Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (03): 394-404.doi: 10.3724/SP.J.1006.2015.00394

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of PEBP Gene Family in Gossypium arboreum and Gossypium raimondii and Expression Analysis of the Gene family in Gossypium hirsutum

LI Chao1,ZHANG Yan-Nan1,LIU Huan-Long1,HUANG Xian-Zhong1,2,*   

  1. 1 Key Laboratory of Agrobiotechnology / College of Life Sciences, Shihezi University, Shihezi 832003, China; 2 Plant Genome Mapping Laboratory, University of Georgia, Athens 30605, GA, USA
  • Received:2014-09-10 Revised:2014-12-19 Online:2015-03-12 Published:2015-01-12
  • Contact: 黄先忠, E-mail: xianzhongh106@163.com, Tel: 0993-2057262 E-mail:chaoyue_014@163.com

Abstract:

The phosphatidylethanolamine-binding proteins (PEBP) widely exist in eukaryotes. In angiosperms, PEBP family genes play important roles in promoting or inhibiting flowering, as well as plant architecture control. Eight PEBP genes were identified from diploid cotton Gossypium arboreum (A2) and Gossypium raimondii (D5) genome database, respectively. All the PEBP genes of cotton contained four exons and three introns, and their encoded proteins contained a conserved PEBP motif and critical amino acid sites of PEBP family, which indicated there were at least eight PEBP genes in diploid cotton. Phylogenetic analysis showed that eight cotton PEBP genes comprised three subfamilies: FLOWERING LOCUS T (FT)-like containing one gene, TERMINAL FLOWER 1 (TFL1)-like containing five genes including three TFL1 and two BFT genes, and MOTHER OF FT AND TFL1 (MFT)-like containing two genes. The expression patterns of eight Gossypium hirsutum PEBP family genes in root, stem, leaf, shoot apical meristem, flower, ovule and 25 days post-anthesis (DPA) fiber were identified with quantitative Real-time reverse transcription PCR (qRT-PCR). The results showed that FT1 transcript was preferentially expressed in leaf and secondly in fiber, ovule and flower. MFT1 expressed in all the tissues, with the highest expression level in fiber, then in flower and leaf, while MFT2 transcript was preferentially expressed in leaf. TFL1a, TFL1b and TFL1c expressed mainly in root, and TFL1c also expressed in leaf, flower and ovule. Expression of BFT1 and BFT2 were present mainly in leaf, and that of BFT1 in the other six tissues except in shoot apical meristem (SAM) was higher than that of BFT2. Expression analysis revealed that eight PEBP genes in cotton have different expression patterns, showing their different functional roles in regulation of cotton development.

Key words: PEBP, Gossypium arboreum, Gossypium raimondii, Florigen, Gene expression

[1]Banfield M J, Barker J J, Perry A C, Brady R L. Function from structure? The crystal structure of human phosphatidylethanolamine-binding protein suggests a role in membrane signal transduction. Structure, 1998, 6: 1245–1254



[2]Hengst U, Albrecht H, Hess D, Monard D. The phosphatidylethanolamine-binding protein is the prototype of a novel family of serine protease inhibitors. J Biol Chem, 2001, 276: 535–540



[3]Chautard H, Jacquet M, Schoentgen F, Bureaud N, Bénédetti H. Tfs1p, a member of the PEBP family, inhibits the Ira2p but not the Ira1p Ras GTPase-activating protein in Saccharomyces cerevisiae. Eukaryot Cell, 2004, 3: 459–470



[4]Chardon F, Damerval C. Phylogenomic analysis of the PEBP gene family in cereals. J Mol Evol, 2005, 61: 579–590



[5]Li Q, Fan C, Zhang X, Wang X, Wu F, Hu R, Fu Y. Identification of a soybean MOTHER OF FT AND TFL1 homolog involved in regulation of seed germination. PLoS One, 2014, 9: e99642



[6]Xi W, Liu C, Hou X, Yu H. MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell, 2010, 22: 1733–1748



[7]Nakamura S, Abe F, Kawahigashi H, Nakazono K, Tagiri A, Matsumoto T, Utsugi S, Ogawa T, Handa H, Ishida H, Mori M, Kawaura K, Ogihara Y, Miura H. A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination. Plant Cell, 2011, 23: 3215–3229



[8]Karlgren A, Gyllenstrand N, Kallman T, Sundstrom J F, Moore D, Lascoux M, Lagercrantz U. Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution. Plant Physiol, 2011, 156: 1967–1977



[9]Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science, 2007, 316: 1030–1033



[10]Tamaki S, Matsuo S, Wong H, Yokoi S, Shimamoto K. Hd3a protein is a mobile flowering signal in rice. Science, 2007, 316: 1033–1036



[11]Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z, Alvarez J P, Eshed Y. The tomato FT ortholog triggers systemic signals that regulate growth and ?owering and substitute for diverse environmental stimuli. Proc Natl Acad Sci USA, 2006, 103: 6398–6403



[12]Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 2005, 309: 1052–1056



[13]Lin M K, Belanger H, Lee Y J, Varkonyi-Gasic E, Taoka K, Miura E, Xoconostle-Cázares B, Gendler K, Jorgensen R A, Phinney B, Lough T J, Lucas W J. FLOWRING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell, 2007, 19: 1488–1506



[14]Imamura T, Nakatsuka T, Higuchi A, Nishihara M, Takahashi H. The gentian orthologs of the FT/TFL1 gene family control floral initiation in Gentiana. Plant Cell Physiol, 2011, 52: 1031–1041



[15]Kotoda N, Hayashi H, Suzuki M, Igarashi M, Hatsuyama Y, Kidou S, Igasaki T, Nishiguchi M, Yano K, Shimizu T, Takahashi S, Iwanami H, Moriya S, Abe K. Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus × domestica Borkh). Plant Cell Physiol, 2011, 51: 561–575



[16]Harig L, Beinecke F A, Oltmanns J, Muth J, Müller O, Rüping B, Twyman R M, Fischer R, Prüfer D, Noll G A. Proteins from the FLOWERING LOCUS T-like subclade of the PEBP family act antagonistically to regulate floral initiation in tobacco. Plant J, 2012, 72: 908–921



[17]Pin P A, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen J J, Nilsson O. An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science, 2010, 330: 1397–1400



[18]Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E. Inflorescence commitment and architecture in Arabidopsis. Science, 1997, 275: 80–83



[19]Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, Coen E. Control of inflorescence architecture in Antirrhinum. Nature, 1996, 379: 791–797



[20]Hanzawa Y, Money T, Bradley D. A single amino acid converts a repressor to an activator of flowering. Proc Natl Acad Sci USA, 2005, 102: 7748–7753



[21]Ahn J H, Miller D, Winter V J, Banfield M J, Lee J H, Yoo S Y, Henz S R, Brady R L, Weigel D. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J, 2006, 25: 605–614



[22]Wendel J, Brubaker C, Alvarez I, Cronn R. Genetics and Genomics of Cotton. New York: Springer-Verlag, 2009. pp 3–22



[23]东锐, 院海英, 顾超, 郑银英, 黄先忠, 崔百明. 棉花GhFTL1基因的克隆及初步功能分析. 棉花学报, 2011, 23: 515–521



Dong R, Yuan H Y, Gu C, Zheng Y Y, Huang X Z, Cui B M. Clone and primary analysis of the function of GhFTL1 gene in cotton (Gossypium hirsutum). Cotton Sci, 2011, 23: 515–521 (in Chinese with English abstract)



[24]顾超, 李超, 李晓波, 肖向文, 崔百明, 黄先忠. 海岛棉GbMFT1基因的克隆及表达分析. 作物学报, 2013, 39: 1391–1399



Gu C, Li C, Li X B, Xiao X W, Cui B M, Huang X Z. Cloning and expression analysis of GbMFT1 gene in Gossypium barbadense L. Acta Agron Sin, 2013, 39: 1391–1399 (in Chinese with English abstract)



[25]顾超, 郭丹丽, 张峰, 李雪源, 艾先涛, 黄先忠. 海岛棉GbMFT2基因的克隆及表达分析. 棉花学报, 2014, 26: 197–203



Gu C, Guo D L, Zhang F, Li X Y, Ai X T, Huang X Z. Cloning and expression analysis of GbMFT2 gene in Gossypium barbadense L. Cotton Sci, 2014, 26: 197–203 (in Chinese with English abstract)



[26]Argiriou A, Michailidis G, Tsaftaris A S. Characterization and expression analysis of TERMINAL FLOWER1 homologs from cultivated alloteraploid cotton (Gossypium hirsutum) and its diploid progenitors. J Plant Physiol, 2008, 165: 1636–1646



[27]Wang K B, Wang Z W, Li F G, Ye W W, Wang J Y, Song G L, Yue Z, Cong L, Shang H H, Zhu S L, Zou C S, Li Q, Yuan Y L, Lu C R, Wei H L, Gou C Y, Zheng Z Q, Yin Y, Zhang X Y, Liu K, Wang B, Song C, Shi N, Kohel R J, Percy R G, Yu J Z, Zhu Y X, Wang J, Yu S X. The draft genome of a diploid cotton Gossypium raimondii. Nat Genet, 2012, 44: 1098–1103



[28]Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q, Ma Z, Lu C, Zou C, Chen W, Liang X, Shang H, Liu W, Shi C, Xiao G, Gou C, Ye W, Xu X, Zhang X, Wei H, Li Z, Zhang G, Wang J, Liu K, Kohel R J, Percy R G, Yu J Z, Zhu Y X, Wang J, Yu S X. Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet, 2014, 46: 567–572



[29]Finn R D, Bateman A, Clements J, Coggill P, Eberhardt R Y, Eddy S R, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer E L, Tate J, Punta M. Pfam: the protein families database. Nucl Acids Res, 2014, 42: 222–230



[30]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011, 28: 2731–2739



[31]Wendel J F, Schnabel A, Seelanan T. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci USA, 1995, 92: 280–284

[1] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[2] JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623.
[3] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[4] CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487.
[5] WANG Yan-Peng, LING Lei, ZHANG Wen-Rui, WANG Dan, GUO Chang-Hong. Genome-wide identification and expression analysis of B-box gene family in wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1437-1449.
[6] SONG Tian-Xiao, LIU Yi, RAO Li-Ping, Soviguidi Deka Reine Judesse, ZHU Guo-Peng, YANG Xin-Sun. Identification and expression analysis of cell wall invertase IbCWIN gene family members in sweet potato [J]. Acta Agronomica Sinica, 2021, 47(7): 1297-1308.
[7] QIN Tian-Yuan, LIU Yu-Hui, SUN Chao, BI Zhen-Zhen, LI An-Yi, XU De-Rong, WANG Yi-Hao, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StIgt gene family and expression profile analysis of response to drought stress in potato [J]. Acta Agronomica Sinica, 2021, 47(4): 780-786.
[8] LI Peng, LIU Che, SONG Hao, YAO Pan-Pan, SU Pei-Lin, WEI Yao-Wei, YANG Yong-Xia, LI Qing-Chang. Identification and analysis of non-specific lipid transfer protein family in tobacco [J]. Acta Agronomica Sinica, 2021, 47(11): 2184-2198.
[9] HUANG Su-Hua, LIN Xi-Yue, LEI Zheng-Ping, DING Zai-Song, ZHAO Ming. Physiological characters of carbon, nitrogen, and hormones in ratooning rice cultivars with strong regeneration ability [J]. Acta Agronomica Sinica, 2021, 47(11): 2278-2289.
[10] Xiao-Yang WANG,Li-Yuan WANG,Zhao-E PAN,Shou-Pu HE,Xiao WANG,Wen-Fang GONG,Xiong-Ming DU. Analysis of differentially expressed genes and fiber development in Gossypium arboreum fuzzless mutant [J]. Acta Agronomica Sinica, 2020, 46(5): 645-660.
[11] MI Wen-Bo, FANG Yuan, LIU Zi-Gang, XU Chun-Mei, LIU Gao-Yang, ZOU Ya, XU Ming-Xia, ZHENG Guo-Qiang, CAO Xiao-Dong, FANG Xin-Ling. Differential proteomics analysis of fertility transformation of the winter rape thermo-sensitive sterile line PK3-12S (Brassica rapa L.) [J]. Acta Agronomica Sinica, 2020, 46(10): 1507-1516.
[12] JIN Shu-Rong,WANG Yan-Mei,CHANG Yue,WANG Yue-Hua,LI Jia-Na,NI Yu. Activity and gene family expression of β-amylase in Brassica napus differing in harvest index [J]. Acta Agronomica Sinica, 2019, 45(8): 1279-1285.
[13] Hong-Ju JIAN,Bo YANG,Yang-Yang LI,Hong YANG,Lie-Zhao LIU,Xin-Fu XU,Jia-Na LI. Identification and expression analysis of PEBP gene family in oilseed rape [J]. Acta Agronomica Sinica, 2019, 45(3): 354-364.
[14] Tao FENG,Chun-Yun GUAN. Cloning and characterization of phytochrome interacting factor 4 (BnaPIF4) gene from Brassica napus L. [J]. Acta Agronomica Sinica, 2019, 45(2): 204-213.
[15] Jing ZHAO,Xu-Tong LI,Xue-Zhong LIANG,Zhi-Cheng WANG,Jing CUI,Bin CHEN,Li-Qiang WU,Xing-Fen WANG,Gui-Yin ZHANG,Zhi-Ying MA,Yan ZHANG. Genome-wide identification of Laccase gene family in update G. hirsutum L. genome and expression analysis under V. dahliae stress [J]. Acta Agronomica Sinica, 2019, 45(12): 1784-1795.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!