Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (12): 2162-2170.doi: 10.3724/SP.J.1006.2013.02162
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
TAN Qin-Liang1,LI Chang-Ning1,2,YANG Li-Tao1,2,*,LI Yang-Rui1,2,*
[1]Pei L-L(裴丽丽), Guo Y-H(郭玉华), Xu Z-S(徐兆师), Li L-C(李连城), Chen M(陈明), Ma Y-Z(马有志). Research progress on stress-related protein kinases in plants. Acta Bot Boreali-Occident Sin (西北植物学报), 2012, 32(5): 1052–1061 (in Chinese with English abstract)[2]Coello P, Hey S J, Halford N G. The sucrose non-fermenting-1-related(SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield. J Exp Bot, 2011, 62: 883–893[3]Li L(李琳), Liu S-K(柳参奎). The SnRK protein kinase family and the Function of SnRK2 protein kinase. Mol Plant Breed (分子植物育种), 2010, 8(3): 547–555 (in Chinese with English abstract)[4]Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F, Aronso J, Ecker J R, Shinozaki K. ABA-activated SnRK2 protein kinase is required for dehydration stress signling in Arabidopsis. Plant Cell Physiol, 2002, 43: 1473–1483[5]Hrabak E M, Chan C W M, Gribskov M, Harper J F, Choi J H, Halford N, Kudla J, Luan S, Nimmo H G, Sussman M R, Thomas M, Walker-Simmons K, Zhu J K, Harmon A C. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol, 2003, 132: 666–680 [6]Raghavendra A S, Gonugunta V K, Christmann A, Grill E. ABA perception and signalling. Trends Plant Sci, 2010, 15: 395–401[7]Cutler S R, Rodriguez P L, Finkelstein R R, Abrams S R. Abscisic acid:emergence of a core signaling network. Annu Rev Plant Biol, 2010, 61: 651–679[8]Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci USA, 2009, 106, 17588–17593[9]Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J, 2010, 61, 672–685[10]Sirichandra C, Davanture M, Turk B E, Zivy M, Valot B, Leung J, Merlot S. The Arabidopsis ABA activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 1433 binding site involved in its turnover. PLoS ONE, 2010, 5, e13935[11]Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park S Y, Cutler S R, Sheen J, Rodriguez P L, Zhu J K. In vitro reconstitution of an abscisic acid signaling pathway. Nature, 2009, 462, 660–664[12]Fujii H, Verslues P E, Zhu J K. Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc Natl Acad Sci USA, 2011, 108: 1717–1722[13]Zhang H Y, Mao X G, Zhang J N, Chang X P, Wang C S, Jing R L. Genetic diversity analysis of abiotic stress response gene TaSnRK2.7-A in common wheat. Genetica, 2011, 139: 743–753[14]Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, and Hattori T. Abscisic acid-activated SnRK2 protein kinases function in the gene-regulation path way of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J, 2005, 44: 939–949[15]Li J-X, Wang X-Q, Watson M B, Assmann S M. Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science, 2000, 287: 300–303[16]Mustilli A C, Merlot S, Vavasseur A, Fenzi F, Giraudat J. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell, 2002, 14: 3089–3099[17]Soon F F, Ng L M, Zhou X E, West G M, Kovach A, Tan MHE, Suino-Powell K M, He Y Z, Xu Y, Chalmers M J, Brunzelle J S, Zhang H M, Yang H Y, Jiang H L, Li J, Yong E L, Cutler S, Zhu J K, Griffin P R, Melcher K, Xu H E. Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science, 2012, 335: 85–88[18]Zheng Z F, Xu X P, Crosley R A, Greenwalt S A, Sun Y, Blakeslee B, Wang L, Ni W, Sopko M S, Yao C, Yau K, Burton S, Zhuang M, McCaskill D G, Gachotte D, Thompson M, Greene T W. The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in Arabidopsis. Plant Physiol, 2010, 153: 99–113[19]Umezawa T, Yoshida R, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K. SRK2C, a SNF1-related protein kinase improves drought tolerance by controlling stress responsive gene expression in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2004, 101: 17306–17311[20]Zhang H, Mao X, Wang C, Jing R. Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt,and low temperature in Arabidopsis. PloS ONE, 2010, 5(12): e16041[21]Monks D E, Aghoram K, Courtney P D, DeWald D B, Dewey R E. Hyperosmotic stress induces the rapid phosphorylation of a soybean phosphatidylinositol transfer protein homolog through activation of the protein kinases SPK1 and SPK2. Plant Cell, 2001, 13: 1205–1219[22]Yoon H W, Kim M C, Shin P G, Kin J S, Kin C Y, Lee S Y, Hwang I, Bank J D, Hong J C, Han C, Cho M J. Differential expression of two functional serine/threo-nine protein kinases from soybean that have an unusual acidic domain at the carboxy terminus. Mol Gen Genet, 1997, 255: 359–371 [23]Iskandar H M, Simpson R S, Casu R E, Bonnett G D, Maclean D J, Manners J M. Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane. Plant Mol Biol Rep, 2004, 22: 325–337 [24]Miyazono K I, Miyakawa T, Sawano Y, Kubota K, Kang H J, Asano A, Miyauchi Y, Takahashi M, Zhi Y H, Fujita Y, Yoshida T, Kodaira K S, Yamaguchi-Shinozaki K, Tanokura M. Structural basis of abscisic acid signaling. Nature, 2009, 462: 609-614[25]Nishimura N, Hitomi K, Arvai A S, Rambo R P, Hitomi C, Cutler S R, Schroeder J I, Getzoff E D. Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science, 2009, 326: 1373–1379[26]Santiago J, Dupeux F, Betz K, Antoni R, Gonzalez Guzman M, Rodriguez L, Márquez J A, Rodriguez P L. Structural insights into PYR/PYL/RCAR ABA receptors and PP2Cs. Plant Science, 2012, 182: 3–11[27]Yin P, Fan H, Hao Q, Yuan X Q, Wu D, Pang Y X, Yan C Y, Li W Q, Wang J W, Yan N. Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat Struct Mol Biol, 2009, 16: 1230–1236[28]Raghavendra A S, Gonugunta V K, Christmann A, Grill E. ABA perception and signalling. Trends Plant Sci, 2010, 15: 395–401[29]Cutler S R, Rodriguez P L, Finkelstein R R, Abrams S R. Abscisic acid emergence of a core signaling network. Annu Rev Plant Biol, 2010, 61: 651–679[30]Kagaya Y, Hobo T, Murata M, Ban A, Hattori T. Abscisic acid-induced transcription is mediated by phospho-rylation of an abscisic acid response element binding factor, TRAB1. Plant Cell, 2002, 14: 3177–3189[31]Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. Abscisic acid-dependent multisite phosphorylation regulates the ac-tivity of a transcription activator AREB1, Proc Natl Aca Sci USA, 2006, 103: 1988–1993[32]Johnson G L, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 2002, 298: 1911–1912[33]Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, Hattori T. Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J, 2005, 44: 939–949[34]Li L B(李利斌), LiuK C(刘开昌), Li X G(李现刚). Identification and characteristic analysis of three novel SnRK2 genes of maize. Shandong Agric Sci (山东农业科学), 2009, (12): 7–11 (in Chinese with English abstract)[35]Anderberg R J, Walker-Simmons M K. Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. Proc Natl Acad Sci USA, 1992, 89: 10183–10187[36]Li J X, Wang X Q, Watson M B, Assmann S M. Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science, 2000, 287: 300–303[37]Yoshida R, Hobo T, Ichimura K, Mizoguchi T, Takahashi F, Aronso J, Ecker J R. Shinozaki K.ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol, 2002, 43: 1473–1483 |
[1] | CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324. |
[2] | XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234. |
[3] | ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026. |
[4] | KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872. |
[5] | YANG Zong-Tao, LIU Shu-Xian, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2 [J]. Acta Agronomica Sinica, 2022, 48(2): 332-341. |
[6] | XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120. |
[7] | YU Guo-Wu, QING Yun, HE Shan, HUANG Yu-Bi. Preparation and application of polyclonal antibody against SSIIb protein from maize [J]. Acta Agronomica Sinica, 2022, 48(1): 259-264. |
[8] | ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, LIU Shu-Xian, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane PsbR subunit response to SCMV infection and its interaction with SCMV-6K2 [J]. Acta Agronomica Sinica, 2021, 47(8): 1522-1530. |
[9] | SU Ya-Chun, LI Cong-Na, SU Wei-Hua, YOU Chui-Huai, CEN Guang-Li, ZHANG Chang, REN Yong-Juan, QUE You-Xiong. Identification of thaumatin-like protein family in Saccharum spontaneum and functional analysis of its homologous gene in sugarcane cultivar [J]. Acta Agronomica Sinica, 2021, 47(7): 1275-1296. |
[10] | TANG Rui-Min, JIA Xiao-Yun, ZHU Wen-Jiao, YIN Jing-Ming, YANG Qing. Cloning of potato heat shock transcription factor StHsfA3 gene and its functional analysis in heat tolerance [J]. Acta Agronomica Sinica, 2021, 47(4): 672-683. |
[11] | WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586. |
[12] | YUE Jie-Ru, BAI Jian-Fang, ZHANG Feng-Ting, GUO Li-Ping, YUAN Shao-Hua, LI Yan-Mei, ZHANG Sheng-Quan, ZHAO Chang-Ping, ZHANG Li-Ping. Cloning and potential function analysis of ascorbic peroxidase gene of hybrid wheat in seed aging [J]. Acta Agronomica Sinica, 2021, 47(3): 405-415. |
[13] | ZHANG Rong-Yue, WANG Xiao-Yan, YANG Kun, SHAN Hong-Li, CANG Xiao-Yan, LI Jie, WANG Chang-Mi, YIN Jiong, LUO Zhi-Ming, LI Wen-Feng, HUANG Ying-Kun. Identification of brown rust resistance and molecular detection of Bru1 gene in new and main cultivated sugarcane varieties [J]. Acta Agronomica Sinica, 2021, 47(2): 376-382. |
[14] | CANG Xiao-Yan, XIA Hong-Ming, LI Wen-Feng, WANG Xiao-Yan, SHAN Hong-Li, WANG Chang-Mi, LI Jie, ZHANG Rong-Yue, HUANG Ying-Kun. Evaluation of natural resistance to smut in elite sugarcane varieties (lines) [J]. Acta Agronomica Sinica, 2021, 47(11): 2290-2296. |
[15] | YANG Qin-Li, YANG Duo-Feng, DING Lin-Yun, ZHANG Ting, ZHANG Jun, MEI Huan, HUANG Chu-Jun, GAO Yang, YE Li, GAO Meng-Tao, YAN Sun-Yi, ZHANG Tian-Zhen, HU Yan. Identification of a cotton flower organ mutant 182-9 and cloning of candidate genes [J]. Acta Agronomica Sinica, 2021, 47(10): 1854-1862. |
|