Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (8): 1971-1988.doi: 10.3724/SP.J.1006.2024.31080
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
GAO Wei-Dong1,2(
), HU Chen-Zhen1,2, ZHANG Long1,2, ZHANG Yan-Yan1,2, ZHANG Pei-Pei1, YANG De-Long1,2,*(
), CHEN Tao1,2,*(
)
| [1] | Santner A, Estelle M. The ubiquitin-proteasome system regulates plant hormone signaling. Plant J Cell Mol Biol, 2010, 61, 1029-1040. |
| [2] |
Collins G A, Goldberg A L. The logic of the 26S proteasome. Cell, 2017, 169: 792-806.
doi: S0092-8674(17)30474-9 pmid: 28525752 |
| [3] |
Vierstra R D. The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci, 2003, 8: 135-142.
doi: 10.1016/S1360-1385(03)00014-1 pmid: 12663224 |
| [4] |
Smalle J, Vierstra R D. The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol, 2004, 55: 555-590.
pmid: 15377232 |
| [5] | Ye Y, Rape M. Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol, 2009, 10: 755-764. |
| [6] |
Pickart C M. Mechanisms underlying ubiquitination. Annu Rev Biochem, 2001, 70: 503-533.
pmid: 11395416 |
| [7] | Xu L, Ménard R, Berr A, Fuchs J, Cognat V, Meyer D, Shen W H. The E2 ubiquitin-conjugating enzymes, AtUBC1 and AtUBC2, play redundant roles and are involved in activation of FLC expression and repression of flowering in Arabidopsis thaliana. Plant J, 2009, 57: 279-288. |
| [8] | Lau O S, Deng X W. Effect of Arabidopsis COP10 ubiquitin E2 enhancement activity across E2 families and functional conservation among its canonical homologues. Biochem J, 2009, 418: 683-690. |
| [9] | Wang Y, Wang W, Cai J, Zhang Y, Qin G, Tian S. Tomato nuclear proteome reveals the involvement of specific E2 ubiquitin-conjugating enzymes in fruit ripening. Genome Biol, 2014, 15: 548. |
| [10] | Wen R, Wang S, Xiang D, Venglat P, Shi X, Zang Y, Datla R, Xiao W, Wang H. UBC13, an E2 enzyme for Lys63-linked ubiquitination, functions in root development by affecting auxin signaling and Aux/IAA protein stability. Plant J, 2014, 80: 424-436. |
| [11] | Wang S, Li Q, Zhao L, Fu S, Qin L, Wei Y, Fu Y B, Wang H. Arabidopsis UBC22, an E2 able to catalyze lysine-11 specific ubiquitin linkage formation, has multiple functions in plant growth and immunity. Plant Sci, 2020, 297: 110520. |
| [12] |
Tang S, Zhao Z, Liu X, Sui Y, Zhang D, Zhi H, Gao Y, Zhang H, Zhang L, Wang Y, Zhao M, Li D, Wang K, He Q, Zhang R, Zhang W, Jia G, Tang W, Ye X, Wu C, Diao X. An E2-E3 pair contributes to seed size control in grain crops. Nat Commun, 2023, 14: 3091.
doi: 10.1038/s41467-023-38812-y pmid: 37248257 |
| [13] |
Wang Y, Yue J, Yang N, Zheng C, Zheng Y, Wu X, Yang J, Zhang H, Liu L, Ning Y, Bhadauria V, Zhao W, Xie Q, Peng Y L, Chen Q. An ERAD-related ubiquitin-conjugating enzyme boosts broad- spectrum disease resistance and yield in rice. Nat Food, 2023, 4: 774-787.
doi: 10.1038/s43016-023-00820-y pmid: 37591962 |
| [14] | Li J, Zhang B, Duan P, Yan L, Yu H, Zhang L, Li N, Zheng L, Chai T, Xu R, Li Y. An endoplasmic reticulum-associated degradation-related E2-E3 enzyme pair controls grain size and weight through the brassinosteroid signaling pathway in rice. Plant Cell, 2023, 35: 1076-1091. |
| [15] | Chen K, Tang W S, Zhou Y B, Xu Z S, Chen J, Ma Y Z, Chen M, Li H Y. Overexpression of GmUBC9 gene enhances plant drought resistance and affects flowering time via histone H2B monoubiquitination. Front Plant Sci, 2020, 11: 555794. |
| [16] | 张祥云, 赵思语, 温潇, 王宁, 郭彦, 赵庆臻. 小麦TaUBC基因泛素结合酶活性分析. 聊城大学学报(自然科学版), 2018, 31(3): 79-85. |
| Zhang X Y, Zhao S Y, Wen X, Wang N, Guo Y, Zhao Q Z. Ubiquitin conjugating enzyme activity analysis of wheat TaUBC gene. J Liaocheng Univ (Nat Sci Edn), 2018, 31(3): 79-85 (in Chinese with English abstract). | |
| [17] |
Yao Y, Ni Z, Zhang Y, Chen Y, Ding Y, Han Z, Liu Z, Sun Q. Identification of differentially expressed genes in leaf and root between wheat hybrid and its parental inbreds using PCR-based cDNA subtraction. Plant Mol Biol, 2005, 58: 367-384.
pmid: 16021401 |
| [18] | Feng H, Wang S, Dong D, Zhou R, Wang H. Arabidopsis Ubiquitin-conjugating enzymes UBC7, UBC13, and UBC14 are required in plant responses to multiple stress conditions. Plants (Basel), 2020, 9: 723. |
| [19] | Zhou G A, Chang R Z, Qiu L J. Overexpression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress- responsive gene expression in Arabidopsis. Plant Mol Biol, 2010, 72: 357-367. |
| [20] |
Dong C, Hu H, Jue D, Zhao Q, Chen H, Xie J, Jia L. The banana E2 gene family: genomic identification, characterization, expression profiling analysis. Plant Sci, 2016, 245: 11-24.
doi: 10.1016/j.plantsci.2016.01.003 pmid: 26940488 |
| [21] | Cui F, Liu L, Zhao Q, Zhang Z, Li Q, Lin B, Wu Y, Tang S, Xie Q. Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance. Plant Cell, 2012, 24: 233-244. |
| [22] |
Fernandez M A, Belda-Palazon B, Julian J, Coego A, Lozano- Juste J, Iñigo S, Rodriguez L, Bueso E, Goossens A, Rodriguez P L. RBR-type E3 ligases and the ubiquitin-conjugating enzyme UBC26 regulate abscisic acid receptor levels and signaling. Plant Physiol, 2020, 182: 1723-1742.
doi: 10.1104/pp.19.00898 pmid: 31699847 |
| [23] | Wang L, Wen R, Wang J, Xiang D, Wang Q, Zang Y, Wang Z, Huang S, Li X, Datla R, Fobert P R, Wang H, Wei Y, Xiao W. Arabidopsis UBC13 differentially regulates two programmed cell death pathways in responses to pathogen and low-temperature stress. New Phytol, 2019, 221: 919-934. |
| [24] | Shiferaw B. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur, 2013, 3: 307-327. |
| [25] | Miao Y, Jing F, Ma J, Liu Y, Zhang P, Chen T, Che Z, Yang D. Major Genomic regions for wheat grain weight as revealed by QTL linkage mapping and meta-analysis. Front Plant Sci, 2022, 13: 802310. |
| [26] | Fang Y, Liang L, Liu S, Xu B, Siddique K H, Palta J A, Chen Y. Wheat cultivars with small root length density in the topsoil increased post-anthesis water use and grain yield in the semi-arid region on the Loess Plateau. Eur J Agron, 2021, 124. |
| [27] | 李静静, 任永哲, 白露, 吕伟增, 王志强, 辛泽毓, 林同保. PEG-6000模拟干旱胁迫下不同基因型小麦品种萌发期抗旱性的综合鉴定. 河南农业大学学报, 2020, 54: 368-377. |
| Li J J, Ren Y Z, Bai L, Lyu W Z, Wang Z Q, Xin Z Y, Lin T B. Comprehensive identification and evaluation of drought tolerance of different genotypic wheat varieties at germination stage by PEG-6000 simulated drought stress. J Henan Agric Univ, 2020, 54: 368-377 (in Chinese with English abstract). | |
| [28] | 孙来虎, 李秀绒, 柴永峰, 王秋叶, 张建诚. 晋麦47号产量结构特点与高产栽培技术. 耕作与栽培, 2003, (5): 48-49. |
| Sun L H, Li X R, Chai Y F, Wang Q Y, Zhang J C. Characteristics of yield structure and high-yield cultivation techniques of Jinmai 47. Till Cult, 2003, (5): 48-49 (in Chinese with English abstract). | |
| [29] | Fan X, Dong Y, Zhang Z, Ren F, Hu G. First report of vitis cryptic virus from grapevines in China. Plant Dis, 2022, 106, p 3006 |
| [30] |
He J, Li C, Hu N, Zhu Y, He Z, Sun Y, Wang Z, Wang Y. ECERIFERUM1-6A is required for the synthesis of cuticular wax alkanes and promotes drought tolerance in wheat. Plant Physiol, 2022, 190: 1640-1657.
doi: 10.1093/plphys/kiac394 pmid: 36000923 |
| [31] | Guo L, Ma M, Wu L, Zhou M, Li M, Wu B, Li L, Liu X, Jing R, Chen W, Zhao H. Modified expression of TaCYP78A5 enhances grain weight with yield potential by accumulating auxin in wheat (Triticum aestivum L.). Plant Biotechnol J, 2022, 20: 168-182. |
| [32] | Zhang F, Tao W, Sun R, Wang J, Li C, Kong X, Tian H, Ding Z. PRH1 mediates ARF7-LBD dependent auxin signaling to regulate lateral root development in Arabidopsis thaliana. PLoS Genet, 2020, 16: e1008044. |
| [33] |
Luo Z, Wang L, Wang Y, Zhang W, Guo Y, Shen Y, Jiang L, Wu Q, Zhang C, Cai Y, Dai J. Identifying and characterizing SCRaMbLEd synthetic yeast using ReSCuES. Nat Commun, 2018, 9: 1930.
doi: 10.1038/s41467-017-00806-y pmid: 29789541 |
| [34] |
Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc, 2008, 3: 1101-1108.
doi: 10.1038/nprot.2008.73 pmid: 18546601 |
| [35] | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR. Methods, 2002, 25: 402-408. |
| [36] |
Ma S, Wang M, Wu J, Guo W, Chen Y, Li G, Wang Y, Shi W, Xia G, Fu D, Kang Z, Ni F. WheatOmics: a platform combining multiple omics data to accelerate functional genomics studies in wheat. Mol Plant, 2021, 14: 1965-1968.
doi: 10.1016/j.molp.2021.10.006 pmid: 34715393 |
| [37] |
Borrill P, Ramirez-Gonzalez R, Uauy C. ExpVIP: a customizable RNA-seq data analysis and visualization platform. Plant Physiol, 2016, 170: 2172-2186.
doi: 10.1104/pp.15.01667 pmid: 26869702 |
| [38] |
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
| [39] |
Hu B, Jin J, Guo A Y, Zhang H, Luo J, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 2015, 31, 1296-1297.
doi: 10.1093/bioinformatics/btu817 pmid: 25504850 |
| [40] | Zhang P, Zhang L, Chen T, Jing F, Liu Y, Ma J, Tian T, Yang D. Genome-wide identification and expression analysis of the GSK gene family in wheat (Triticum aestivum L.). Mol Biol Rep, 2022, 49: 2899-2913. |
| [41] |
Xie J, Chen Y, Cai G, Cai R, Hu Z, Wang H. Tree visualization by one table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res, 2023, 51: W587-W592.
doi: 10.1093/nar/gkad359 pmid: 37144476 |
| [42] | Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, Gable A L, Fang T, Doncheva N T, Pyysalo S, Bork P, Jensen L J, von Mering C. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res, 2023, 51: D638-D646. |
| [43] | Shen H B, Chou K C. Gpos-mPLoc: a top-down approach to improve the quality of predicting subcellular localization of gram- positive bacterial proteins. Prot Pept Lett, 2009, 16: 1478-1484. |
| [44] | Zhang X, Henriques R, Lin S S, Niu Q W, Chua N H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Prot, 2006, 1: 641-646. |
| [45] | Yu G, Hatta A, Periyannan S, Lagudah E, Wulff B B H. Isolation of wheat genomic DNA for gene mapping and cloning. Meth Mol Biol, 2017, 1659: 207-213. |
| [46] | McFarlane H E, Gendre D, Western T L. Seed coat ruthenium red staining assay. Bio Prot, 2014, 4: e1096. |
| [47] | Luo X, Liu B, Xie L, Wang K, Xu D, Tian X, Xie L, Li L, Ye X, He Z, Xia X, Yan L, Cao S. The TaSOC1-TaVRN1 module integrates photoperiod and vernalization signals to regulate wheat flowering. Plant Biotechno J, doi: 10.1111/pbi.14211. |
| [48] |
Guo W, Xin M, Wang Z, Yao Y, Hu Z, Song W, Yu K, Chen Y, Wang X, Guan P, Appels R, Peng H, Ni Z, Sun Q. Origin and adaptation to high altitude of Tibetan semi-wild wheat. Nat Commun, 2020, 11: 5085.
doi: 10.1038/s41467-020-18738-5 pmid: 33033250 |
| [49] | Dreher K, Callis J. Ubiquitin, hormones and biotic stress in plants. Ann Bot, 2007, 99: 787-822. |
| [50] | Su T, Yang M, Wang P, Zhao Y, Ma C. Interplay between the ubiquitin proteasome system and ubiquitin-mediated autophagy in plants. Cells, 2020, 9: 2219. |
| [51] | Bae H, Kim W T. The N-terminal tetra-peptide (IPDE) short extension of the U-box motif in rice SPL11 E3 is essential for the interaction with E2 and ubiquitin-ligase activity. Biochem Biophys Res Commun, 2013, 433: 266-271. |
| [52] | Bae H, Kim W T. Classification and interaction modes of 40 rice E2 ubiquitin-conjugating enzymes with 17 rice ARM-U-box E3 ubiquitin ligases. Biochem Biophys Res Commun, 2014, 444: 575-580. |
| [53] | Criqui M C, de Almeida Engler J, Camasses A, Capron A, Parmentier Y, Inzé D, Genschik P. Molecular characterization of plant ubiquitin-conjugating enzymes belonging to the UbcP4/E2- C/UBCx/UbcH10 gene family. Plant Physiol, 2002, 130: 1230-1240. |
| [54] | Li W, Schmidt W. A lysine-63-linked ubiquitin chain-forming conjugase, UBC13, promotes the developmental responses to iron deficiency in Arabidopsis roots. Plant J, 2010, 62: 330-343. |
| [55] | Chung E, Cho C W, So H A, Kang J S, Chung Y S, Lee J H. Overexpression of VrUBC1, a mung bean E2 ubiquitin-conjugating enzyme, enhances osmotic stress tolerance in Arabidopsis. PloS One, 2013, 8: e66056. |
| [56] | Rotin D, Kumar S. Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol, 2009, 10: 398-409. |
| [57] |
Maspero E, Mari S, Valentini E, Musacchio A, Fish A, Pasqualato S, Polo S. Structure of the HECT:ubiquitin complex and its role in ubiquitin chain elongation. EMBO Rep, 2011, 12: 342-349.
doi: 10.1038/embor.2011.21 pmid: 21399620 |
| [58] | Miller C, Wells R, McKenzie N, Trick M, Ball J, Fatihi A, Dubreucq B, Chardot T, Lepiniec L, Bevan M W. Variation in expression of the HECT E3 ligase UPL3 modulates LEC2 levels, seed size, and crop yields in Brassica napus. Plant Cell, 2019, 31: 2370-2385. |
| [59] | Miao Y, Zentgraf U. A HECT E3 ubiquitin ligase negatively regulates Arabidopsis leaf senescence through degradation of the transcription factor WRKY53. Plant J, 2010, 63: 179-188. |
| [60] |
Wang S, Cao L, Wang H. Arabidopsis ubiquitin-conjugating enzyme UBC22 is required for female gametophyte development and likely involved in Lys11-linked ubiquitination. J Exp Bot, 2016, 67: 3277-3288.
doi: 10.1093/jxb/erw142 pmid: 27069118 |
| [61] | Wang S, Li Q, Zhao L, Fu S, Wang H. Arabidopsis UBC22, an E2 able to catalyze lysine-11 specific ubiquitin linkage formation, has multiple functions in plant growth and immunity. Plant Sci, 2020, 297: 110520. |
| [62] |
Stone S L. Role of the ubiquitin proteasome system in plant response to abiotic stress. Int Rev Cell Mol Biol, 2019, 343: 65-110.
doi: S1937-6448(18)30062-5 pmid: 30712675 |
| [63] |
Yu F, Wu Y, Xie Q. Ubiquitin-proteasome system in ABA signaling: from perception to action. Mol Plant, 2016, 9: 21-33.
doi: S1674-2052(15)00392-5 pmid: 26455462 |
| [64] | Xu F Q, Xue H W. The ubiquitin-proteasome system in plant responses to environments. Plant Cell Environ, 2019, 42, 2931-2944. |
| [65] | Jones D, Crowe E, Stevens T A, Candido E P. Functional and phylogenetic analysis of the ubiquitylation system in caenorhabditis elegans: ubiquitin-conjugating enzymes, ubiquitin-activating enzymes, and ubiquitin-like proteins. Genome Biol, 2002, 3: RESEARCH0002. |
| [66] | Jeon E H, Pak J H, Kim M J, Kim H J, Shin S H, Lee J H, Kim D H, Oh J S, Oh B J, Jung H W, Chung Y S. Ectopic expression of ubiquitin-conjugating enzyme gene from wild rice, OgUBC1, confers resistance against UV-B radiation and Botrytis infection in Arabidopsis thaliana. Biochem Biophys Res Commun, 2012, 427: 309-314. |
| [67] | Wan X, Mo A, Liu S, Yang L, Li L. Constitutive expression of a peanut ubiquitin-conjugating enzyme gene in Arabidopsis confers improved water-stress tolerance through regulation of stress- responsive gene expression. J Biosci Bioeng, 2011, 111: 478-484. |
| [68] |
Zhang X, Rerksiri W, Liu A, Zhou X, Xiong H, Xiang J, Chen X, Xiong X. Transcriptome profile reveals heat response mechanism at molecular and metabolic levels in rice flag leaf. Gene, 2013, 530: 185-192.
doi: 10.1016/j.gene.2013.08.048 pmid: 23994682 |
| [69] | Liu H, Li H, Hao C, Wang K, Wang Y, Qin L, An D, Li T, Zhang X. TaDA1, a conserved negative regulator of kernel size, has an additive effect with TaGW2 in common wheat (Triticum aestivum L.). Plant Biotechnol J, 2020, 18: 1330-1342. |
| [70] | Hu M J, Zhang H P, Cao J J, Zhu X F, Wang S X, Jiang H, Wu Z Y, Lu J, Chang C, Sun G L. Characterization of an IAA-glucose hydrolase gene TaTGW6 associated with grain weight in common wheat (Triticum aestivum L.). Mol Breed, 2016, 36: 25. |
| [71] |
Ma L, Li T, Hao C, Wang Y, Chen X, Zhang X. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotechnol J, 2016, 14: 1269-1280.
doi: 10.1111/pbi.12492 pmid: 26480952 |
| [72] |
Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S G, Cattivelli L, Mastrangelo A M, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova A R, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M C, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards K J, Hayden M, Akhunov E. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J, 2014, 12: 787-796.
doi: 10.1111/pbi.12183 pmid: 24646323 |
| [73] | Allen A M, Winfield M O, Burridge A J, Downie R C, Benbow H R, Barker G L, Wilkinson P A, Coghill J, Waterfall C, Davassi A, Scopes G, Pirani A, Webster T, Brew F, Bloor C, Griffiths S, Bentley A R, Alda M, Jack P, Phillips A L, Edwards K J. Characterization of a wheat breeders’ array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol J, 2017, 15: 390-401. |
| [74] | Wang J, Wang R, Mao X, Zhang J, Liu Y, Xie Q, Yang X, Chang X, Li C, Zhang X, Jing R. RING finger ubiquitin E3 ligase gene TaSDIR1-4A contributes to determination of grain size in common wheat. J Exp Bot, 2020, 71: 5377-5388. |
| [75] | Hanif M, Gao F, Liu J, Wen W, Cao S. TaTGW6-A1, an ortholog of rice TGW6, is associated with grain weight and yield in bread wheat. Mol Breed, 2016, 36: 1. |
| [76] |
Lin Q, Junjie Z, Tian L, Jian H, Xueyong Z, Chenyang H. TaGW2, a good reflection of wheat polyploidization and evolution. Front Plant Sci, 2017, 8: 318.
doi: 10.3389/fpls.2017.00318 pmid: 28326096 |
| [77] | Jiang Q, Hou J, Hao C, Wang L, Ge H, Dong Y, Zhang X. The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits. Funct Integr Genomics, 2011, 11: 49-61. |
| [1] | HU Run-Hui, WANG Jun-Cheng, SI Er-Jing, ZHANG Hong, LI Xing-Mao, MA Xiao-Le, MENG Ya-Xiong, WANG Hua-Jun, LIU Qing, YAO Li-Rong, LI Bao-Chun. Screening of drought and salt tolerant germplasm during wheat seedling stage and comprehensive evaluation of drought and salt tolerance [J]. Acta Agronomica Sinica, 2025, 51(9): 2371-2386. |
| [2] | YANG Ying-Cong, ZHANG Jun-Hao, TANG Yi-Zhe, QIAO Chang-Chang, WANG Peng-Bo, HUANG Ming, XU Guo-Wei, WANG He-Zheng. Effects of straw returning and phosphorus application rates on grain starch and the activities of starch synthesis-related enzymes in dryland wheat [J]. Acta Agronomica Sinica, 2025, 51(9): 2467-2484. |
| [3] | KONG De-Zhen, SANG Wei, NIE Ying-Bin, LI Wei, XU Hong-Jun, LI Jiang-Bo, LIU Peng-Peng, TIAN Xiao-Ming. Comparative analysis of metabolite changes during young panicle development in wheat AL type cytoplasmic male serile line and homologous maintainers [J]. Acta Agronomica Sinica, 2025, 51(9): 2454-2466. |
| [4] | LI Yun-Xiang, GUO Qian-Qian, HOU Wan-Wei, ZHANG Xiao-Juan. Genome-wide association analysis of drought resistance traits in wheat seedlings introduced from ICARDA [J]. Acta Agronomica Sinica, 2025, 51(9): 2387-2398. |
| [5] | LI Lu-Qi, CHENG Yu-Kun, BAI Bin, LEI Bin, GENG Hong-Wei. Genome-wide association analysis of stomatal-related traits in wheat leaves [J]. Acta Agronomica Sinica, 2025, 51(9): 2266-2284. |
| [6] | YANG Ting-Ting, CHEN Juan, ABDUL Rehman, LI Jing, YAN Su-Hui, WANG Jian-Lai, LI Wen-Yang. Effects of weak light post-anthesis on dry matter accumulation and translocation, grain yield, and starch quality in soft wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2204-2219. |
| [7] | YAN Zhe-Lin, REN Qiang, FAN Zhi-Long, YIN Wen, SUN Ya-Li, FAN Hong, HE Wei, HU Fa-Long, YAN Li-Juan, CHAI Qiang. Postponed nitrogen application optimizes interspecific interactions and enhances nitrogen use efficiency in wheat-maize intercropping systems in an oasis irrigation region [J]. Acta Agronomica Sinica, 2025, 51(8): 2190-2203. |
| [8] | WANG Yao-Kuo, WANG Wen-Zheng, ZHANG Min, LIU Xi-Wei, YANG Min, LI Hao-Yu, ZHANG Ling-Xin, YAN Yan-Fei, CAI Rui-Guo. Effects of water and nitrogen treatments on GMP synthesis and flour processing quality of winter wheat grain [J]. Acta Agronomica Sinica, 2025, 51(8): 2176-2189. |
| [9] | JIANG Peng, WU Lei, HUANG Qian-Nan, LI Chang, WANG Hua-Dun, HE Yi, ZHANG Peng, ZHANG Xu. Exploring the breeding utilization of the dwarfing gene Rht-D1 in wheat in the middle and lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2025, 51(8): 2077-2086. |
| [10] | CAI Jin-Shan, LI Chao-Nan, WANG Jing-Yi, LI Ning, LIU Yu-Ping, JING Rui-Lian, LI Long, SUN Dai-Zhen. Genome-wide association study of root traits in wheat seedlings and identification of a superior allele at TaSRL-3B [J]. Acta Agronomica Sinica, 2025, 51(8): 2020-2032. |
| [11] | ZHANG Fei-Fei, HE Wan-Long, JIAO Wen-Juan, BAI Bin, GENG Hong-Wei, CHENG Yu-Kun. Meta-analysis of stripe rust resistance-associated traits and candidate gene identification in wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2111-2127. |
| [12] | SONG Gai-Li, WANG Lu-Qian, QU Ke-Fei, TANG Jian-Wei, DONG Chun-Hao, HUANG Zhen-Pu, GAO Yan, NIU Ji-Shan, YIN Gui-Hong, LI Qiao-Yun. Effect of Bipolaris sorokiniana-induced black point disease on starch content, particle size distribution, and pasting properties of medium-gluten wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2164-2175. |
| [13] | GAO Meng-Juan, ZHAO He-Ying, CHEN Jia-Hui, CHEN Xiao-Qian, NIU Meng-Kang, QIAN Qi-Run, CUI Lu-Fei, XING Jiang-Min, YIN Qing-Miao, GUO Wen, ZHANG Ning, SUN Cong-Wei, YANG Xia, PEI Dan, JIA Ao-Lin, CHEN Feng, YU Xiao-Dong, REN Yan. Mapping and identification of a novel sharp eyespot resistance locus Qse.hnau-5AS and its candidate genes in wheat [J]. Acta Agronomica Sinica, 2025, 51(8): 2240-2250. |
| [14] | LU Xiang-Qian, FU Yu-Jie, ZHAO Jun-Heng, ZHENG Nan-Nan, SUN Nan-Nan, ZHANG Guo-Ping, YE Ling-Zhen. Characterization of spike morphological traits at optimal sampling stage and screening of high-culturability genotypes in wheat anther culture [J]. Acta Agronomica Sinica, 2025, 51(8): 2033-2047. |
| [15] | WANG Tian-Yi, YANG Xiu-Juan, ZHAO Jia-Jia, HAO Yu-Qiong, ZHENG Xing-Wei, WU Bang-Bang, LI Xiao-Hua, HAO Shui-Yuan, ZHENG Jun. Gliadin diversity and its effects on flour quality in wheat from Shanxi province, China [J]. Acta Agronomica Sinica, 2025, 51(7): 1784-1800. |
|
||