Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2025, Vol. 51 ›› Issue (1): 221-232.doi: 10.3724/SP.J.1006.2025.34189

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effect of row spacing configuration and density regulation on dry matter production and yield in cotton

XIN Ming-Hua1(), MI Ya-Di1(), WANG Guo-Ping1, LI Xiao-Fei1, LI Ya-Bing1, DONG He-Lin1,2, HAN Ying-Chun1, FENG Lu1,*()   

  1. 1Institute of Cotton Research, Chinese Academy of Agricultural Sciences / State Key Laboratory of Cotton Biology, Anyang 455000, Henan, China
    2Institute of Western Agriculture, the Chinese Academy of Agricultural sciences, Changji 831100, Xinjiang, China
  • Received:2023-11-13 Accepted:2024-09-18 Online:2025-01-12 Published:2024-10-11
  • Contact: *E-mail: fenglucri@126.com
  • About author:**Contributed equally to this work
  • Supported by:
    Science and Technology Action Project for Industrial Development in Rural Revitalization of Xinjiang Uygur Autonomous Region(2024NC064);Open Project of National Key Laboratory of Cotton Biological Breeding and Comprehensive Utilization(CB2023C02);Tianchi Talent Introduction Plan of Xinjiang.

Abstract:

Row spacing configuration and plant density are critical factors influencing cotton yield and fiber quality. In Xinjiang, cotton is primarily planted using a wide-narrow row spacing system, though equal row spacing is also used. However, there is ongoing debate regarding the effectiveness of these two methods. To clarify this, a two-year field experiment was conducted using the cotton variety Zhongmian 88. A split-plot design was employed, with row spacing configurations (equal row spacing and wide-narrow row spacing) as the main plot and planting densities 12×104 plants hm-2 (D1), 16×104 plants hm-2 (D2), and 18×104 plants hm-2 (D3) as the sub-plots. The study aimed to compare the effects of row spacing configuration and plant density on cotton population growth, dry matter accumulation and distribution, as well as yield and fiber quality. The results showed that the growth rate of leaf area index (LAI), the peak LAI, and the proportion of reproductive organ biomass at the boll opening stage were higher in both equal rows spacing and wide-narrow row spacing at intermediate density (16×104 plants hm-2) compared to the other treatment combinations, with no significant differences between the two configurations. Additionally, no significant differences were found among treatments for cotton growth rate (CGR), net assimilation rate (NAR), and boll growth rate (BGR). Over the two years, seed cotton yields were similar for equal row spacing and wide-narrow row spacing at medium density, with no significant differences in fiber quality. A comprehensive analysis over both years concluded that under medium density, both row spacing configurations can achieve optimal yield and fiber quality. This study provides a scientific basis for selecting row spacing configurations and planting densities for cotton cultivation in Xinjiang.

Key words: cotton, single and double row configurations, densities, growth indicators, dry matter accumulation and partitioning, yield and quality

Fig. 1

Meteorological conditions during the cotton growing season at the experimental site from 2020 to 2021"

Fig. 2

Diagram of equal row spacing and wide-narrow row spacing planting modes"

Fig. 3

Dynamic variations of leaf area index for different treatments B1D1: equal row spacing and low density; B1D2: equal row spacing and medium density; B1D3: equal row spacing and high density; B2D1: wide-narrow row spacing and low density; B2D2: wide-narrow row spacing and medium density; B2D3: wide-narrow row spacing and high density; SE: seeding stage; SQ: squaring stage; FL: flowering stage; BD: boll development stage; BO: boll opening stage. Different lowercase letters in the same column indicate significant differences at the 0.05 probability level among the treatments within the same year."

Table 1

Eigen values of growth curve of leaf area index"

年份
Year
处理
Treatment
T1
(d)
T2
(d)
ΔT
(d)
Vm
(m2 m-2 d-1)
Wm GT
(m2 m-2)
2020 B1 D1 61 82 21 0.14 3.21 3.15
D2 62 87 25 0.12 3.94 3.25
D3 62 84 22 0.13 4.12 3.08
B2 D1 55 72 17 0.15 2.44 2.38
D2 55 76 21 0.13 3.25 2.52
D3 54 74 20 0.14 2.92 2.47
2021 B1 D1 61 85 24 0.12 3.28 3.36
D2 62 90 28 0.10 4.11 3.64
D3 61 87 26 0.11 4.17 3.38
B2 D1 57 77 20 0.14 2.96 2.40
D2 60 85 25 0.13 3.54 2.53
D3 57 80 23 0.13 3.43 2.51

Table 2

Effects of row spacing configuration and plant density on total dry matter at the boll opening stage in cotton"

年份
Year
处理
Treatment

Roots
(kg hm-2)

Stems
(kg hm-2)

Leaves
(kg hm-2)
生殖器官
Reproduction organ
(kg hm-2)
总干物质
Total dry matter weight
(kg hm-2)
2020 B1 D1 1287 c 4158 d 898 b 7945 c 14,289 c
D2 2559 a 11,712 a 1807 a 18,507 b 34,584 a
D3 2186 ab 5491 bc 2121 a 9290 c 19,088 b
B2 D1 1398 c 4814 cd 1149 b 10,912 c 18,273 b
D2 2377 ab 10,881 a 1868 a 22,210 a 37,336 a
D3 2025 b 6639 b 2133 a 8956 c 19,753 b
变异来源
Source of variance
B 0.562 0.345 0.449 0.039 0.023
D < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
B×D 0.604 0.075 0.761 0.197 0.380
2021 B1 D1 1432 d 4740 c 1196 d 12,400 c 19,768 d
D2 2578 b 9264 ab 3981 a 21,103 b 36,926 b
D3 2376 b 8734 b 2289 bc 15,651 c 29,051 c
B2 D1 982 e 4576 c 1797 cd 6943 d 14,299 e
D2 3068 a 1074 a 2695 b 29,942 a 46,447 a
D3 1847 c 5156 c 2736 b 10,497 cd 20,236 d
变异来源
Source of variance
B 0.121 0.121 0.701 0.660 0.265
D < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
B×D 0.002 0.002 0.004 0.001 < 0.001

Fig. 4

Effect of row spacing configuration and plant density on dry matter distribution ratio at the boll opening stage Different lowercase letters in the same column indicate significant differences at the 0.05 probability level among the treatments within the same year. Abbreviations are the same as those given in Fig. 3."

Table 3

Effects of row spacing configuration and plant density on the growth parameters of cotton"

年份
Year
处理
Treatment
群体生长率
CGR
(g m-2 d-1)
棉铃生长率
BGR
(g m-2 d-1)
净同化率
NAR
(g m-2 d-1)
生殖器官与营养器官分配比例
RVR
2020 B1 D1 28.1 a 14.1 a 11.4 a 1.7 a
D2 31.2 a 15.8 a 12.9 a 2.1 a
D3 30.9 a 15.2 a 12.7 a 1.8 a
B2 D1 26.9 a 13.3 a 9.2 b 1.6 a
D2 31.6 a 15.4 a 12.8 a 2.0 a
D3 30.4 a 14.6 a 11.5 a 1.8 a
变异来源
Source of variance
B 0.448 0.350 0.042 0.184
D 0.360 0.110 0.138 0.078
B×D 0.180 0.235 0.283 0.145
2021 B1 D1 29.7 a 18.5 a 12.1 a 1.8 a
D2 31.6 a 21.1 a 13.5 a 2.2 a
D3 31.2 a 20.3 a 12.9 a 2.1 a
B2 D1 29.4 a 17.2 a 9.0 b 1.8 a
D2 31.3 a 18.4 a 13.1 a 2.1 a
D3 31.2 a 17.9 a 12.3 a 1.9 a
变异来源
Source of variance
B 0.184 0.380 0.040 0.225
D 0.700 0.127 0.217 0.075
B×D 0.148 0.286 0.286 0.083

Table 4

Effects of row spacing configuration and plant density on seed cotton yield and fiber quality"

年份
Year
处理
Treatment
上半部平均长度
Upper half mean length
(mm)
整齐度指数
Uniformity
(%)
断裂比强度
Strength
(cN tex-1)
马克隆值
Micronaire
断裂伸长率
Breaking
elongation
(%)
籽棉产量
Seed cotton yield
(kg hm-2)
2020 B1 D1 28.7 a 84.5 a 30.4 b 4.1 b 6.8 a 5621 ab
D2 28.5 a 84.8 a 30.8 a 4.9 a 6.8 a 5897 a
D3 28.4 a 85.2 a 30.5 b 4.3 b 6.8 a 5650 ab
B2 D1 28.4 a 84.4 a 29.4 c 4.2 b 6.8 a 5582 b
D2 27.2 a 84.8 a 31.0 a 4.4 b 6.8 a 5744 a
D3 27.0 a 85.0 a 29.1 c 4.4 b 6.7 a 5625 ab
变异来源
Source of variance
B 0.108 0.175 0.246 0.774 0.107 0.347
D 0.282 0.192 0.031 0.035 0.214 0.013
B×D 0.072 0.804 0.204 0.774 0.109 0.535
2021 B1 D1 28.9 a 83.7 b 26.6 b 4.6 a 6.5 a 5679 b
D2 28.2 a 84.4 a 27.8 a 4.8 a 6.6 a 6162 a
D3 27.4 a 84.6 a 27.2 a 4.0 b 6.5 a 5974 ab
B2 D1 27.5 a 83.1 b 25.5 c 4.0 b 6.5 a 5644 b
D2 27.4 a 84.1 a 27.2 a 4.1 b 6.6 a 6127 a
D3 27.3 a 84.3 a 26.5 b 3.9 b 6.5 a 5825 ab
变异来源
Source of variance
B 0.147 0.048 0.417 0.489 0.348 0.218
D 0.576 0.565 0.023 0.032 0.866 0.041
B×D 0.394 0.996 0.413 0.862 0.970 0.341
[1] 乔银桃, 孙世贤, 赵素琴, 杨晓妮, 许乃银. 我国西北内陆棉花品种生态区划分与试验环境评价. 中国生态农业学报(中英文), 2022, 30: 1301-1308.
Qiao Y T, Sun S X, Zhao S Q, Yang X N, Xu N Y. Cotton mega-environment investigation and test environment evaluation for the national cotton variety trials in the northwest inland cotton production region. Chin J Eco-Agric, 2022, 30: 1301-1308 (in Chinese with English abstract).
[2] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培. 作物学报, 2022, 48: 541-552.
Zheng S F, Liu X L, Wang W, Xu D Q, Kan H C, Chen M, Li S Y. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system. Acta Agron Sin, 2022, 48: 541-552 (in Chinese with English abstract).
[3] Khan A, Tan D K Y, Afridi M Z, Luo H H, Tung S A, Ajab M, Fahad S. Nitrogen fertility and abiotic stresses management in cotton crop: a review. Environ Sci Pollut Res Int, 2017, 24: 14551-14566.
[4] McLennon E, Dari B, Jha G, Sihi D, Kankarla V. Regenerative agriculture and integrative permaculture for sustainable and technology driven global food production and security. Agron J, 2021, 113: 4541-4559.
[5] 王家勇, 李春梅, 徐文修, 李鹏程, 张娜, 李玲, 马云珍, 王芳. 种植密度对76 cm等行距机采棉冠层结构、冠层温湿度及产量的影响. 新疆农业科学, 2023, 60: 2609-2617.
Wang J Y, Li C M, Xu W X, Li P C, Zhang N, Li L, Ma Y Z, Wang F. Effects of planting density on canopy structure, canopy temperature and humidity and yield of 76 cm machine-picked cotton with equal row spacing. Xinjiang Agric Sci, 2023, 60: 2609-2617 (in Chinese with English abstract).
[6] Khan A, Kong X J, Najeeb U, Zheng J, Tan D K Y, Akhtar K, Munsif F, Zhou R Y. Planting density induced changes in cotton biomass yield, fiber quality, and phosphorus distribution under beta growth model. Agronomy, 2019, 9: 500.
[7] Dai J L, Li W J, Tang W, Zhang D M, Li Z H, Lu H Q, Eneji A E, Dong H Z. Manipulation of dry matter accumulation and partitioning with plant density in relation to yield stability of cotton under intensive management. Field Crops Res, 2015, 180: 207-215.
[8] 张娜, 冯璐, 马云珍, 李玲, 范正义, 李小飞, 杨北方, 万素梅, 李亚兵, 徐文修. 种植密度对南疆机采棉群体农艺特征和产量的影响. 中国农业科技导报, 2021, 23(11): 172-180.
Zhang N, Feng L, Ma Y Z, Li L, Fan Z Y, Li X F, Yang B F, Wan S M, Li Y B, Xu W X. Influence of planting density on the agronomic characteristics and yield of machine picked cotton in southern Xinjiang. J Agric Sci Technol, 2021, 23(11): 172-180 (in Chinese with English abstract).
[9] Feng L, Wan S M, Zhang Y L, Dong H Z. Xinjiang cotton: achieving super-high yield through efficient utilization of light, heat, water, and fertilizer by three generations of cultivation technology systems. Field Crops Res, 2024, 312: 109401.
[10] 张昊, 林涛, 汤秋香, 崔建平, 郭仁松, 王亮, 郑子漂. 种植模式对机采棉冠层光能利用与产量形成的影响. 农业工程学报, 2021, 37(12): 54-63.
Zhang H, Lin T, Tang Q X, Cui J P, Guo R S, Wang L, Zheng Z P. Effects of planting pattern on canopy light utilization and yield formation in machine-harvested cotton field. Trans CSAE, 2021, 37(12): 54-63 (in Chinese with English abstract)
[11] 陈溪源, 朱淼良, 陈金湘. 基于生长类型的棉花不同果枝产量贡献率的模拟模型研究. 棉花学报, 2010, 22: 326-332.
Chen X Y, Zhu M L, Chen J X. Simulation model for percentage of total yield by fruiting branch based on different growth and development type of cotton. Cotton Sci, 2010, 22: 326-332 (in Chinese with English abstract).
[12] 吴国丽, 魏飞, 刘建国, 王超凡, 马子豪, 马怡茹. 不同种植模式对连作棉花根系生长和生理指标的影响. 中国棉花, 2019, 46(3): 11-15.
Wu G L, Wei F, Liu J G, Wang C F, Ma Z H, Ma Y R. Effects of different planting patterns on root growth and physiological traits in cotton. China Cotton, 2019, 46(3): 11-15 (in Chinese with English abstract).
[13] 李凤瑞, 赵文超, 张东楼, 董灵艳, 王汝明, 齐洪鑫, 张超, 张贵军, 杨秀凤, 史加亮. 黄河流域适宜机采的短季棉密度和行距配置. 应用生态学报, 2023, 34: 1002-1008.
Li F R, Zhao W C, Zhang D L, Dong L Y, Wang R M, Qi H X, Zhang C, Zhang G J, Yang X F, Shi J L. Density and row spacing of short-season cotton suitable for machine picking in the cotton region of Yellow River Basin. Chin J Appl Ecol, 2023, 34: 1002-1008 (in Chinese with English abstract).
[14] Khan A, Wang L S, Ali S, Tung S A, Hafeez A, Yang G Z. Optimal planting density and sowing date can improve cotton yield by maintaining reproductive organ biomass and enhancing potassium uptake. Field Crops Res, 2017, 214: 164-174.
[15] Virk G, Snider J L, Pilon C. Physiological contributors to early season whole-crop vigor in cotton. Crop Sci, 2019, 59: 2774-2783.
[16] Liu Y, Wen M, Li M, Zhao W Q, Li P B, Cui J, Ma F Y. Effects of reduced nitrogen application rate on drip-irrigated cotton dry matter accumulation and yield under different phosphorus and potassium managements. Agron J, 2021, 113: 2524-2533.
[17] Dai J L, Kong X Q, Zhang D M, Li W J, Dong H Z. Technologies and theoretical basis of light and simplified cotton cultivation in China. Field Crops Res, 2017, 214: 142-148.
[18] Siebert J D, Stewart A M, Leonard B R. Comparative growth and yield of cotton planted at various densities and configurations. Agron J, 2006, 98: 562-568.
[19] 张旺锋, 王振林, 余松烈, 李少昆, 房建, 童文崧. 种植密度对新疆高产棉花群体光合作用、冠层结构及产量形成的影响. 植物生态学报, 2004, 28: 164-171.
Zhang W F, Wang Z L, Yu S L, Li S K, Fang J, Tong W S. Effects of planting density on canopy photosynthesis, canopy structure and yield formation of high-yield cotton in Xinjiang, China. Acta Phytoecol Sin, 2004, 28: 164-171 (in Chinese with English abstract).
[20] 李建峰, 王聪, 梁福斌, 陈厚川, 田景山, 康鹏, 张旺锋. 新疆机采模式下棉花株行距配置对冠层结构指标及产量的影响. 棉花学报, 2017, 29: 157-165.
Li J F, Wang C, Liang F B, Chen H C, Tian J S, Kang P, Zhang W F. Row spacing and planting density affect canopy structure and yield in machine-picked cotton in Xinjiang. Cotton Sci, 2017, 29: 157-165 (in Chinese with English abstract).
[21] 娄善伟, 赵强, 高云光, 郭仁松, 阿不力克木, 张巨松. 密度对棉花冠层小气候影响及其与棉花相关生理特征和纤维品质的关系. 棉花学报, 2010, 22: 260-266.
Lou S W, Zhao Q, Gao Y G, Guo R S, Abu L K M, Zhang J S. The effect of different density to canopy-microclimate and quality of cotton. Cotton Sci, 2010, 22: 260-266 (in Chinese with English abstract).
[22] 冯国艺. 超高产棉花冠层结构形成机理及调控研究. 石河子大学博士学位论文, 新疆石河子, 2012.
Feng G Y. Study on Formation Mechanism and Regulation of Canopy Structure of Super-high Yield Cotton. PhD Dissertation of Shihezi University, Shihezi, Xinjiang, China, 2012 (in Chinese with English abstract).
[23] 冯克云, 王宁, 南宏宇, 高建刚. 水分亏缺下化肥减量配施有机肥对棉花光合特性与产量的影响. 作物学报, 2021, 47: 125-137.
Feng K Y, Wang N, Nan H Y, Gao J G. Effects of chemical fertilizer reduction with organic fertilizer application under water deficit on photosynthetic characteristics and yield of cotton. Acta Agron Sin, 2021, 47: 125-137 (in Chinese with English abstract).
[24] 文明, 李明华, 蒋家乐, 马学花, 李容望, 赵文青, 崔静, 刘扬, 马富裕. 氮磷钾运筹模式对北疆滴灌棉花生长发育和产量的影响. 中国农业科学, 2021, 54: 3473-3487.
Wen M, Li M H, Jiang J L, Ma X H, Li R W, Zhao W Q, Cui J, Liu Y, Ma F Y. Effects of nitrogen, phosphorus and potassium on drip-irrigated cotton growth and yield in northern Xinjiang. Sci Agric Sin, 2021, 54: 3473-3487 (in Chinese with English abstract).
[25] Gao X P, Guo H H, Zhang Q, Guo H X, Zhang L, Zhang C Y, Gou Z Y, Liu Y, Wei J M, Chen A Y, Chu Z H, Zeng F C. Arbuscular mycorrhizal fungi (AMF) enhanced the growth, yield, fiber quality and phosphorus regulation in upland cotton (Gossypium hirsutum L.). Sci Rep, 2020, 10: 2084.
[26] 李玲, 董合林, 李鹏程, 田立文, 李春梅, 马云珍, 张娜, 王芳, 徐文修. 机采棉种植方式对不同株型棉花光合特性及干物质积累的影响. 中国农业科技导报, 2022, 24(8): 172-181.
Li L, Dong H L, Li P C, Tian L W, Li C M, Ma Y Z, Zhang N, Wang F, Xu W X. Effects of machine harvesting planting methods on photosynthetic characteristics and dry matter accumulation of different plant types of cotton. J Agric Sci Technol, 2022, 24(8): 172-181 (in Chinese with English abstract).
[27] Andersen M K, Hauggaard-Nielsen H, Weiner J, Jensen E S. Competitive dynamics in two- and three-component intercrops. J Appl Ecol, 2007, 44: 545-551.
[28] Trinder C, Brooker R, Davidson H, Robinson D. Dynamic trajectories of growth and nitrogen capture by competing plants. New Phytol, 2012, 193: 948-958.
[29] 王聪. 棉花机采模式下行距变化对植株生长发育和产量形成的影响. 石河子大学硕士学位论文, 新疆石河子, 2015.
Wang C. Effect of Row Spacing Change on Plant Growth and Yield Formation under Cotton Mechanical Harvesting Mode. MS Thesis of Shihezi University, Shihezi, Xinjiang, China, 2015 (in Chinese with English abstract).
[30] 张文, 刘铨义, 曾庆涛, 蔡晓莉, 冯杨, 逯涛. 不同株行距配置对机采棉成铃特性及纤维品质的影响. 作物杂志, 2021, (2): 147-152.
Zhang W, Liu Q Y, Zeng Q T, Cai X L, Feng Y, Lu T. Effects of different row spacings on boll characteristics and fiber quality of machine picked cotton. Crops, 2021, (2): 147-152 (in Chinese with English abstract).
[31] 杨吉顺, 高辉远, 刘鹏, 李耕, 董树亭, 张吉旺, 王敬锋. 种植密度和行距配置对超高产夏玉米群体光合特性的影响. 作物学报, 2010, 36: 1226-1233.
Yang J S, Gao H Y, Liu P, Li G, Dong S T, Zhang J W, Wang J F. Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn. Acta Agron Sin, 2010, 36: 1226-1233 (in Chinese with English abstract).
[32] 姜艳, 王鹏, 徐飞, 刘东洋. 种植模式对机采棉生长及棉田水分利用效率的影响. 西北农业学报, 2021, 30: 93-101.
Jiang Y, Wang P, Xu F, Liu D Y. Effects of planting modes on machine-picked cotton growth and water use efficiency. Acta Agric Boreali-Occident Sin, 2021, 30: 93-101 (in Chinese with English abstract).
[33] Yang G Z, Luo X J, Nie Y C, Zhang X L. Effects of plant density on yield and canopy micro environment in hybrid cotton. J Integr Agric, 2014, 13: 2154-2163.
[34] Wang C, Isoda A, Wang P. Growth and yield performance of some cotton cultivars in Xinjiang, China, an arid area with short growing period. J Agron Crop Sci, 2004, 190: 177-183.
[35] 董合忠, 杨国正, 李亚兵, 田立文, 代建龙, 孔祥强. 棉花轻简化栽培关键技术及其生理生态学机制. 作物学报, 2017, 43: 631-639.
Dong H Z, Yang G Z, Li Y B, Tian L W, Dai J L, Kong X Q. Key technologies for light and simplified cultivation of cotton and their eco-physiological mechanisms. Acta Agron Sin, 2017, 43: 631-639 (in Chinese with English abstract).
[36] 张友昌, 黄晓莉, 胡爱兵, 李洪菊, 冯常辉, 李蔚, 张贤红, 罗艳萍, 杨国正. 长江流域麦/油后直播棉花播种时间下限研究. 棉花学报, 2021, 33: 155-168.
Zhang Y C, Huang X L, Hu A B, Li H J, Feng C H, Li W, Zhang X H, Luo Y P, Yang G Z. Study on the limitation of late sowing date on cotton planted after wheat/rape in the Yangtze River Basin. Cotton Sci, 2021, 33: 155-168 (in Chinese with English abstract).
[37] 董合忠, 张艳军, 张冬梅, 代建龙, 张旺锋. 基于集中收获的新型棉花群体结构. 中国农业科学, 2018, 51: 4615-4624.
Dong H Z, Zhang Y J, Zhang D M, Dai J L, Zhang W F. New grouped harvesting-based population structures of cotton. Sci Agric Sin, 2018, 51: 4615-4624 (in Chinese with English abstract).
[38] Bednarz C W, Bridges D C, Brown S M. Analysis of cotton yield stability across population densities. Agron J, 2000, 92: 128.
[39] Zhou J Y, Nie J J, Kong X Q, Dai J L, Zhang Y J, Zhang D M, Cui Z P, Hua Z Q, Li Z H, Dong H Z. Cotton yield stability achieved through manipulation of vegetative branching and photoassimilate partitioning under reduced seedling density and double seedlings per hole. Field Crops Res, 2023, 303: 109117.
[40] Zhi X Y, Han Y C, Li Y B, Wang G P, Du W L, Li X X, Mao S C, Feng L. Effects of plant density on cotton yield components and quality. J Integr Agric, 2016, 15: 1469-1479.
[41] 冯璐, 董合忠. 棉花熟性及其评价指标和方法. 棉花学报, 2022, 34: 458-470.
Feng L, Dong H Z. A review: cotton crop maturity and its predictors. Cotton Sci, 2022, 34: 458-470 (in Chinese with English abstract).
[42] Baker S H. Response of cotton to row patterns and plant Populations. Agron J, 1976, 68: 85-88.
[43] Hawkins B S, Peacock H A. Response of ‘atlas’ cotton to variations in plants per hill and within-row spacings. Agron J, 1971, 63: 611-613.
[44] 敦磊, 李鹏程, 余超, 万素梅, 董合林. 早熟棉区行距与密度互作对棉花产量的影响. 新疆农业科学, 2020, 57: 981-989.
Dun L, Li P C, Yu C, Wan S M, Dong H L. Effects of row spacing and density on cotton yield in early maturity cotton area. Xinjiang Agric Sci, 2020, 57: 981-989 (in Chinese with English abstract).
[45] 杨长琴, 张国伟, 王晓婧, 刘瑞显, 倪万潮. 不同种植模式棉花产量、种植效益与氮素利用率比较分析. 棉花学报, 2021, 33: 307-318.
Yang C Q, Zhang G W, Wang X J, Liu R X, Ni W C. Comparative analysis of cotton yield, benefit and nitrogen efficiency in different planting systems. Cotton Sci, 2021, 33: 307-318 (in Chinese with English abstract).
[46] 王家勇, 张俊尧, 唐江华, 娄善伟, 李文珊, 徐文修, 孟令贻, 何洪涛, 桑军民. 种植密度与缩节胺用量对76 cm等行距棉花株型结构及产量的影响. 干旱地区农业研究, 2024, 42(2): 97-109.
Wang J Y, Zhang J Y, Tang J H, Lou S W, Li W S, Xu W X, Meng L Y, He H T, Sang J M. Effects of planting density and DPC dosage on plant structure and yield of cotton under 76 cm equidistant cultivation. Agric Res Arid Areas, 2024, 42(2): 97-109 (in Chinese with English abstract).
[47] 周相, 冯璐, 刘锦涛, 李亚兵, 杨北方, 李志鹏, 马云珍, 范正义, 王冀川. 不同种植方式和密度对棉花干物质积累特征及产量形成的影响. 山东农业科学, 2022, 54(3): 43-48.
Zhou X, Feng L, Liu J T, Li Y B, Yang B F, Li Z P, Ma Y Z, Fan Z Y, Wang J C. Effects of different planting methods and densities on dry matter accumulation characteristics and yield formation of cotton. Shandong Agric Sci, 2022, 54(3): 43-48 (in Chinese with English abstract).
[48] 史加亮. 行株距配置和密度对棉花生长发育及产量品质的影响. 山东农业大学硕士学位论文, 山东泰安, 2017.
Shi J L. Effects of Row-plant Spacing and Density on Cotton Growth, Yield and Quality. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2017 (in Chinese with English abstract).
[49] 陈兵, 张国蕾, 王静, 刘景德, 李少昆, 余渝, 王方永, 韩焕勇. 机采棉等行距密植模式下棉花脱叶催熟效果研究. 西北农业学报, 2019, 28: 1594-1601.
Chen B, Zhang G L, Wang J, Liu J D, Li S K, Yu Y, Wang F Y, Han H Y. Effect of different defoliants on machine-picked cotton under equal spacing and dense planting model. Acta Agric Boreali-Occident Sin, 2019, 28: 1594-1601 (in Chinese with English abstract).
[50] 李健伟, 吴鹏昊, 肖绍伟, 崔建平, 张巨松. 机采种植模式对不同株型棉花脱叶及纤维品质的影响. 干旱地区农业研究, 2019, 37(1): 82-88.
Li J W, Wu P H, Xiao S W, Cui J P, Zhang J S. Effects of cotton planting modes with machine picking on defoliation and fiber quality of different plant types. Agric Res Arid Areas, 2019, 37(1): 82-88 (in Chinese with English abstract).
[1] XIE Zhang-Shu, XIE Xue-Fang, TU Xiao-Ju, LIU Ai-Yu, DONG He-Zhong, ZHOU Zhong-Hua. Research progress in phytohormone regulation of square and boll shedding in cotton [J]. Acta Agronomica Sinica, 2025, 51(1): 1-29.
[2] LI Chao, FU Xiao-Qiong. Comprehensive evaluation of regional trial varieties of medium mature hybrid cotton in the Yellow River Basin based on GYT biplot [J]. Acta Agronomica Sinica, 2025, 51(1): 30-43.
[3] AI Sha, LI Sha, FANG Zhi-Wei, LI Lun, LI Tian-Tian, GAO Li-Fen, CHEN Li-Hong, XIAO Hua-Feng, WAN Ren-Jing, YAN Duo-Zi, WU Xing-Ting, PENG Hai, HAN Rui-Xi, ZHOU Jun-Fei. Development and application of cotton MNP marker for fingerprint cons- truction [J]. Acta Agronomica Sinica, 2024, 50(9): 2267-2278.
[4] WANG Long, LI Jing, QIAN Chen, LIN Guo-Bing, LI Yi-Yang, YANG Guang, ZUO Qing-Song. Effects of salt stress on yield, quality, and physiology in rapeseed [J]. Acta Agronomica Sinica, 2024, 50(6): 1597-1607.
[5] LI Chang-Xi, DONG Zhan-Peng, GUAN Yong-Hu, LIU Jin-Wei, LI Hang, MEI Yong-Jun. Genetic contribution and decision coefficient analysis of agronomic characters and lint yield traits of upland cotton in southern Xinjiang [J]. Acta Agronomica Sinica, 2024, 50(6): 1486-1502.
[6] XU Ze, WU Xin-Ling, LIU Zhen-Yu, LI Han-Jia, LENG Xin-Hua, WU Tian-Fan, CHEN Yuan, ZHANG Xiang, CHEN De-Hua. Effects of planting density with nitrogen rate on regulation of nitrogen utilization in summer direct seeded cotton [J]. Acta Agronomica Sinica, 2024, 50(6): 1584-1596.
[7] YANG Chun-Ju, TANG Dao-Bin, ZHANG Kai, DU Kang, HUANG Hong, QIAO Huan-Huan, WANG Ji-Chun, LYU Chang-Wen. Effect of reducing nitrogen and potassium application on yield and quality in sweet potato [J]. Acta Agronomica Sinica, 2024, 50(5): 1341-1350.
[8] LI Hang, LIU Li, HUANG Qian, LIU Wen-Hao, SI Ai-Jun, KONG Xian-Hui, WANG Xu-Wen, ZHAO Fu-Xiang, MEI Yong-Jun, YU Yu. Identification and screening of salt tolerance of cotton germplasm resources at germination stage [J]. Acta Agronomica Sinica, 2024, 50(5): 1147-1157.
[9] LE Yu, WANG Tao, ZHANG Xian-Long, LIN Zhong-Xu. Screening of regeneration capacity and genetic transformation efficiency in recombinant inbred lines of Gossypium hirsutum L. [J]. Acta Agronomica Sinica, 2024, 50(5): 1172-1180.
[10] LIU Cheng-Min, MEN Ya-Qi, QIN Du-Lin, YAN Xiao-Yu, ZHANG Le, MENG Hao, SU Xun-Ya, SUN Xue-Zhen, SONG Xian-Liang, MAO Li-Li. Effects of nitrogen application rate on cotton yield and nitrogen utilization under long-term straw return to the field [J]. Acta Agronomica Sinica, 2024, 50(4): 1043-1052.
[11] DAI Yu-Yang, YUE Ye, LIU Zhen-Yu, HE Run, LIU Yu-Ting, ZHANG Xiang, CHEN De-Hua, CHEN Yuan. Effects of low temperature on the expression of insecticidal protein in Bt cotton fibers and its physiological mechanism [J]. Acta Agronomica Sinica, 2024, 50(3): 709-720.
[12] KE Hui-Feng, SU Hong-Mei, SUN Zheng-Wen, GU Qi-Shen, YANG Jun, WANG Guo-Ning, XU Dong-Yong, WANG Hong-Zhe, WU Li-Qiang, ZHANG Yan, ZHANG Gui-Yin, MA Zhi-Ying, WANG Xing-Fen. Identification for yield and fiber quality traits and evaluation of molecular markers in modern cotton varieties [J]. Acta Agronomica Sinica, 2024, 50(2): 280-293.
[13] LI Zhi-Kun, JIA Wen-Hua, ZHU Wei, LIU Wei, MA Zong-Bin. Effects of nitrogen fertilizer and DPC combined application on temporal distribution of cotton yield and fiber quality [J]. Acta Agronomica Sinica, 2024, 50(2): 514-528.
[14] WANG Yong-Hui, HE Jiang, ZHANG Xiang-Xiang, LOU Xiang-Di, GAO Jing, SUN Yan-Ru, CAO Ting, SHI Yang. Mechanism of reduced insecticidal protein expression in Bt cotton under low-iron stress based on transcriptome analysis [J]. Acta Agronomica Sinica, 2024, 50(12): 2971-2983.
[15] SHANG Hong-Yan, PU Jing, KE Hui-Feng, GU Qi-Shen, SUN Zheng-Wen, YANG Jun, WANG Guo-Ning, ZHANG Yan, LU Huai-Yu, XU Dong-Yong, WU Li-Qiang, MA Zhi-Ying, WANG Xing-Fen, WU Jin-Hua. Genetic diversity analysis and evaluation of domestic and international cotton germplasm resources under different planting environments [J]. Acta Agronomica Sinica, 2024, 50(10): 2528-2537.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .