rohweder D A, Barnes R F, Jorgensen N. Proposed hay grading standards based on laboratory analyses for evaluating quality. J Anim Sci, 1978, 47: 747-759.
doi: 10.2527/jas1978.473747x
[12] 聂石辉, 彭琳, 王仙, 季良. 鹰嘴豆种质资源农艺性状遗传多样性分析. 植物遗传资源学报, 2015, 16: 64-70.
doi: 10.13430/j.cnki.jpgr.2015.01.010
Nie S H, Peng L, Wang X, Ji L. Genetic diversity analysis of agronomic traits in chickpea (Cicer arietinum L.)germplasm resources. J Plant Genet Resour, 2015, 16: 64-70 (in Chinese with English abstract).
[13] 梁国玲, 刘文辉, 马祥. 590份皮燕麦种质资源穗部性状遗传多样性分析. 草地学报, 2021, 29: 495-503.
doi: 10.11733/j.issn.1007-0435.2021.03.010
Liang G L, Liu W H, Ma X. Genetic diversity analysis of spike traits in 590 hulled oat (Avena sativa) germplasm resources. Acta Agrest Sin, 2021, 29: 495-503 (in Chinese with English abstract).
[14] 孙玉兰, 陈爱萍, 李瑞强, 张永强, 张晶, 李陈建. 20份红豆草种质资源农艺与品质性状综合评价. 新疆农业大学学报, 2022, 45(3): 182-189.
Sun Y L, Chen A P, Li R Q, Zhang Y Q, Zhang J, Li C J. Comprehensive evaluation of agronomic and quality traits of 20 sainfoin (Onobrychis viciifolia) germplasm resources. J Xinjiang Agric Univ, 2022, 45(3): 182-189 (in Chinese with English abstract).
[15] 郝峰, 徐柱, 李平, 李金在, 马玉宝, 闫伟红. 雀麦属13种植物形态遗传多样性研究. 中国草地学报, 2011, 33(2): 17-24.
Hao F, Xu Z, Li P, Li J Z, Ma Y B, Yan W H. Study on morphological genetic diversity of 13 Bromus species. Chin J Grassland, 2011, 33(2): 17-24 (in Chinese with English abstract).
[16] 李凤霞, 颜亮东. 青海环湖地区天然牧草群体生长动态数值模拟. 草业科学, 1997, 14(2): 44-46.
Li F X, Yan L D. Numerical simulation of population growth dynamics of natural forage in Qinghai Lake region. Pratac Sci, 1997, 14(2): 44-46 (in Chinese with English abstract).
[17] Sheikhehpour S, Bahraminejad S, Cheghamirza K. Morphological and molecular genetic variations of oat genotypes grown in Kermanshah, Iran. Mol Biol Rep, 2014, 41: 4023-4030.
doi: 10.1007/s11033-014-3271-x pmid: 24562626
[18] 范铭, 曹爱农, 晋小军, 金雷杰, 张翰. 陇中半干旱地区不同年限甘草生长与有效成分积累动态研究. 西北农业学报, 2016, 25: 1522-1528.
Fan M, Cao A N, Jin X J, Jin L J, Zhang H. Growth dynamics and active ingredient accumulation of Glycyrrhiza uralensis in semi-arid regions of Longzhong under different cultivation years. Acta Agric Boreali-Occident Sin, 2016, 25: 1522-1528 (in Chinese with English abstract).
[19] 王运涛, 杨志敏, 刘建成, 李峰, 于林清, 远婷, 梁潇, 周文秀. 冀西北地区21个燕麦品种生产性能与营养品质综合评价. 草地学报, 2020, 28: 1311-1318.
doi: 10.11733/j.issn.1007-0435.2020.05.016
Wang Y T, Yang Z M, Liu J C, Li F, Yu L Q, Yuan T, Liang X, Zhou W X. Comprehensive evaluation of production performance and nutritional quality of 21 oat (Avena sativa) varieties in Northwestern Hebei. Acta Agrest Sin, 2020, 28: 1311-1318 (in Chinese with English abstract).
[20] 韩重阳, 王栓, 左粟田, 闫三博, 汪阳, 蔡家邦, 马骢毓, 张新全, 聂刚. 10个白三叶品种在成都平原的生产性能评价. 草业学报, 2022, 31(11): 105-117.
doi: 10.11686/cyxb2021417
Han C Y, Wang S, Zuo S T, Yan S B, Wang Y, Cai J B, Ma C Y, Zhang X Q, Nie G. Evaluation of production performance of 10 white clover (Trifolium repens) varieties in Chengdu Plain. Acta Pratac Sin, 2022, 31(11): 105-117 (in Chinese with English abstract).
[21] 董景实, 张素珍. 主要优良牧草产草量及其营养动态的研究. 中国草原, 1981, 3(3): 40-47.
Dong J S, Zhang S Z. Study on forage yield and nutritional dynamics of major high-quality forage grasses. Chin J Grassland, 1981, 3(3): 40-47 (in Chinese).
[22] 盘朝邦, 胡启元. 川西北高原栽培牧草育种研究II、老芒麦产草量随生长年限下降的品系间差异及育种改良可行性探讨. 四川草原, 1987, (4): 49-53.
Pan C B, Hu Q Y. Breeding research on cultivated forage grasses in the northwestern Sichuan Plateau II. Differences in yield decline with growth years among Elymus sibiricus lines and feasibility of breeding improvement. Sichuan Grassland, 1987, (4): 49-53 (in Chinese).
[23] Feoktistova N A. The effect of the age of smooth brome (Bromopsis inermis) stands on their herbage yield in Tyumen province. Trudy Po Prikladnoy Botanike, Genetike I Selektsii, 2019, 180: 30-37.
[24] 贾振宇. 老芒麦新种质创制及主要农艺性状关联分析. 内蒙古农业大学硕士学位论文,内蒙古呼和浩特, 2021.
Jia Z Y.Creation of New Germplasm and Association Analysis of Major Agronomic Traits in Elymus sibiricus. MS Thesis of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2021 (in Chinese with English abstract).
[25] 庄克章, 吴荣华, 张春艳, 董西辰, 夏伟, 张磊, 杨勇, 吴本华, 张洁洁. 11个饲用燕麦品种在鲁南地区的生产性能评价. 作物研究, 2022, 36: 313-319.
Zhuang K Z, Wu R H, Zhang C Y, Dong X C, Xia W, Zhang L, Yang Y, Wu B H, Zhang J J. Evaluation of production performance of 11 forage oat (Avena sativa) varieties in Southern Shandong. Crop Res, 2022, 36: 313-319 (in Chinese with English abstract).
[26] 安丹丹. 硫肥对紫花苜蓿生物学性状及营养品质的影响研究. 河北农业大学硕士学位论文, 河北保定, 2007.
An D D. Effects of Sulfur Fertilizer on Biological Traits and Nutritional 1uality of Alfalfa (Medicago sativa). MS Thesis of Hebei Agricultural University, Baoding, Hebei, China, 2007 (in Chinese with English abstract).
[27] 孙启忠, 韩建国, 桂荣, 刘国荣. 科尔沁沙地敖汉苜蓿地上生物量及营养物质累积. 草地学报, 2001, 9: 165-170.
doi: 10.11733/j.issn.1007-0435.2001.03.002
Sun Q Z, Han J G, Gui R, Liu G R. Aboveground biomass and nutrient accumulation of Aohan alfalfa (Medicago sativa) in Horqin Sandy Land. Acta Agrest Sin, 2001, 9: 165-170 (in Chinese with English abstract).
[28] 余苗, 钟荣珍, 周道玮, 高凤仙. 虎尾草不同生育期营养成分及其在瘤胃的降解规律. 草地学报, 2014, 22: 175-181.
doi: 10.11733/j.issn.1007-0435.2014.01.027
Yu M, Zhong R Z, Zhou D W, Gao F X.Nutritional components at different growth stages and their rumen degradation patterns of Chloris virgata. Acta Agrest Sin, 2014, 22: 175-181 (in Chinese with English abstract).
[29] 于爱萍, 蒋昂辰, 张浩浩, 陈爱萍. 14份无芒雀麦种质农艺性状与生产性能的比较及综合评价. 草地学报, 2024, 32: 3205-3214.
doi: 10.11733/j.issn.1007-0435.2024.10.021
Yu A P, Jiang A C, Zhang H H, Chen A P. Comparison and comprehensive evaluation of agronomic traits and production performance of 14 smooth bromegrass (Bromus inermis) germplasms. Acta Agrest Sin, 2024, 32: 3205-3214 (in Chinese with English abstract).
[30] 赵牧其尔.紫花苜蓿品质和储能物质对其生产过程关键因素的响应机制. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2024.
Zhao M Q E. Response Mechanisms of Alfalfa (Medicago sativa) Quality and Reserve Substances to Key Factors in Production. PhD Dissertation of Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China, 2024 (in Chinese with English abstract).
[31] 郝裕辉, 李瑶, 唐凤, 张树振, 张博. 29份无芒雀麦种质资源农艺性状的遗传多样性. 草业科学, 2020, 37: 1770-1778.
Hao Y H, Li Y, Tang F, Zhang S Z, Zhang B. Genetic diversity of agronomic traits in 29 smooth bromegrass (Bromus inermis) germplasm resources. Pratac Sci, 2020, 37: 1770-1778 (in Chinese with English abstract).
[32] 刘万杰, 汪文成, 马利利, 李正鹏, 蒋福祯. 基于灰色关联分析对不同种植模式饲草生产性能的综合评价. 青海科技, 2021, 28(5): 63-71.
Liu W J, Wang W C, Ma L L, Li Z P, Jiang F Z. Comprehensive evaluation of forage production performance under different planting patterns based on grey relational analysis. Qinghai Sci Technol, 2021, 28(5): 63-71 (in Chinese with English abstract).
[1] 胡润慧, 汪军成, 司二静, 张宏, 李兴茂, 马小乐, 孟亚雄, 王化俊, 刘青, 姚立蓉, 李葆春. 小麦苗期耐旱耐盐种质筛选及抗旱耐盐综合评价[J]. 作物学报, 2025, 51(9): 2371-2386.
[2] 孟然, 李赵嘉, 冯薇, 陈悦, 刘路平, 杨春燕, 鲁雪林, 王秀萍. 大豆不同生育时期耐盐性综合评价及耐盐种质筛选[J]. 作物学报, 2025, 51(8): 1991-2008.
[3] 旺姆, 卓嘎, 扎桑, 西若曲宗, 达瓦顿珠, 郭刚刚, 张京, 卓嘎, 伦珠朗杰. 基于6个表型性状的青稞种质遗传多样性分析及综合评价[J]. 作物学报, 2025, 51(6): 1526-1537.
[4] 闫尚龙, 王琦明, 柴强, 殷文, 樊志龙, 胡发龙, 刘志鹏, 韦金贵. 绿洲灌区玉米籽粒产量及品质对密植及间作豌豆的响应[J]. 作物学报, 2025, 51(6): 1665-1675.
[5] 金欣欣, 宋亚辉, 苏俏, 杨永庆, 李玉荣, 王瑾. 冀花系列高油酸花生抗旱性鉴定与综合评价[J]. 作物学报, 2025, 51(3): 797-811.
[6] 陈于婷, 丁晓雨, 许本波, 张学昆, 徐劲松, 殷艳. 气候变暖对冬油菜产量、品质及重要农艺性状的影响[J]. 作物学报, 2025, 51(2): 516-525.
[7] 马群, 王志昊, 闫磊, 李瑜娇, 王佳琪, 李钊, 刘巍, 艾鑫, 马迁驰, 王晓光, 钟超, 任婧瑶, 刘喜波, 赵姝丽, 张鹤, 赵新华, 蒋春姬, 王婧, 于海秋. 高油酸和普通花生萌发期抗旱筛选评价体系的建立[J]. 作物学报, 2025, 51(12): 3266-3280.
[8] 蒋昂辰, 李琰, 李雨晨, 张晶, 陈爱萍. 21份无芒雀麦种质农艺性状及种子产量的综合评价与优异种质筛选[J]. 作物学报, 2025, 51(11): 2958-2970.
[9] 桂灵星, 凌溪铁, 唐兆成, 罗文臻, 朱盼珍, 仇泽宇, 张保龙. 宁麦36抗甲氧咪草烟矮秆突变体的鉴定及农艺性状分析[J]. 作物学报, 2025, 51(11): 2923-2932.
[10] 葛家豪, 雷欣月, 王清明, 韩慧冰, 李少飞, 王琦璇, 冯佰利, 高金锋. 苦荞苗期耐低磷种质筛选及耐低磷综合评价[J]. 作物学报, 2025, 51(11): 2911-2922.
[11] 姜骁, 赵健鑫, 毕竞男, 许静, 殷祥贞, 赵旭红, 潘丽娟, 陈娜, 马俊卿, 韩鹏, 杨珍, 迟晓元. 中国北方主产区主要地理和气候因子对花生农艺性状和品质的影响[J]. 作物学报, 2025, 51(10): 2805-2820.
[12] 聂波涛, 刘德泉, 陈健, 崔正果, 侯云龙, 陈亮, 邱红梅, 王跃强. 北方春大豆品种农艺和品质性状分析与综合评价[J]. 作物学报, 2024, 50(9): 2248-2266.
[13] 闫锋, 董扬, 李清泉, 赵富阳, 侯晓敏, 刘洋, 李青超, 赵蕾, 范国权, 刘凯. 谷子育成品种萌芽期耐冷性综合评价[J]. 作物学报, 2024, 50(9): 2207-2218.
[14] 李晓菲, 高华伟, 广慧, 石宇欣, 谷勇哲, 齐照明, 邱丽娟. 大豆种质资源萌发期耐莠去津鉴定评价及优异种质筛选[J]. 作物学报, 2024, 50(7): 1699-1709.
[15] 李长喜, 董占鹏, 关永虎, 刘金伟, 李航, 梅拥军. 南疆陆地棉农艺性状与皮棉产量性状的遗传贡献及决策系数分析[J]. 作物学报, 2024, 50(6): 1486-1502.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!