Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (08): 1392-1402.doi: 10.3724/SP.J.1006.2014.01392

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning of Autophagy-Related Genes, ATG10s, in Wheat and Their Expression Characteristics Induced by Blumeria graminis f. sp. tritici

ZHANG Wei1,SUN Hong1,WEI Xiao-Jing1,XING Li-Ping2,WANG Hua-Zhong1,*   

  1. 1 School of Life Sciences, Tianjin Normal University / Tianjin Key Laboratory of Animals and Plants Resistance, Tianjin 300387, China; 2 National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2013-11-20 Revised:2014-04-16 Online:2014-08-12 Published:2014-06-03
  • Contact: 王华忠, E-mail: skywhz@mail.tjnu.edu.cn

Abstract:

Autophagy, a conserved eukaryotic cellular process functioning in material decomposition and nutrient recycling, is deeply involved in plant growth, development, and response to stresses. ATG10 is one of the key factors required in autophagosome formation. In this study, we identified three members (TaATG10a, TaATG10b, and TaATG10c) of the ATG10 family in common wheat 92R137/Yangmai 1587 induced by Blumeria graminis f. sp. tritici for 48 h, using homologous cloning technique. The three TaAGT10s shared high similarity with their counterparts from other model plants. Expression of TaATG10a or TaATG10b rescued the autophagy process in ATG10-defective yeast mutant, suggesting that both genes are functional homologues of yeast ATG10. TaATG10a and TaATG10b had similar gene models containing six exons and five introns, and both had two alternatively-spliced mRNA isoforms according to RT-PCR assay. TaATG10a- and TaATG10b-GFP fusion structures were located in cytosol of onion epidermal cells. The expression of TaATG10a and TaATG10b was induced by the infection of Blumeria graminis f. sp. tritici (Bgt), implying that TaATG10s and their involved autophagy process are implicated in the wheat immune response to Bgt. This implication is very complex because the regulated expression profiles of TaATG10a and TaATG10b are different between resistant and susceptible reactions, between different types of resistance gene-mediated immune reactions, and between susceptible reactions on different genetic backgrounds. Besides, exogenous phytohormones also modulated TaATG10a and TaATG10b expressions. The difference of Bgt immune reaction between the resistant and susceptible genotypes might result partially from the different response patterns of TaATG10sto exogenous salicylic acid, ethylene, or abscisic acid.

Key words: Triticum aestivum L., Autophagy-related genes, Powdery mildew

[1]Yoshimoto K. Beginning to understand autophagy: an intracellular self-degradation system in plants. Plant Cell Physiol, 2012, 53: 1355–1365



[2]Liu Y, Bassham D C. Autophagy: pathways for self-eating in plant cells. Annu Rev Plant Biol, 2012, 63: 215–237



[3]Majeski A E, Dice J F. Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol, 2004, 36: 2435–2444



[4]Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett, 1993, 333: 169–174



[5]Thumm M, Egner R, Koch B, Schlumpberger M, Straub M, Veenhuis M, Wolf D H. Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett, 1994, 349: 275–280



[6]Kim S H, Kwon C, Lee J H, Chung T. Genes for plant autophagy: functions and interactions. Mol Cells, 2012, 34: 413–423



[7]王燕, 刘玉乐. 植物细胞自噬研究进展. 中国细胞生物学学报, 2010, 32: 677–689



Wang Y, Liu Y L. Progress in plant autophagy. Chin J Cell Biol, 2010, 32: 677–689 (in Chinese with English abstract)



[8]Ohsumi Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol, 2001, 2: 211–216



[9]Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George M D, Klionsky D J, Ohsumi M, Ohsumi Y. A protein conjugation system essential for autophagy. Nature, 1998, 395: 395–398



[10]Hanada T, Noda N N, Satomi Y, Ichimura Y, Fujioka Y, Takao T, Inagaki F, Ohsumi Y. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem, 2007, 282: 37298–37302



[11]Chung T, Phillips A R, Vierstra R D. ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A and ATG12B loci. Plant J, 2010, 62: 483–493



[12]Phillips A R, Suttangkakul A, Vierstra R D. The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics, 2008, 178: 1339–1353



[13]Lenz H D, Haller E, Melzer E, Gust A A, Nürnberger T. Autophagy controls plant basal immunity in a pathogenic lifestyle-dependent manner. Autophagy, 2011, 7: 773–774



[14]Lenz H D, Haller E, Melzer E, Kober K, Wurster K, Stahl M, Bassham D C, Vierstra R D, Parker J E, Bautor J, Molina A, Escudero V, Shindo T, van der Hoorn R A, Gust A A, Nürnberger T. Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. Plant J, 2011, 66: 818–830



[15]Shin J H, Yoshimoto K, Ohsumi Y, Jeon J S, An G. OsATG10b, an autophagosome component, is needed for cell survival against oxidative stresses in rice. Mol Cells, 2009, 27: 67–74



[16]Seay M, Patel S, Dinesh-Kumar S P. Autophagy and plant innate immunity. Cell Microbiol, 2006, 8: 899–906



[17]Hayward A P, Tsao J, Dinesh-Kumar S P. Autophagy and plant innate immunity: defense through degradation. Semin Cell Dev Biol, 2009, 20: 1041–1047



[18]Wang Y, Nishimura M T, Zhao T, Tang D. ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant J, 2011, 68: 74–87



[19]Scott A, Wyatt S, Tsou P L, Robertson D, Allen N S. Model system for plant cell biology: GFP imaging in living onion epidermal cells. Biotechniques, 1999, 26: 1125–1132



[20]Gietz R D, Schiestl R H. Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc, 2007, 2: 35–37



[21]Fujiki Y, Yoshimoto K, Ohsumi Y. An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. Plant Physiol, 2007, 143: 1132–1139



[22]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods, 2001, 25: 402–408



[23]Brenchley R, Spannagl M, Pfeifer M, Barker G L, D’Amore R, Allen A M, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo M C, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie W R, Hall A, Mayer K F, Edwards K J, Bevan M W, Hall N. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature, 2012, 491: 705–710



[24]Ling H Q, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S, Wang B, Yu K, Liang Q, Yang W, Lou X, Chen J, Feng M, Jian J, Zhang X, Luo G, Jiang Y, Liu J, Wang Z, Sha Y, Zhang B, Wu H, Tang D, Shen Q, Xue P, Zou S, Wang X, Liu X, Wang F, Yang Y, An X, Dong Z, Zhang K, Zhang X, Luo M C, Dvorak J, Tong Y, Wang J, Yang H, Li Z, Wang D, Zhang A, Wang J. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature, 2013, 496: 87–90



[25]Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X, Jing R, Zhang C, Ma Y, Gao L, Gao C, Spannagl M, Mayer K F, Li D, Pan S, Zheng F, Hu Q, Xia X, Li J, Liang Q, Chen J, Wicker T, Gou C, Kuang H, He G, Luo Y, Keller B, Xia Q, Lu P, Wang J, Zou H, Zhang R, Xu J, Gao J, Middleton C, Quan Z, Liu G, Wang J; International Wheat Genome Sequencing Consortium, Yang H, Liu X, He Z, Mao L, Wang J. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 2013, 496: 91–95



[26]Kaiser S E, Qiu Y, Coats J E, Mao K, Klionsky D J, Schulman B A. Structures of Atg7-Atg3 and Atg7-Atg10 reveal noncanonical mechanisms of E2 recruitment by the autophagy E1. Autophagy, 2013, 9: 778–780



[27]Hanaoka H, Noda T, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Ohsumi Y. Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol, 2002, 129: 1181–1193



[28]Ketelaar T, Voss C, Dimmock S A, Thumm M, Hussey P J. Arabidopsis homologues of the autophagy protein Atg8 are a novel family of microtubule binding proteins. FEBS Lett, 2004, 567: 302–306



[29]Liu Y, Schiff M, Czymmek K, Tallóczy Z, Levine B, Dinesh-Kumar S P. Autophagy regulates programmed cell death during the plant innate immune response. Cell, 2005, 121: 567–577



[30]Mansilla Pareja M E, Colombo M I. Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms. Front Cell Infect Microbiol, 2013, 3: 54



[31]Hofius D, Schultz-Larsen T, Joensen J, Tsitsigiannis D I, Petersen N H, Mattsson O, Jørgensen L B, Jones J D, Mundy J, Petersen M. Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell, 2009, 137: 773–783



[32]章珍, 刘新红, 翟洪翠, 王华忠. 小麦Pm21 基因调控的白粉菌早期侵染抑制和寄主细胞反应. 作物学报, 2011, 37: 67–73



Zhang Z, Liu X H, Zhai H C, Wang H Z. Primary infection suppression of Blumeria graminis f. sp. tritici and host cell responses regulated by Pm21 gene in wheat. Acta Agron Sin, 2011, 37: 67-73 (in Chinese with English abstract)



[33]曹学仁, 周益林, 段霞瑜, 宋玉立, 何文兰, 丁克坚, 王保通, 夏先春. 我国主要麦区101个小麦品种(系)的抗白粉病基因推导. 麦类作物学报, 2010, 30: 948–953



Cao X R, Zhou Y L, Duan X Y, Song Y L, He W L, Ding K J, Wang B T, Xia X C. Postulation of wheat powdery mildew resistance genes in 101 wheat cultivars (lines) from major wheat regions in china. J Triticeae Crops, 2010, 30: 948–953 (in Chinese with English abstract)



[34]Thomma B P, Penninckx I A, Broekaert W F, Cammue B P. The complexity of disease signaling in Arabidopsis. Curr Opin Immunol, 2001, 13: 63–68



[35]Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol, 2005, 43: 205–227



[36]Ton J, Flors V, Mauch-Mani B. The multifaceted role of ABA in disease resistance. Trends Plant Sci, 2009, 14: 310–317



[37]Chen Y J, Perera V, Christiansen M W, Holme I B, Gregersen P L, Grant M R, Collinge D B, Lyngkjær M F. The barley HvNAC6 transcription factor affects ABA accumulation and promotes basal resistance against powdery mildew. Plant Mol Biol, 2013, 83: 577–590



[38]Wawrzynska A, Christiansen K M, Lan Y, Rodibaugh N L, Innes R W. Powdery mildew resistance conferred by loss of the ENHANCED DISEASE RESISTANCE1 protein kinase is suppressed by a missense mutation in KEEP ON GOING, a regulator of abscisic acid signaling. Plant Physiol, 2008, 148: 1510–1522



[39]Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K. Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell, 2009, 21: 2914–2927

[1] SHI Yu-Qin, SUN Meng-Dan, CHEN Fan, CHENG Hong-Tao, HU Xue-Zhi, FU Li, HU Qiong, MEI De-Sheng, LI Chao. Genome editing of BnMLO6 gene by CRISPR/Cas9 for the improvement of disease resistance in Brassica napus L [J]. Acta Agronomica Sinica, 2022, 48(4): 801-811.
[2] LI Qing-Cheng,HUANG Lei,LI Ya-Zhou,FAN Chao-Lan,XIE Die,ZHAO Lai-Bin,ZHANG Shu-Jie,CHEN Xue-Jiao,NING Shun-Zong,YUAN Zhong-Wei,ZHAN Lian-Quan,LIU Deng-Cai,HAO Ming. Genetic stability of wheat-rye 6RS/6AL translocation chromosome and its transmission through gametes [J]. Acta Agronomica Sinica, 2020, 46(4): 513-519.
[3] CHEN Fang,QIAO Lin-Yi,LI Rui,LIU Cheng,LI Xin,GUO Hui-Juan,ZHANG Shu-Wei,CHANG Li-Fang,LI Dong-Fang,YAN Xiao-Tao,REN Yong-Kang,ZHANG Xiao-Jun,CHANG Zhi-Jian. Genetic analysis and chromosomal localization of powdery mildew resistance gene in wheat germplasm CH1357 [J]. Acta Agronomica Sinica, 2019, 45(10): 1503-1510.
[4] WU Qiu-Hong,CHEN Yong-Xing,LI Dan,WANG Zhen-Zhong,ZHANG Yan,YUAN Cheng-Guo,WANG Xi-Cheng,ZHAO Hong,CAO Ting-Jie,LIU Zhi-Yong. Large Scale Detection of Powdery Mildew Resistance Genes in Wheat via SNP and Bulked Segregate Analysis [J]. Acta Agron Sin, 2018, 44(01): 1-14.
[5] LIU Chang,LI Shi-Jin,WANG Ke,YE Xing-Guo,LIN Zhi-Shan*. Developing of Specific Transcription Sequences P21461 and P33259 on D. villosum 6VS and Their Application of Molecular Markers in Identifying Wheat-D. villosum Breeding Materials with Powdery Mildew Resistance [J]. Acta Agron Sin, 2017, 43(07): 983-992.
[6] ZOU Jing-Wei,QIU Dan,SUN Yan-Ling,ZHENG Chao-Xing,LI Jing-Ting,WU Pei-Pei,WU Xiao-Fei,WANG Xiao-Ming,ZHOU Yang,LI Hong-Jie . Pm52: Effectiveness of the Gene Conferring Resistance to Powdery Mildew in Wheat Cultivar Liangxing 99 [J]. Acta Agron Sin, 2017, 43(03): 332-342.
[7] FU Bi-Sheng,LIU Ying,ZHANG Qiao-Feng,WU Xiao-You,GAO Hai-Dong,CAI Shi-Bin,DAI Ting-Bo,WU Ji-Zhong. Development of Markers Closely Linked with Wheat Powdery Mildew Resistance Gene Pm48 [J]. Acta Agron Sin, 2017, 43(02): 307-312.
[8] XU Wen,SHEN Hao,GUO Jun,YU Xiao-Cong,LI Xiang,YANG Yan-Hui,MA Xiao,ZHAO Shi-Jie,SONG Jian-Min. Drought Resistance of Wheat NILs with Different Cuticular Wax Contents in Flag Leaf [J]. Acta Agron Sin, 2016, 42(11): 1700-1707.
[9] LI Wen-Shuang,XIA Xian-Chun,HE Zhong-Hu. Establishment of Ultra Performance Liquid Chromatography (UPLC) Protocol for Analyzing Carotenoids in Common Wheat [J]. Acta Agron Sin, 2016, 42(05): 706-713.
[10] WANG Hai-Yan,XIAO Jin,YUAN Chun-Xia,XU Tao,YU Chun-Yan,SUN Hao-Jie,CHEN Pei-Du, WANG Xiu-E*. Transmission and Genetic Stability of No-homoeologous Small Fragment Wheat–Haynaldia villosa Translocation Chromosomes with Pm21 in Various Cultivar Backgrounds of Common Wheat [J]. Acta Agron Sin, 2016, 42(03): 361-367.
[11] ZHAO De-Hui,YAN Jun,HUANG Yu-Lian,XIA Xian-Chun,ZHANG Yan,TIAN Yu-Bing,HE Zhong-Hu,ZHANG Yong. Effect of 1BL/1RS Translocation on Gluten Protein Fraction Quantities and Dough Rheological Properties [J]. Acta Agron Sin, 2015, 41(11): 1648-1656.
[12] LIU Jin-Dong,YANG En-Nian,XIAO Yong-Gui,CHEN Xin-Min,WU Ling,BAI Bin,LI Zai-Feng,Garry M. ROSEWARNE,XIA Xian-Chun,HE Zhong-Hu. Development, Field and Molecular Characterization of Advanced Lines with Pleiotropic Adult-Plant Resistance in Common Wheat [J]. Acta Agron Sin, 2015, 41(10): 1472-1480.
[13] GUAN Chang-Ying,GUO Jun,XUE Feng-Bo,ZHANG Guang-Xu,WANG Hong-Wei,LI An-Fei,KONG Ling-Rang. Molecular Mapping of Powdery Mildew Resistance Gene MlDH155 in Hexaploid Wheat DH155 and Its Transfer by Marker Assisted Selection [J]. Acta Agron Sin, 2015, 41(08): 1183-1190.
[14] CAO Ting-Jie,CHEN Yong-Xing,LI Dan,ZHANG Yan,WANG Xi-Cheng,ZHAO Hong,LIU Zhi-Yong. Identification and Molecular Detection of Powdery Mildew Resistance of New Bred Wheat Varieties (Lines) in Henan Province, China [J]. Acta Agron Sin, 2015, 41(08): 1172-1182.
[15] SUN Xi-Ying,CUI Lei,SUN Lei,SUN Yan-Ling,QIU Dan,ZOU Jing-Wei,WU Xiao-Fei,WANG Xiao-Ming,LI Hong-Jie. Development and Identification of Wheat Lines H3714 and H4058 Resistant to Cereal Cyst Nematode [J]. Acta Agron Sin, 2015, 41(06): 872-880.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!