Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (2): 354-362.doi: 10.3724/SP.J.1006.2024.33013
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
MAO Yan1,*(), ZHENG Ming-Min1, MOU Cheng-Xiang1, XIE Wu-Bing2, TANG Qi2
[1] | Magali L, Patrice D, Gert T, Kathleen M, Yves M, Yves V D P, Pierre R, Stephane R. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327. |
[2] | Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res, 1999, 27: 297-300. |
[3] | Hrishikesh U, Lingaraj S, Sanjib K P. Molecular Physiology of Osmotic Stress in Plants. Berlin, Germany: Springer, 2013 [2023-06-05]. doi: 10.1007/978-81-322-0807-5. |
[4] |
Lapidot M, Pilpel Y. Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms. EMBO Rep, 2006, 7: 1216-1222.
pmid: 17139297 |
[5] | Borsani O, Zhu J, Verslues P E, Sunkar R, Zhu J K. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 2005, 123: 1279-1291. |
[6] |
Zhao X, Li J, Lian B, Gu H, Li Y, Qi Y. Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA. Nat Commun, 2018, 9: 5056.
doi: 10.1038/s41467-018-07500-7 |
[7] |
Fang J, Zhang F, Wang H, Wang W, Zhao F, Li Z, Sun C, Chen F, Xu F, Chang S, Wu L, Bu Q, Wang P, Xie J, Chen F, Huang Y, Zhang Y, Zhu X, Han B, Deng X, Chu C. Ef-cd locus shortens rice maturity duration without yield penalty. Proc Natl Acad Sci USA, 2019, 116: 18717-18722.
doi: 10.1073/pnas.1815030116 pmid: 31451662 |
[8] | Fedaka H, Palusinskaa M, Krzycczmonika K, Brzezniak L, Yatusevich R, Pietras Z, Kaczanowski S, Swiezewski S. Control of seed dormancy in Arabidopsis by a cis-acting noncoding antisense transcript. Proc Natl Acad Sci USA, 2016, 113: E7846-E7855. |
[9] |
Fedaka H, Palusinskaa M, Krzyczmonika K, Brzezniaka L, Yatusevicha R, Pietrasa Z, Szymon K B, Szymon S. Antisense transcription represses Arabidopsis seed dormancy QTL DOG1 to regulate drought tolerance. EMBO Rep, 2017, 18: 2186-2196.
doi: 10.15252/embr.201744862 pmid: 29030481 |
[10] |
Zubko E, Merer P. A natural antisense transcript of the Petunia hybrida Sho gene suggests a role for an antisense mechanism in cytokinin regulation. Plant J, 2007, 52: 1131-1139.
doi: 10.1111/tpj.2007.52.issue-6 |
[11] |
Mehdi J D S, Cécile L, Christophe R, Qingya S, Yves P. A rice cis-natural antisense RNA acts as a translational enhancer for its cognate mRNA and contributes to phosphate homeostasis and plant fitness. Plant Cell, 2013, 25: 4166-4182.
doi: 10.1105/tpc.113.116251 |
[12] |
Mao Y, Xu J, Wang Q, Li G, Tang X, Liu T, Feng X, Wu F, Li M, Xie W B, Lu Y L. A natural antisense transcript acts as a negative regulator for the maize drought stress response gene ZmNAC48. J Exp Bot, 2021, 72: 2790-2806.
doi: 10.1093/jxb/erab023 |
[13] |
Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735-743.
doi: 10.1046/j.1365-313x.1998.00343.x pmid: 10069079 |
[14] |
Gruntman E, Qi Y, Slotkin R K, Roeder T, Martienssen R A, Sachidanandam R. Kismeth: analyzer of plant methylation states through bisulfite sequencing. BMC Bioinform, 2008, 9: 371.
doi: 10.1186/1471-2105-9-371 |
[15] |
Xu J, Wang Q, Freeling M, Zhang X, Xu Y, Mao Y, Tang X, Wu F K, Lan H, Cao M J, Rong T Z, Damon L, Lu Y L. Natural antisense transcripts are significantly involved in regulation of drought stress in maize. Nucleic Acids Res, 2017, 45: 5126-5141.
doi: 10.1093/nar/gkx085 pmid: 28175341 |
[16] |
Narusaka Y, Nakashima K, Shinwari Z K, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J, 2003, 34: 137-148.
doi: 10.1046/j.1365-313X.2003.01708.x |
[17] |
Nakashima K, Fujita Y, Katsura K, Maruyama K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis. Plant Mol Biol, 2006, 60: 51-68.
pmid: 16463099 |
[18] |
Rushton P J, Somssich I E, Ringler P, Shen Q J. WRKY transcription factors. Trends Plant Sci, 2010, 15: 247-258.
doi: 10.1016/j.tplants.2010.02.006 pmid: 20304701 |
[19] | Hiroshi A, Kazuko Y S, Takeshi U, Toshisuke I, Daijiro H, Kazuo S. Role of Arabidopsis MYC and MYB homologs in drought and abscisic acid-regulated gene expression. Plant Cell, 1997, 9: 1859-1868. |
[20] | Krebs J E. 江松敏译. Lewin基因X (中文版). 北京: 科学出版社, 2013. pp 588-612. |
Krebs J E. Jiang S M, trans trans. Lewin Genes X. Beijing: Science Press, 2013. pp 588-612 (in Chinese). | |
[21] |
Smith J, Sen S, Weeks R J, Eccles M R, Chatterjee A. Promoter DNA hypermethylation and paradoxical gene activation. Trends Cancer, 2020, 6: 392-406.
doi: S2405-8033(20)30067-4 pmid: 32348735 |
[22] |
Zhou Z, Liu C, Qin M, Li W, Hou J, Shi X, Dai Z, Yao W, Tian B, Lei Z, Li Y, Wu Z. Promoter DNA hypermethylation of TaGli-gamma-2.1 positively regulates gluten strength in bread wheat. J Adv Res, 2022, 36: 163-173.
doi: 10.1016/j.jare.2021.06.021 |
[23] |
Fei Y, Xue Y, Du P, Yang S, Deng X. Expression analysis and promoter methylation under osmotic and salinity stress of TaGAPC1 in wheat (Triticum aestivum L.). Protoplasma, 2017, 254: 987-996.
doi: 10.1007/s00709-016-1008-5 |
[1] | ZHAO Rong-Rong, CONG Nan, ZHAO Chuang. Optimal phase selection for extracting distribution of winter wheat and summer maize over central subregion of Henan Province based on Landsat 8 imagery [J]. Acta Agronomica Sinica, 2024, 50(3): 721-733. |
[2] | LIANG Xing-Wei, YANG Wen-Ting, JIN Yu, HU Li, FU Xiao-Xiang, CHEN Xian-Min, ZHOU Shun-Li, SHEN Si, LIANG Xiao-Gui. Is cob color variation in maize accidental or incidental to any agronomic traits? —An example of national approved common hybrids over the past years [J]. Acta Agronomica Sinica, 2024, 50(3): 771-778. |
[3] | XUE Ming, WANG Chen-Chen, JIANG Lu-Guang, LIU Hao, ZHANG Lu-Yao, CHEN Sai-Hua. Mapping and functional analysis of maize inflorescence development gene AFP1 [J]. Acta Agronomica Sinica, 2024, 50(3): 603-612. |
[4] | MA Juan, CAO Yan-Yong. Genome-wide association study of yield traits and special combining ability in maize hybrid population [J]. Acta Agronomica Sinica, 2024, 50(2): 363-372. |
[5] | YANG Jing-Lei, WU Bing-Jie, WANG An-Zhou, XIAO Ying-Jie. Genomic prediction of maize agronomic and quality traits using multi-omics data [J]. Acta Agronomica Sinica, 2024, 50(2): 373-382. |
[6] | YANG Chen-Xi, ZHOU Wen-Qi, ZHOU Xiang-Yan, LIU Zhong-Xiang, ZHOU Yu-Qian, LIU Jie-Shan, YANG Yan-Zhong, HE Hai-Jun, WANG Xiao-Juan, LIAN Xiao-Rong, LI Yong-Sheng. Mapping and cloning of plant height gene PHR1 in maize [J]. Acta Agronomica Sinica, 2024, 50(1): 55-66. |
[7] | YUE Run-Qing, LI Wen-Lan, MENG Zhao-Dong. Acquisition and resistance analysis of transgenic Maize Inbred Line LG11 with insect and herbicide resistance [J]. Acta Agronomica Sinica, 2024, 50(1): 89-99. |
[8] | SONG Xu-Dong, ZHU Guang-Long, ZHANG Shu-Yu, ZHANG Hui-Min, ZHOU Guang-Fei, ZHANG Zhen-Liang, MAO Yu-Xiang, LU Hu-Hua, CHEN Guo-Qing, SHI Ming-Liang, XUE Lin, ZHOU Gui-Sheng, HAO De-Rong. Identification of heat tolerance of waxy maizes at flowering stage and screening of evaluation indexes in the middle and lower reaches of Yangtze River region [J]. Acta Agronomica Sinica, 2024, 50(1): 172-186. |
[9] | YANG Li-Da, REN Jun-Bo, PENG Xin-Yue, YANG Xue-Li, LUO Kai, CHEN Ping, YUAN Xiao-Ting, PU Tian, YONG Tai-Wen, YANG Wen-Yu. Crop growth characteristics and its effects on yield formation through nitrogen application and interspecific distance in soybean/maize strip relay intercropping [J]. Acta Agronomica Sinica, 2024, 50(1): 251-264. |
[10] | WANG Li-Ping, WANG Xiao-Yu, FU Jing-Ye, WANG Qiang. Functional identification of maize transcription factor ZmMYB12 to enhance drought resistance and low phosphorus tolerance in plants [J]. Acta Agronomica Sinica, 2024, 50(1): 76-88. |
[11] | ZUO Chun-Yang, LI Ya-Wei, LI Yan-Long, JIN Shuang-Xia, ZHU Long-Fu, ZHANG Xian-Long, MIN Ling. Relative expression patterns of laccase gene family members in upland Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2023, 49(9): 2344-2361. |
[12] | YANG Wen-Yu, WU Cheng-Xiu, XIAO Ying-Jie, YAN Jian-Bing. ALGWAS: two-stage Adaptive Lasso-based genome-wide association study [J]. Acta Agronomica Sinica, 2023, 49(9): 2321-2330. |
[13] | AI Rong, ZHANG Chun, YUE Man-Fang, ZOU Hua-Wen, WU Zhong-Yi. Response of maize transcriptional factor ZmEREB211 to abiotic stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2433-2445. |
[14] | HUANG Yu-Jie, ZHANG Xiao-Tian, CHEN Hui-Li, WANG Hong-Wei, DING Shuang-Cheng. Identification of ZmC2s gene family and functional analysis of ZmC2-15 under heat tolerance in maize [J]. Acta Agronomica Sinica, 2023, 49(9): 2331-2343. |
[15] | BAI Yan, GAO Ting-Ting, LU Shi, ZHENG Shu-Bo, LU Ming. A retrospective analysis of the historical evolution and developing trend of maize mega varieties in China from 1982 to 2020 [J]. Acta Agronomica Sinica, 2023, 49(8): 2064-2076. |
|