Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (10): 1639-1646.doi: 10.3724/SP.J.1006.2020.04056

• RESEARCH NOTES • Previous Articles    

Development and application of the marker for imidazolinone-resistant gene in Brassica napus

HU Mao-Long1,2(), CHENG Li1, GUO Yue1, LONG Wei-Hua1, GAO Jian-Qin1, PU Hui-Ming1,*(), ZHANG Jie-Fu1,2, CHEN Song1   

  1. 1 Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences / Nanjing Sub-center, National Center of Oil Crops Improvement / Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs / Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences / Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210014, Jiangsu, China
    2 Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
  • Received:2020-03-02 Accepted:2020-06-02 Online:2020-10-12 Published:2020-06-14
  • Contact: Hui-Ming PU E-mail:humolon@163.com;puhuiming@126.com
  • Supported by:
    National Key Research and Development Program of China(2016YFD0101300);National Natural Science Foundation of China(31671731);National Natural Science Foundation of China(31901503);China Agricultural Research System(CARS-13);Natural Science Foundation of Jiangsu Province(BK20190267)

Abstract:

Weed damage is one of the most important factors restricting the development of rapeseed production in China. Cultivation of herbicide-resistant varieties combined with chemical herbicides was an extremely effective help to control field weed in rapeseed production. To accelerate the breeding of cultivars with resistance imidazolinone herbicides through molecular marker-assisted selection in Brassica napus, the simplest, most cost-effective and high-throughput KASP markers were developed by using a SNP mutation at 1913 bp position of ALS (acetolactate synthase) gene in the mutant M9. A polymorphic marker designed KBA1R19681913B was obtained to effectively distinguish the homozygous resistant M9 from susceptible rapeseeds. Meanwhile, the KASP marker was evaluated in two F2 populations and could effectively discriminate three genotypes. F2 populations gave a good fit to the expected 1:2:1 ratio, confirming a single gene Mendel model with the perfect matched between phenotyping and genotyping. About more than two hundred homozygous restoring lines containing BnALS1R were developed through KASP marker selection in multi-generation backcross and showed stable imidazolinone herbicide resistance. This functional marker can also be used to identify the purity of hybrid seeds at the seedling stage. In conclusion, the validated KASP marker KBA1R19681913B would provide a technical support for developing herbicide-resistant rapeseed in marker-assisted selection and identification of resistant germplasm.

Key words: weed damage, rapeseed (Brassica napus L.), marker-assisted selection, imidazolinone herbicides, KASP marker

Table 1

KASP primers of the herbicide-resistant gene BnALS1R"

KASP名称KASP ID 引物Primer (5°-3°)
KBA1R19681913A X-allele: AACATGTGTTACCGATGATCCCAAG
Y-allele: GAACATGTGTTACCGATGATCCCAAA
Common: CTTAGTGCGACCATCCCCTTCT
KBA1R19681913B X-allele: TATTACATCTTTGAAAGTGCCACCAC
Y-allele: GTTATTACATCTTTGAAAGTGCCACCAT
Common: CAGGACCATACCTGTTGGATGTGATA

Fig. 1

Sequencing alignment of BnALS1 and BnALS3 genes and loci of polymorphic primers in rapeseed The single-site mutation is denoted by inverted triangle. The arrow lines represent primer sites and amplification directions."

Fig. 2

Allelic discrimination plot of KASP KBA1R19681913B genotyping in the small population"

Table 2

KASP KBA1R19681913B genotyping of the small population and the corresponding phenotypes"

材料
Material
标记分型
Genotyping
测序结果
Sequecing
抗性特性
Resistance
材料来源
Source
M9-2 A A R M9后代株系 M9 progeny line
M9-14 A A R M9后代株系 M9 progeny line
N341 G G S MICMS恢复系 MICMS restorer line
3075R G G S MICMS恢复系 MICMS restorer line
F1-2 G/A G/A R F1(N341×M9-2) F1 hybrid
F1-3 G/A G/A R F1(3075R×M9-14) F1 hybrid
M318-1 G G S F2(N341×M9-2)单株 F2 plant
M318-2 A A R F2(N341×M9-2)单株 F2 plant
M318-3 G G S F2(N341×M9-2)单株 F2 plant
M318-4 A A R F2(N341×M9-2)单株 F2 plant
M318-5 G/A G/A R F2(N341×M9-2)单株 F2 plant
M318-6 A A R F2(N341×M9-2)单株 F2 plant
M318-7 G/A G/A R F2(N341×M9-2)单株 F2 plant
M318-8 A A R F2(N341×M9-2)单株 F2 plant
M318-9 G/A G/A R F2(N341×M9-2)单株 F2 plant
M318-10 A A R F2(N341×M9-2)单株 F2 plant
M318-11 A A R F2(N341×M9-2)单株 F2 plant
M318-12 G/A G/A R F2(N341×M9-2)单株 F2 plant

Fig. 3

Allelic discrimination plot of KASP KBA1R19681913B genotyping in two F2 populations and their parents"

Table 3

Genotype detection of two F2 populations with the marker"

杂交组合
Cross
基因型Genotype 总株数
Total
卡平方值
χ2 -value
P
P- value
G/G G/A A/A
F2 (3075R/M9-14) 8 14 7 29 0.012 0.994
F2 (N341/M9-2) 11 23 16 50 0.085 0.958

Table 4

Application of the marker KBA1R19681913B in the purity identification of hybrid rapeseed"

授粉方式
Different pollination conditions
除草剂处理
IMI treatment
鉴定株数
Numbers of plants
标记鉴定纯度
Seed purity
identification by the markers (%)
田间鉴定纯度
Seed purity
identification in the field (%)
杂种纯度提高
Increased seed purity after IMI treatment (%)
人工杂交授粉
Artificial hybridization
喷药Treated 117 100 100
不喷药Untreated 90 100 100
网罩隔离授粉
Hybridization in tents
喷药Treated 130 97 97 13
不喷药Untreated 194 84 84
天然授粉
Natural pollination
喷药Treated 165 96 96 16
不喷药Untreated 155 80 80
[1] 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018,40:613-617.
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018,40:613-617 (in Chinese with English abstract).
[2] 胡茂龙, 浦惠明, 高建芹, 龙卫华, 戚存扣, 张洁夫, 陈松. 油菜乙酰乳酸合成酶抑制剂类除草剂抗性突变体M9的遗传和基因克隆. 中国农业科学, 2012,45:4326-4334.
doi: 10.3864/j.issn.0578-1752.2012.20.022
Hu M L, Pu H M, Gao J Q, Long W H, Qi C K, Zhang J F, Chen S. Inheritance and gene cloning of an ALS inhabiting herbicide-resistant mutant line M9 in Brassica napus. Sci Agric Sin, 2012,45:4326-4334 (in Chinese with English abstract).
[3] 张婷, 师志刚, 王根平, 程汝宏, 陈媛, 冀小绵, 杨伟红. 咪唑乙烟酸对冀谷33生长发育的影响及对后茬作物的安全性. 中国农业科学, 2015,48:4916-4923.
doi: 10.3864/j.issn.0578-1752.2015.24.006
Zhang T, Shi Z G, Wang G P, Cheng R H, Chen Y, Jin X M, Yang W H. Effect of imazethapyr on millet Jigu 33 growth and its safety on succeeding crops. Sci Agric Sin, 2015,48:4916-4923 (in Chinese with English abstract).
[4] Tan S, Richard R E, Mark L D, Bijay K S, Dale L S. Imidazolinone-tolerant crops: history, current status and future. Pest Manag Sci, 2005,61:246-257.
doi: 10.1002/ps.993 pmid: 15627242
[5] Lyu J Y, Huang Q X, Sun Y Y, Qu G P, Guo Y, Zhang X J, Zhao H X, Hu S W. Male sterility of an AHAS-mutant induced by tribenuron-methyl solution correlated with the decrease of AHAS activity in Brassica napus L. Front Plant Sci, 2018,9:1014.
doi: 10.3389/fpls.2018.01014 pmid: 30061911
[6] Li H T, Li J J, Zhao B, Wang J, Yi L C, Liu C, Wu J S, King G J, Liu K D. Generation and characterization of tribenuron-methyl herbicide-resistant rapeseed (Brasscia napus) for hybrid seed production using chemically induced male sterility. Theor Appl Genet, 2015,128:107-118.
doi: 10.1007/s00122-014-2415-7 pmid: 25504538
[7] Piao Z Z, Wang W, Wei Y N, Francesco Z, Wan C Z, Bai J J, Wu S W, Wang X Q, Fang J. Characterization of an acetohydroxy acid synthase mutant conferring tolerance to imidazolinone herbicides in rice (Oryza sativa). Planta, 2018,247:693-703.
doi: 10.1007/s00425-017-2817-2 pmid: 29170911
[8] Han H, Yu Q, Purba E, Li M, Walsh M, Friesen S, Powles S B. A novel amino acid substitution Ala-122-Tyr in ALS confers high-level and broad resistance across ALS-inhibiting herbicides. Pest Manag Sci, 2012,68:1164-1170.
doi: 10.1002/ps.3278
[9] Tranel P J, Wright T R, Heap I M. Mutations in herbicide- resistant weeds to ALS inhibitors. Online [2020-02-24]. http://www. weedscience.com.
[10] Murphy B P, Tranel P J. Target-site mutations conferring herbicide resistance. Plants, 2019,8:382.
doi: 10.3390/plants8100382
[11] Swanson E B, Herrgesell M J, Arnoldo M, Sippell D W, Wong R S C. Microspore mutagenesis and selection: Canola plants with field tolerance to the imidazolinones. Theor Appl Genet, 1989,78:525-530.
doi: 10.1007/BF00290837 pmid: 24225680
[12] Hattori J, Douglas B, Mourad G, Labbé H, Ouellet T, Sunohara G, Rutledge R, King J, Miki B. An acetohydroxy acid synthase mutant reveals a single site involved in multiple herbicide resistance. Mol Gen Genet, 1995,246:419-425.
doi: 10.1007/BF00290445 pmid: 7891655
[13] Hu M L, Pu H M, Gao J Q, Long W H, Chen F, Zhang W, Zhou X Y, Peng Q, Chen S, Zhang J F. Comparative analysis of miRNAs of two rapeseed genotypes in response to acetohydroxyacid synthase-inhibiting herbicides by high-throughput sequencing. PLoS One, 2017,12:e184917.
[14] Hu M L, Pu H M, Gao J Q, Long W H, Chen F, Zhou X Y, Zhang W, Peng Q, Chen S, Zhang J F. Inheritance and molecular characterization of resistance to AHAS-inhibiting herbicides in rapeseed. J Integr Agric, 2017,16:2421-2433.
doi: 10.1016/S2095-3119(17)61659-9
[15] 高建芹, 浦惠明, 戚存扣, 张洁夫, 龙卫华, 胡茂龙, 陈松, 陈新军, 陈锋, 顾慧. 抗咪唑啉酮油菜种质的发现与鉴定. 植物遗传资源学报, 2010,11:369-373.
Gao J Q, Pu H M, Qi C K, Zhang J F, Long W H, Hu M L, Chen S, Chen X J, Chen F, Gu H. Identification of imidazolidone-resistant oilseed rape mutant. J Plant Genet Resour, 2010,11:369-373 (in Chinese with English abstract).
[16] 高建芹, 浦惠明, 龙卫华, 胡茂龙, 戚存扣, 张洁夫. 抗咪唑啉酮油菜对非选择性除草剂的抗性效应. 江苏农业学报, 2010,26:1186-1191.
Gao J Q, Pu H M, Long W H, Hu M L, Qi C K, Zhang J F. Resistance of imidzolidone-resistant oilseed rape to nonselective herbicide imazethapyr. Jiangsu J Agric Sci, 2010,26:1186-1191 (in Chinese with English abstract).
[17] 浦惠明, 高建芹, 龙卫华, 胡茂龙, 张洁夫, 陈松, 陈新军, 陈锋, 顾慧, 傅三雄, 戚存扣. 油菜抗咪唑啉酮性状的遗传及其应用. 中国油料作物学报, 2011,33:15-19.
Pu H M, Gao J Q, Long W H, Hu M L, Zhang J F, Chen S, Chen X J, Chen F, Gu H, Fu S X, Qi C K. Studies on inheritance of imidazolinones resistance in Brassica napus and its utilization. Chin J Oil Crop Sci, 2011,33:15-19 (in Chinese with English abstract).
[18] Hu M L, Pu H M, Kong L N, Gao J Q, Long W H, Chen S, Zhang J F, Qi C K. Molecular characterization and detection of a spontaneous mutation conferring imidazolinone resistance in rapeseed and its application in hybrid rapeseed production. Mol Breed, 2015,35:46.
doi: 10.1007/s11032-015-0227-3
[19] Liu Z Y, Zhu C S, Jiang Y, Tian Y L, Yu J, An H Z, Tang W J, Sun J, Tang J P, Chen G M, Zhai H Q, Wang C M, Wan J M. Association mapping and genetic dissection of nitrogen use efficiency-related traits in rice (Oryza sativa L.). Funct Integr Genomics, 2016,16:323-333.
doi: 10.1007/s10142-016-0486-z pmid: 26922174
[20] Tan C T, Yu H J, Yang Y, Xu X Y, Chen M S, Rudd J C, Xue Q W, Ibrahim A M H, Garza L, Wang S C. Development and validation of KASP markers for the greenbug resistance gene Gb7 and the Hessian fly resistance gene H32 in wheat. Theor Appl Genet, 2017,130:1867-1884.
doi: 10.1007/s00122-017-2930-4 pmid: 28624908
[21] Nair S K, Babu R, Magorokosho C, Mahuku G, Semagn K, Beyene Y, Das B, Makumbi D, Kumar P L, Olsen M. Fine mapping of Msv1, a major QTL for resistance to maize streak virus leads to development of production markers for breeding pipelines. Theor Appl Genet, 2015,128:1839-1854.
doi: 10.1007/s00122-015-2551-8 pmid: 26081946
[22] Shi Z, Liu S M, Noe J, Arelli P, Meksem K, Li Z L. SNP identification and marker assay development for high-throughput selection of soybean cyst nematode resistance. BMC Genomics, 2015,16:314.
doi: 10.1186/s12864-015-1531-3 pmid: 25903750
[23] Rutledge R G, Quellet T, Hattori J, Miki B L. Molecular characterization and genetic origin of the Brassica napus acetohydroxyacid synthase multigene family. Mol Gen Genet, 1991,229:31-40.
doi: 10.1007/BF00264210 pmid: 1896019
[24] Ouellet T, Rutledget R G, Miki B L. Members of the acetohydroxyacid synthase multigene family of Brassica napus have divergent patterns of expression. Plant J, 1992,2:321-330.
pmid: 1303798
[25] 中国国家标准: GB4407.2-2008. 经济作物种子,第2部分: 油料类. 中国国家标准化管理委员会发布, 2018.
National Standards of China: GB4407.2-2008. Seed of Economic Crops. Part 2: Oil Species, Standardization Administration of China, 2018 (in Chinese).
[26] 浦惠明, 戚存扣, 张洁夫, 高建芹, 傅寿仲, 陈新军, 陈松, 赵祥祥. 转基因抗除草剂油菜对近缘作物的基因漂移研究. 生态学报, 2005,25:196-203.
Pu H M, Qi C K, Zhang J F, Gao J Q, Fu S Z, Chen X J, Chen S, Zhao X X. Studies on the gene flow from herbicide-tolerant GM rapeseed to its close relative crops. Acta Ecol Sin, 2005,25:196-203 (in Chinese with English abstract).
[27] 浦惠明, 戚存扣, 张洁夫, 高建芹, 傅寿仲, 陈新军, 陈松, 赵祥祥. 转基因抗除草剂油菜对十字花科杂草的基因漂移研究. 生态学报, 2005,25:910-916.
Pu H M, Qi C K, Zhang J F, Gao J Q, Fu S Z, Chen X J, Chen S, Zhao X X. The studies on gene flow from GM herbicide-tolerant rapeseed to cruciferous weeds. Acta Ecol Sin, 2005,25:910-916 (in Chinese with English abstract).
[28] Konieczny A, Ausubel F. A procedure for mapping Arabidopsis mutations using co-dominant ecotype specific PCR-based markers. Plant J, 1993,4:403-410.
doi: 10.1046/j.1365-313x.1993.04020403.x pmid: 8106085
[29] Michaels S D, Amasino R M. A robust method for detecting single-nucleotide changes as polymorphic markers by PCR. Plant J, 1998,14:381-385.
doi: 10.1046/j.1365-313x.1998.00123.x pmid: 9628032
[30] Neff M M, Neff J D, Chory J, Pepper A E. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J, 1998,14:387-392.
doi: 10.1046/j.1365-313x.1998.00124.x pmid: 9628033
[31] LGC Genomics. KASP genotyping chemistry user guide and manual. LGC, 2013 [2018-04-12]. https://www.lgcgroup.com/ LGCGroup/media/PDFs/Products/Genotyping/KASP-genotyping- chemistry-User-guide.pdf?ext=.pdf.
[32] Semagn K, Babu R, Hearne S, Olsen M. Single nucleotide polymorphism genotyping using kompetitive allele specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed, 2014,33:1-14.
doi: 10.1007/s11032-013-9917-x
[33] 田宇, 杨蕾, 李英慧, 邱丽娟. 抗大豆胞囊线虫SCN3-11位点的KASP 标记开发和利用. 作物学报, 2018,44:1600-1611.
doi: 10.3724/SP.J.1006.2018.01600
Tian Y, Yang L, Li Y H, Qiu L J. Development and utilization of KASP marker for SCN3-11 locus resistant to soybean cyst nematode. Acta Agron Sin, 2018,44:1600-1611 (in Chinese with English abstract).
[34] Chang A, Lamara M, Wei Y D, Hu H, Parkin I A P, Gossen B D, Peng G, Yu F Q. Clubroot resistance gene Rcr6 in Brassica nigra resides in a genomic region homologous to chromosome A08 in B. rapa. BMC Plant Biol, 2019,19:224.
doi: 10.1186/s12870-019-1844-5 pmid: 31142280
[35] Fu F Y, Liu X J, Wang R, Zhai C, Peng G, Yu F Q, Fernando W G D. Fine mapping of Brassica napus blackleg resistance gene Rlm1 through bulked segregant RNA sequencing. Sci Rep, 2019,9:14600.
doi: 10.1038/s41598-019-51191-z pmid: 31601933
[36] 胡茂龙, 龙卫华, 高建芹, 付三雄, 陈锋, 周晓婴, 彭琦, 张维, 浦惠明, 戚存扣, 张洁夫, 陈松. 油菜抗咪唑啉酮类除草剂基因BnALS1R等位基因特异PCR标记的开发与应用. 作物学报, 2013,39:1711-1719.
doi: 10.3724/SP.J.1006.2013.01711
Hu M L, Long W H, Gao J Q, Fu S X, Chen F, Zhou X Y, Peng Q, Zhang W, Pu H M, Qi C K, Zhang J F, Chen S. Development and application of allele-specific PCR markers for imidazolinone-resistant gene BnALS1R in Brassica napus. Acta Agron Sin, 2013,39:1711-1719 (in Chinese with English abstract).
[37] Thompson C, Tar’an B. Genetic characterization of the acetohydroxyacid synthase (AHAS) gene responsible for resistance to imidazolinone in chickpea (Cicer arietinum L.). Theor App Genet, 2014,127:1583-1591.
doi: 10.1007/s00122-014-2320-0
[38] Kadaru S, Zhang W Q, Yadav A, James H O. Development and application of allele-specific PCR assays for imazethapyr resistance in rice (Oryza sativa). Euphytica, 2008,160:431-438.
doi: 10.1007/s10681-008-9662-0
[39] Lee H, Sachin R, Neeraj K, Burkea I, Yenisha J P, Gilla K S, Wettsteina D V, Steven E U. Single nucleotide mutation in the barley acetohydroxy acid synthase (AHAS) gene confers resistance to imidazolinone herbicides. Proc Natl Acad Sci USA, 2011,108:8909-8913.
doi: 10.1073/pnas.1105612108 pmid: 21551103
[40] Chen X, Martin T, Crystal L S, Aliaa E M, Saleh S, Weselake R J. Three homologous genes encoding sn-glycerol-3-phosphate acyltransferase 4 exhibit different expression patterns and functional divergence in Brassica napus. Plant Physiol, 2011,155:851-865.
doi: 10.1104/pp.110.169482
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758.
[3] HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196.
[4] JIANG Peng, ZHANG Xu, WU Lei, HE Yi, ZHANG Ping-Ping, MA Hong-Xiang, KONG Ling-Rang. Genetic analysis for yield related traits of wheat (Triticum aestivum L.) based on a recombinant inbred line population from Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2021, 47(5): 869-881.
[5] HUANG Yi-Wen, DAI Xu-Ran, LIU Hong-Wei, YANG Li, MAI Chun-Yan, YU Li-Qiang, YU Guang-Jun, ZHANG Hong-Jun, LI Hong-Jie, ZHOU Yang. Relationship between the allelic variations at the Ppo-A1 and Ppo-D1 loci and pre-harvest sprouting resistance in wheat [J]. Acta Agronomica Sinica, 2021, 47(11): 2080-2090.
[6] JIANG Peng,HE Yi,ZHANG Xu,WU Lei,ZHANG Ping-Ping,MA Hong-Xiang. Genetic analysis of plant height and its components for wheat (Triticum aestivum L.) cultivars Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2020, 46(6): 858-868.
[7] LYU Wei-Sheng, XIAO Fu-Liang, ZHANG Shao-Wen, ZHENG Wei, HUANG Tian-Bao, XIAO Xiao-Jun, LI Ya-Zhen, WU Yan, HAN De-Peng, XIAO Guo-Bin, ZHANG Xue-Kun. Effects of sowing and fertilizing methods on yield and fertilizer use efficiency in red-soil dryland rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1790-1800.
[8] Hai-Yan LU,Ling ZHOU,Feng LIN,Rui WANG,Feng-Ge WANG,Han ZHAO. Development of efficient KASP molecular markers based on high throughput sequencing in maize [J]. Acta Agronomica Sinica, 2019, 45(6): 872-878.
[9] Ping ZHANG,Yi-Mei JIANG,Peng-Hui CAO,Fu-Lin ZHANG,Hong-Ming WU,Meng-Ying CAI,Shi-Jia LIU,Yun-Lu TIAN,Ling JIANG,Jian-Min WAN. Introducing qSS-9 Kas into Ningjing 4 by molecular marker-assisted selection to improve its seed storage ability [J]. Acta Agronomica Sinica, 2019, 45(3): 335-343.
[10] ZHANG An-Ning,LIU Yi,WANG Fei-Ming,XIE Yue-Wen,KONG De-Yan,NIE Yuan-Yuan,ZHANG Fen-Yun,BI Jun-Guo,YU Xin-Qiao,LIU Guo-Lan,LUO Li-Jun. Pyramiding and evaluation of brown planthopper resistance genes in water-saving and drought-resistance restorer line [J]. Acta Agronomica Sinica, 2019, 45(11): 1764-1769.
[11] Hong-Bo SHAN,Jia-Wen SHI,Ying SHI. Development and Validation of Molecular Marker for Protein Content in Tetraploid Potato Tuber [J]. Acta Agronomica Sinica, 2018, 44(7): 1095-1102.
[12] Yu-Ling LI,Zheng-Ning JIANG,Wen-Jing HU,Dong-Sheng LI,Jing-Ye CHENG,Xin YI,Xiao-Ming CHENG,Rong-Lin WU,Shun-He CHENG. Mapping QTLs against Leaf Rust in CIMMYT Wheat C615 [J]. Acta Agronomica Sinica, 2018, 44(6): 836-843.
[13] Yu TIAN,Lei YANG,Ying-Hui LI,Li-Juan QIU. Development and Utilization of KASP Marker for SCN3-11 Locus Resistant to Soybean Cyst Nematode [J]. Acta Agronomica Sinica, 2018, 44(11): 1600-1611.
[14] Zhan-Wang ZHU, Deng-An XU, Shun-He CHENG, Chun-Bao GAO, Xian-Chun XIA, Yuan-Feng HAO, Zhong-Hu HE. Characterization of Fusarium Head Blight Resistance Gene Fhb1 and Its Putative Ancestor in Chinese Wheat Germplasm [J]. Acta Agronomica Sinica, 2018, 44(04): 473-482.
[15] Hong-Jun ZHANG, Zhen-Qi SU, Gui-Hua BAI, Xu ZHANG, Hong-Xiang MA, Teng LI, Yun DENG, Chun-Yan MAI, Li-Qiang YU, Hong-Wei LIU, Li YANG, Hong-Jie LI, Yang ZHOU. Improvement of Resistance of Wheat Cultivars to Fusarium Head Blight in the Yellow-Huai Rivers Valley Winter Wheat Zone with Functional Marker Selection of Fhb1 Gene [J]. Acta Agronomica Sinica, 2018, 44(04): 505-511.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!