欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (10): 2562-2574.doi: 10.3724/SP.J.1006.2024.33068

• 耕作栽培·生理生化 • 上一篇    下一篇

不同灌水量下玉米的产量可持续性对间作绿肥的响应

王昀杰(), 樊志龙, 张刁亮, 毛守发, 胡发龙, 殷文, 柴强*()   

  1. 省部共建干旱生境作物学国家重点实验室 / 甘肃农业大学农学院, 甘肃兰州 730070
  • 收稿日期:2023-11-21 接受日期:2024-05-21 出版日期:2024-10-12 网络出版日期:2024-06-03
  • 通讯作者: *柴强, E-mail: chaiq@gsau.edu.cn
  • 作者简介:E-mail: 975723902@qq.com
  • 基金资助:
    国家重点研发计划项目(2021YFD1700204-04);国家自然科学基金项目(32160765);财政部和农业农村部国家现代农业产业技术体系建设专项(绿肥, CARS-22-G-12));甘肃省科技计划项目(22JR5RA860)

Response of the yield sustainability of maize with different irrigated quota to intercropped green manure

WANG Yun-Jie(), FAN Zhi-Long, ZHANG Diao-Liang, MAO Shou-Fa, HU Fa-Long, YIN Wen, CHAI Qiang*()   

  1. State Key Laboratory of Arid Land Crop Science / College of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2023-11-21 Accepted:2024-05-21 Published:2024-10-12 Published online:2024-06-03
  • Contact: *E-mail: chaiq@gsau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2021YFD1700204-04);National Natural Science Foundation of China(32160765);China Agriculture Research System of MOF and MARA(Green manure, CARS-22-G-12);Science and Technology Plan Project of Gansu Province(22JR5RA860)

摘要:

明确间作绿肥对不同灌水量下玉米产量可持续性的影响, 对构建节水增效型玉米间作豆科绿肥模式具有重要支撑作用。于2018—2022年开展田间定位试验, 采用裂区试验设计, 设置玉米间作箭筈豌豆(M/V)和单作玉米(SM) 2种种植模式, 以及玉米地方习惯灌水量(I3: 4000 m3 hm-2)、减量15% (I2: 3400 m3 hm-2)、减量30% (I1: 2800 m3 hm-2) 3种灌水水平。研究了间作绿肥对不同灌水量下玉米产量及产量构成因素、相对多作物抗性指数、产量可持续性指数、关键土壤养分指标和经济效益的影响。结果表明, 间作绿肥可在减量15%灌水条件下较单作玉米提高玉米穗粒数和千粒重, 从而提高玉米籽粒产量, 2019—2022年, 间作玉米在减量15%灌水水平下较单作玉米的穗粒数和千粒重分别提高8.7%~16.4%和7.1%~13.4%, 籽粒产量提高9.3%~23.6%, 同时与间作玉米地方习惯灌水量处理的籽粒产量无显著差异。间作绿肥使玉米在减量灌水条件下的相对多作物抗性指数均大于0, 且随种植年限的增加而提高, 进而降低了减灌条件下产量的变异系数、提高了产量可持续性指数, 间作玉米产量变异系数较同一灌水量单作玉米降低77.9%~82.8%、产量可持续性指数提高12.2%~19.9%。玉米间作绿肥可以增加土壤养分, 与单作玉米相比土壤有机质、速效氮含量分别增加6.4%~15.8%、12.1%~35.6%, 土壤速效磷含量在减量15%和减量30%灌水水平下分别增加了19.4%、11.3%, 玉米间作绿肥在减量15%灌水水平下的土壤有机质、速效氮和速效磷含量与地方习惯灌水量处理无显著差异, 均显著大于其他处理。在2020—2022年, 间作玉米在减量15%灌水水平下较单作玉米的纯收益提高了10.5%~34.2%; 在2021—2022年产投比提高了7.8%~10.4%, 与间作玉米地方习惯灌水量处理无显著差异。间作绿肥主要通过增加土壤有机质, 改善土壤氮、磷养分条件而增强玉米产量可持续性。总之, 间作绿肥能够缓减因灌水量减少造成的产量损失, 增强减量灌水下玉米产量稳定性和可持续性指数。本研究中玉米间作箭筈豌豆灌水量3400 m3 hm-2, 可作为试区玉米可持续生产模式及其适宜灌水量的参考。

关键词: 产量稳定性, 产量可持续性, 间作绿肥, 减量灌水, 玉米

Abstract:

Clarifying the effect of intercropped green manure on the yield sustainability of maize under different irrigation levels plays a crucial role in the development of a water-saving and efficiency-oriented maize and leguminous green manure intercropping system. Field experiments were conducted from 2018 to 2022 using a split-plot experimental design, including two planting patterns: maize and green manure intercropping (M/V) and sole maize cropping (SM). Three irrigation levels were implemented: local conventional irrigation (I3: 4000 m3 hm-2), 15% reduction in irrigation (I2: 3400 m3 hm-2), and 30% reduction in irrigation (I1: 2800 m3 hm-2). The effects of intercropped green manure on maize yield, yield components, relative multi-crop resistance index, yield sustainability index, key soil nutrient indicators, and economic benefits under different irrigation levels were investigated. The results indicated that intercropped green manure increased the number of maize kernels and thousand-kernel weight when subjected to a 15% reduction in irrigation, compared to sole maize cropping, resulting in enhanced grain yield. From 2019 to 2022, intercropped maize with a 15% reduction in irrigation exhibited an increase in the number of maize kernels and thousand-kernel weight by 8.7%-16.4% and 7.1%-13.4%, respectively, compared to sole maize cropping. Grain yield also increased by 9.3%-23.6%. There was no significant difference in grain yield between intercropped maize with a 15% reduction in irrigation and local conventional irrigation. The relative multi-crop resistance index of intercropped maize under reduced irrigation was greater than 0 and increased with the duration of planting, reducing the coefficient of variation in yield and increasing the yield sustainability index of maize. Under the same irrigation levels, the coefficient of variation in yield of intercropped maize decreased by 77.9%-82.8%, and the sustainability index increased by 12.2%-19.9% compared to sole maize cropping. Maize intercropped with green manure also led to increased soil nutrient levels compared to sole maize cropping. Soil organic matter and available nitrogen content increased by 6.4%-15.8% and 12.1%-35.6%, respectively. Soil available phosphorus content in maize and green manure intercropping with a 15% and 30% reduction in irrigation increased by 19.4% and 11.3%, respectively, compared to sole maize cropping. The content of soil organic matter, available nitrogen, and available phosphorus in maize and green manure intercropping with a 15% reduction in irrigation showed no significant difference compared to local conventional irrigation but was significantly greater than other treatments. The net income of intercropped maize with a 15% reduction in irrigation increased by 10.5%-34.2% compared to sole maize cropping from 2020 to 2022. From 2021 to 2022, the investment ratio of intercropped maize with a 15% reduction in irrigation increased by 7.8%-10.4% compared to sole maize cropping and showed no significant difference compared to intercropped maize with local conventional irrigation. Intercropped green manure improved the yield sustainability of maize by increasing soil organic matter and improving soil nitrogen and phosphorus conditions. In summary, intercropped green manure can mitigate the yield loss of maize caused by reduced irrigation, enhance the stability and sustainability index of maize under reduced irrigation. In this investigation, maize and common vetch intercropping with an irrigation level of 3400 m3 hm-2 can serve as a reference for sustainable maize production and suitable irrigation levels in the experimental region.

Key words: yield stability, sustainability yield, intercropped green manure, reduced irrigation quota, maize

图1

2018-2022年试验区降水动态和平均气温"

图2

玉米间作绿肥和玉米单作的田间结构 施肥制度遵循当地传统(传统施纯氮270 kg hm-2, 按基肥∶大喇叭口期追肥∶灌浆期追肥=3∶5∶2分施, P2O5 180 kg hm-2, 全做基肥), 冬储灌方式为漫灌, 灌溉量均为1200 m3 hm-2, 灌溉制度如表1所示。"

表1

种植系统整体的灌水定额及灌溉定额"

处理
Treatment
箭筈豌豆 Common vetch 玉米 Maize 灌溉定额
Irrigation quota
苗期
Seedling stage
现蕾期
Budding stage
收后
After harvest
开花期
Flowering stage
灌浆期
Grouting period
I1 490 630 630 525 525 2800
I2 590 770 770 640 630 3400
I3 700 900 900 750 750 4000

图3

2018-2022年不同种植模式及灌水水平下玉米籽粒产量 M/V: 玉米间作箭筈豌豆; SM: 玉米单作; I1、I2、I3分别表示低、中、高灌水处理; 同列数据后不同小写字母表示同一年度中处理间在0.05概率水平差异显著; **表示在0.01概率水平差异显著; NS表示差异不显著。"

表2

2018-2022年不同种植模式和灌水水平对产量构成因素的影响"

年份
Year
种植模式
Cropping pattern
灌水水平
Irrigation level
单位面积穗数
Ears per unit area (hm-2)
穗粒数
Kernel number per spike
千粒重
1000-kernel weight (g)
2018 M/V I1 83,495 a 434 bc 337.1 b
I2 84,818 a 468 ab 358.9 ab
I3 84,731 a 494 a 373.9 a
SM I1 84,557 a 421 c 338.6 b
I2 85,243 a 463 ab 363.3 ab
I3 85,165 a 494 a 387.0 a
2019 M/V I1 83,848 a 444 b 343.6 c
I2 84,348 a 484 a 375.5 ab
I3 84,123 a 484 a 387.1 a
SM I1 83,127 a 408 c 327.0 c
I2 84,675 a 445 b 346.0 bc
I3 87,815 a 478 a 358.0 abc
2020 M/V I1 83,029 a 452 b 345.4 abc
I2 84,508 a 506 a 364.6 a
I3 84,468 a 511 a 367.3 a
SM I1 82,768 a 398 c 321.0 c
I2 84,645 a 452 b 337.5 bc
I3 84,988 a 491 a 358.8 ab
2021 M/V I1 82,458 a 450 c 341.2 bc
I2 84,180 a 497 ab 360.5 ab
I3 84,452 a 520 a 364.6 a
SM I1 82,719 a 399 d 312.8 d
I2 83,474 a 456 bc 336.5 c
I3 83,077 a 486 abc 351.7 abc
2022 M/V I1 83,599 a 464 b 342.0 b
I2 83,928 a 514 a 361.3 a
I3 84,207 a 519 a 367.5 a
SM I1 82,332 a 383 c 300.6 d
I2 83,918 a 442 b 318.6 cd
I3 83,852 a 484 ab 333.8 bc
显著性 Significance (P-value)
年份 Year (Y) NS NS **
种植模式 Cropping pattern (C) NS ** **
灌水水平 Irrigation level (I) NS ** **
年份×种植模式 Y×C NS ** **
年份×灌水水平 Y×I NS NS NS
种植模式×灌水水平 C×I NS * NS
年份×种植模式×灌水水平 Y×C×I NS NS NS

图4

2018-2022年相对多作物抗性指数的变化"

图5

2018-2022年产量稳定性与可持续性的变化"

表3

不同种植模式和灌水水平对0~20 cm土壤养分的影响"

种植模式
Cropping pattern
灌水水平
Irrigation level
有机质
Organic matter
(g kg-1)
速效氮
Rapidly available N (mg kg-1)
速效磷
Rapidly available P
(mg kg-1)
速效钾
Rapidly available K
(mg kg-1)
M/V I1 20.54 b 85.24 b 25.55 b 150.79 a
I2 23.15 a 96.16 a 28.23 a 153.15 a
I3 23.32 a 97.65 a 27.54 a 153.31 a
SM I1 19.31 c 76.04 c 24.28 bc 150.86 a
I2 20.00 bc 75.05 c 23.65 c 151.40 a
I3 20.20 b 72.01 c 24.75 bc 151.24 a
显著性 Significance (P-value)
种植模式 Cropping pattern (C) ** ** ** NS
灌水水平 Irrigation level (I) ** * NS NS
种植模式×灌水水平 C×I ** ** * NS

表4

玉米籽粒产量与土壤养分的相关系数以及通径系数"

土壤养分Soil nutrient 与籽粒产量的相关系数
Correlation coefficient with yield
直接通径系数
Direct path coefficient
间接通径系数Indirect path coefficient 决定系数
Determination coefficient
Y1 Y2 Y3 Y4
Y1 0.925** 3.105 -1.005 -0.010 -1.165 -3.897
Y2 0.793** -1.074 2.906 -0.010 -1.029 -2.856
Y3 0.883** -0.010 2.956 -1.011 -1.052 -0.018
Y4 0.832** -1.220 2.966 -0.905 -0.009 -3.518

表5

不同处理对经济效应的影响"

年份
Year
种植模式
Cropping pattern
灌水水平Irrigation
level
投入
Cost input
(Yuan hm-2)
产值
Gross revenue
(Yuan hm-2)
纯收益
Net benefit
(Yuan hm-2)
产投比
Output/input
2018 M/V I1 13,099 27,871.2 d 14,772.2 d 2.13 d
I2 13,459 30,752.5 c 17,293.5 c 2.28 c
I3 13,819 32,104.1 ab 18,285.1 b 2.32 c
SM I1 11,675 28,402.8 d 16,727.8 c 2.43 b
I2 12,035 31,446.3 bc 19,411.3 a 2.61 a
I3 12,395 32,532.8 a 20,137.8 a 2.62 a
2019 M/V I1 12,649 28,623.5 c 15,974.5 c 2.26 d
I2 13,009 31,827.9 a 18,818.9 a 2.45 bc
I3 13,369 31,999.4 a 18,630.4 a 2.39 c
SM I1 11,225 26,638.9 d 15,413.9 c 2.37 c
I2 11,585 28,618.1 c 17,033.1 b 2.40 b
I3 11,945 30,472.7 b 18,527.7 a 2.55 a
2020 M/V I1 12,799 28,231.2 b 15,432.2 c 2.21 c
I2 13,159 31,026.0 a 17,867.0 a 2.36 ab
I3 13,519 31,065.3 a 17,546.3 ab 2.30 b
SM I1 11,375 23,741.2 d 12,366.2 d 2.09 d
I2 11,735 26,884.7 c 15,149.7 c 2.29 b
SM I3 12,095 29,034.8 b 16,939.8 b 2.40 a
2021 M/V I1 12,999 28,651.0 b 15,652.5 b 2.20 b
I2 13,359 31,798.6 a 18,439.6 a 2.38 a
I3 13,719 31,979.8 a 18,260.8 a 2.33 a
SM I1 11,575 23,592.1 d 12,017.1 d 2.04 c
I2 11,935 26,354.2 c 14,419.2 c 2.21 b
I3 12,295 28,759.5 b 16,464.5 b 2.34 a
2022 M/V I1 12,999 27,476.7 b 14,477.7 c 2.11 b
I2 13,359 31,136.9 a 17,777.9 a 2.33 a
I3 13,719 31,523.6 a 17,804.6 a 2.30 a
SM I1 11,575 22,842.7 d 11,267.7 e 1.97 c
I2 11,935 25,186.7 c 13,251.7 d 2.11 b
I3 12,295 28,200.3 b 15,905.3 b 2.29 a
显著性(P值) Significance (P-value)
年份 Year (Y) ** ** **
种植模式 Cropping pattern (C) ** ** **
灌水水平 Irrigation level (I) ** ** **
年份×种植模式 Y×C ** ** **
年份×灌水水平 Y×I NS NS NS
种植模式×灌水水平 C×I ** ** **
年份×种植模式×灌水水平 Y×C×I ** ** **
[1] Zhang J L, Heijden M G A, Zhang F S, Bender S F. Soil biodiversity and crop diversification are vital components of healthy soils and agricultural sustainability. Front Agric Sci Eng, 2020, 7: 236-242.
doi: 10.15302/J-FASE-2020336
[2] Ahmed L, Kui L. A global meta-analysis of pulse crop effect on yield, resource use, and soil organic carbon in cereal- and oilseed-based cropping systems. Field Crops Res, 2023, 294: 108857.
[3] 林而达, 谢立勇. 《气候变化2014: 影响、适应和脆弱性》对农业气象学科发展的启示. 中国农业气象, 2014, 35: 359-364.
Lin E D, Xie L Y. Revalation of agro-meterorology learning from climate change 2014: impact adaptation, and vulnerability. Chin J Agrometeorol, 2014, 35: 359-364 (in Chinese with English abstract).
[4] Cao J J, Xu J X, Zhao Y F. Research on agricultural water resource shortage under the background of rapid industrialization and urbanization for the example of Shandong province. Adv Mater Res, 2012, 1793: 4935-4940.
[5] Huang J K, Pray C, Rozelle S. Enhancing the crops to feed the poor. Nature, 2002, 418: 678-684.
[6] Sara E, Katarina H, Anna M. Soil enzyme activities, microbial community composition and function after 47 years of continuous green manuring. Appl Soil Ecol, 2007, 35: 610-621.
[7] Anna P D, Edward W. Influence of field pea (Pisum sativum L.) as catch crop cultivated for green manure on soil phosphorus and P-cycling enzyme activity. Arch Agron Soil Sci, 2020, 66: 1570-1582.
[8] 刘国顺, 罗贞宝, 王岩, 李洪亮, 王国锋, 马京民. 绿肥翻压对烟田土壤理化性状及土壤微生物量的影响. 水土保持学报, 2006, 20(1): 95-98.
Liu G S, Luo Z B, Wang Y, Li H L, Wang G F, Ma J M. Effect of green manure application on soil properties and soil microbial biomass in tobacco field. J Soil Water Conserv, 2006, 20(1): 95-98 (in Chinese with English abstract).
[9] 李成亮, 孔宏敏, 何园球. 施肥结构对旱地红壤有机质和物理性质的影响. 水土保持学报, 2004, 18(6): 116-119.
Li C L, Kong H M, He Y Q. Effect of fertilization structures on soil organic matter and physical properties of upland field in red soil area. J Soil Water Conserv, 2004, 18(6): 116-119 (in Chinese with English abstract).
[10] 贝凯月, 向春阳, 赵秋, 田秀平, 张茜. 绿肥翻压对土壤微量元素含量及玉米吸收的影响. 玉米科学, 2023, 31(1): 143-152.
Bei K Y, Xiang C Y, Zhao Q, Tian X P, Zhang Q. Effect of green manure returning on soil micronutrient content and maize absorption. J Maize Sci, 2023, 31(1): 143-152 (in Chinese with English abstract).
[11] 张刁亮, 杨昭, 胡发龙, 殷文, 柴强, 樊志龙. 复种绿肥在不同灌水水平下对小麦籽粒品质和产量的影响. 作物学报, 2023, 49: 2572-2581.
doi: 10.3724/SP.J.1006.2023.21067
Zhang D L, Yang Z, Hu F L, Yin W, Chai Q, Fan Z L. Effects of multiple cropping green manure on grain quality and yield of wheat with different irrigation levels. Acta Agron Sin, 2023, 49: 2572-2581 (in Chinese with English abstract).
[12] 王峥, 梁颖, 姚鹏伟, 芦俊俊, 李婧, 黎志波, 鱼昌为, 曹群虎, 曹卫东, 高亚军. 绿肥播前施肥和翻压方式对旱地麦田土壤水肥性状的影响. 干旱地区农业研究, 2014, 32(3): 119-126.
Wang Z, Liang Y, Yao P W, Lu J J, Li J, Li Z B, Yu C W, Cao Q H, Cao W D, Gao Y J. Effects of fertilization before sowing of leguminous green manure and its incorporation methods on soil moisture and nutrient regime of wheat field in Weibei dryland. Agric Res Arid Areas, 2014, 32(3): 119-126 (in Chinese with English abstract).
[13] 李富翠, 赵护兵, 王朝辉, 李小涵, 刘慧, 李可懿, 周玲. 旱地夏闲期秸秆覆盖和种植绿肥对冬小麦水分利用及养分吸收的影响. 干旱地区农业研究, 2012, 30(1): 119-125.
Li F C, Zhao H B, Wang C H, Li X H, Liu H, Li K Y, Zhou L. Effects of straw mulching and planting green manure on water use and nutrients uptake of winter wheat on dryland. Agric Res Arid Areas, 2012, 30(1): 119-125 (in Chinese with English abstract).
[14] 樊志龙, 胡发龙, 殷文, 范虹, 赵财, 于爱忠, 柴强. 干旱灌区春小麦水分利用特征对绿肥与麦秸协同还田的响应. 中国农业科学, 2023, 56: 838-849.
doi: 10.3864/j.issn.0578-1752.2023.05.003
Fan Z L, Hu F L, Yin W, Fan H, Zhao C, Yu A Z, Chai Q. Response of water use characteristics of spring wheat to coin corporation of green manure and wheat straw in arid irrigation region. Sci Agric Sin, 2023, 56: 838-849 (in Chinese with English abstract).
[15] 吕汉强, 于爱忠, 柴强. 绿洲灌区玉米产量及水分利用对绿肥还田方式的响应. 中国生态农业学报, 2020, 28: 671-679.
Lyu H Q, Yu A Z, Chai Q. Response of maize yield and water use to different green manure utilization patterns in arid oasis irrigation area. Chin J Eco-Agric, 2020, 28: 671-679 (in Chinese with English abstract).
[16] 刘小粉, 刘春增, 潘兹亮, 杜天晨. 施用绿肥条件下减施化肥对土壤养分及持水供水能力的影响. 中国土壤与肥料, 2017, (3): 75-79.
Liu X F, Liu C Z, Pan Z L, Du T C. Effect of reducing chemical fertilizer when the green manure applied on soil nutrients, water retention and supply capacities. Soil Fert Sci China, 2017, (3): 75-79 (in Chinese with English abstract).
[17] 殷文, 陈桂平, 郭瑶, 樊志龙, 胡发龙, 范虹, 于爱忠, 赵财, 柴强. 春小麦秸秆还田对后茬玉米干物质积累及产量形成的调控效应. 中国生态农业学报, 2020, 28: 1210-1218.
Yin W, Chen G P, Guo Y, Fan Z L, Hu F L, Fan H, Yu A Z, Zhao C, Chai Q. Responses of dry matter accumulation and yield in a following maize crop to spring wheat straw returning. Chin J Eco-Agric, 2020, 28: 1210-1218 (in Chinese with English abstract).
[18] Garcia-Barrios L, Dechnik-Vazquez Y A. How multispecies intercrop advantage responds to water stress: a yield-component ecological framework and its experimental application. Front Agric Sci Eng, 2021, 8: 16.
[19] 卢秉林, 包兴国, 车宗贤, 张久东, 吴科生, 杨蕊菊. 长期留茬免耕对河西绿洲灌区春小麦产量及稳定性的影响. 农业工程学报, 2022, 38(7): 117-126.
Lu B L, Bao X G, Che Z X, Zhang J D, Wu K S, Yang R J. Effects of long-term no-tillage with crop stubbles on yield and stability of spring wheat in Hexi Oasis irrigated areas. Trans CSAE, 2022, 38(7): 117-126 (in Chinese with English abstract).
[20] 徐欣, 王笑影, 鲍雪莲, 王影, 刘亚军, 霍海南, 何红波, 解宏图. 长期免耕不同秸秆覆盖量对玉米产量及其稳定性的影响. 应用生态学报, 2022, 33: 671-676.
doi: 10.13287/j.1001-9332.202203.015
Xu X, Wang X Y, Bao X L, Wang Y, Liu Y J, Huo H N, He H B, Xie H T. Effects of long-term no-tillage and stover mulching on maize yield and its stability. Chin J Appl Ecol, 2022, 33: 671-676 (in Chinese with English abstract).
doi: 10.13287/j.1001-9332.202203.015
[21] 李忠芳, 徐明岗, 张会民, 张文菊. 长期不同施肥模式对我国玉米产量可持续性的影响. 玉米科学, 2009, 17(6): 82-87.
Li Z F, Xu M G, Zhang H M, Zhang W J. Effects of different long-term fertilizations on sustainability of maize yield in China. J Maize Sci, 2009, 17(6): 82-87 (in Chinese with English abstract).
[22] 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000. pp 25-109.
Bao S D. Soil Agrochemical Analysis, 3rd edn. Beijing: China Agriculture Press, 2000. pp 25-109 (in Chinese).
[23] 苟志文, 殷文, 柴强, 樊志龙, 胡发龙, 赵财, 于爱忠, 范虹. 干旱灌区小麦间作玉米麦后复种绿肥的可持续性分析. 中国农业科学, 2022, 55: 1319-1331.
doi: 10.3864/j.issn.0578-1752.2022.07.005
Gou Z W, Yin W, Chai Q, Fan Z L, Hu F L, Zhao C, Yu A Z, Fan H. Analysis of sustainability of multiple cropping green manure in wheat-maize intercropping after wheat harvested in arid irrigation areas. Sci Agric Sin, 2022, 55: 1319-1331 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.07.005
[24] 罗跃, 张久东, 周国朋, 常单娜, 高嵩涓, 包兴国, 车宗贤, 朱青, 曹卫东. 河西绿洲灌区间作绿肥及其不同利用方式对玉米产量及土壤肥力的提升效应. 植物营养与肥料学报, 2022, 28: 402-413.
Luo Y, Zhang J D, Zhou G P, Chang D N, Gao S J, Bao X G, Che Z X, Zhu Q, Cao W D. Intercropping maize with green manure crops at various utilization patterns improves maize yield and soil fertility in Hexi oasis irrigated area. J Plant Nutr Fert, 2022, 28: 402-413 (in Chinese with English abstract).
[25] 卢秉林, 车宗贤, 张久东, 包兴国, 吴科生, 杨蕊菊. 氮肥减量下长期间作毛叶苕子根茬还田对玉米产量及氮肥利用率的影响. 中国农业科学, 2022, 55: 2384-2397.
doi: 10.3864/j.issn.0578-1752.2022.12.010
Lu B L, Che Z X, Zhang J D, Bao X G, Wu K S, Yang R J. Effects of long-term intercropping of maize with hairy vetch root returning to field on crop yield and nitrogen use efficiency under nitrogen fertilizer reduction. Sci Agric Sin, 2022, 55: 2384-2397 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2022.12.010
[26] 吕奕彤, 于爱忠, 吕汉强, 王玉珑, 苏向向, 柴强. 绿洲灌区玉米农田土壤团聚体组成及其稳定性对绿肥还田方式的响应. 中国生态农业学报, 2021, 29: 1194-1204.
Lyu Y T, Yu A Z, Lyu H Q, Wang Y L, Su X X, Chai Q. Composition and stability of soil aggregates in maize farmlands under different green manure utilization patterns in an oasis irrigation area. Chin J Eco-Agric, 2021, 29: 1194-1204 (in Chinese with English abstract).
[27] 徐璐瑶, 焦加国, 邓建军, 宿彤, 陈华, 付立波, 胡锋. 不同水肥管理对苕子-玉米轮作农田土壤水稳性团聚体和持水能力的影响. 土壤通报, 2022, 53: 1331-1340.
Xu L Y, Jiao J G, Deng J J, Su T, Chen H, Fu L B, Hu F. Effects of different water and fertilizer management on soil water stable aggregates and soil water holding capacity in Viciavillosa rothvar and maize rotation. Chin J Soil Sci, 2022, 53: 1331-1340 (in Chinese with English abstract).
[28] 李含婷, 柴强, 王琦明, 胡发龙, 于爱忠, 赵财, 殷文, 樊志龙, 范虹. 绿洲灌区不同施氮水平下玉米绿肥间作模式的水分利用特征. 中国农业科学, 2021, 54: 2608-2618.
doi: 10.3864/j.issn.0578-1752.2021.12.011
Li H T, Chai Q, Wang Q M, Hu F L, Yu A Z, Zhao C, Yin W, Fan Z L, Fan H. Water use characteristics of maize-green manure intercropping under different nitrogen application levels in the Oasis irrigation area. Sci Agric Sin, 2021, 54: 2608-2618 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.12.011
[29] 柴强, 殷文. 间作系统的水分竞争互补机理. 生态学杂志, 2017, 36: 233-239.
Chai Q, Yin W. Research advances in water competition and complementary interaction of intercropping agroecosystems. Chin J Ecol, 2017, 36: 233-239 (in Chinese with English abstract).
[30] 王鹏飞, 于爱忠, 王玉珑, 苏向向, 柴健, 李悦, 吕汉强, 尚永盼, 杨学慧. 麦后复种绿肥翻压还田结合减氮对土壤水热特性及玉米产量的影响. 作物学报, 2023, 49: 2793-2805.
Wang P F, Yu A Z, Wang Y L, Su X X, Chai J, Li Y, Lyu H Q, Shang Y P, Yang X H. Effects of multiple cropping green manure after wheat harvest combined with reduced nitrogen application on soil hydrothermal characteristics and maize yield. Acta Agron Sin, 2023, 49: 2793-2805 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.23074
[31] Zhou G P, Chang D N, Gao S J, Liang T, Liu R, Cao W D. Co-incorporating leguminous green manure and rice straw drives the synergistic release of carbon and nitrogen, increases hydrolase activities, and changes the composition of main microbial groups. Biol Fert Soils, 2021, 57: 547-561.
[32] Duan Y, Wang T, Lei X G, Cao Y, Liu L F, Zou Z W, Ma Y C, Zhu X J, Fang W P. Leguminous green manure intercropping changes the soil microbial community and increases soil nutrients and key quality components of tea leaves. Hortic Res, 2024, 11: uhae018.
[1] 叶靓, 朱叶琳, 裴琳婧, 张思颖, 左雪倩, 李正真, 刘芳, 谭静. 联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J]. 作物学报, 2024, 50(9): 2279-2296.
[2] 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395.
[3] 曹晓晴, 祁显涛, 刘昌林, 谢传晓. 编辑ZmCCT10ZmCCT9ZmGhd7基因的串联DsRed荧光表达盒的CRISPR/Cas9系统的构建及验证[J]. 作物学报, 2024, 50(8): 1961-1970.
[4] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[5] 刘宸铭, 赵克勇, 悦曼芳, 赵延明, 吴忠义, 张春. 玉米转录因子ZmEREB180调控根系生长发育及耐逆的功能研究[J]. 作物学报, 2024, 50(8): 1920-1933.
[6] 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 李春辉. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘[J]. 作物学报, 2024, 50(8): 1896-1906.
[7] 梁璐, 周宝元, 高卓晗, 王瑞, 王新兵, 赵明, 李从锋. 不同品种玉米根-冠生长对土壤紧实胁迫的差异性响应特征[J]. 作物学报, 2024, 50(8): 2053-2066.
[8] 郭思语, 赵克勇, 代正罡, 邹华文, 吴忠义, 张春. 玉米N-乙酰转移酶ZmNAT1基因响应非生物胁迫的功能分析[J]. 作物学报, 2024, 50(8): 2001-2013.
[9] 王蕊, 孙擘, 张云龙, 张茗起, 范亚明, 田红丽, 赵怡锟, 易红梅, 匡猛, 王凤格. 叶绿体标记在玉米种质资源快速分组中的应用分析[J]. 作物学报, 2024, 50(7): 1867-1876.
[10] 方宇辉, 齐学礼, 李艳, 张煜, 彭超军, 华夏, 陈艳艳, 郭瑞, 胡琳, 许为钢. 强光胁迫对转玉米C4ZmPEPC+ZmPPDK基因小麦光合和生理特性的影响[J]. 作物学报, 2024, 50(7): 1647-1657.
[11] 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627.
[12] 折萌, 郑登俞, 柯照, 吴忠义, 邹华文, 张中保. 玉米ZmGRAS13基因的克隆及功能研究[J]. 作物学报, 2024, 50(6): 1420-1434.
[13] 郑雪晴, 王兴荣, 张彦军, 龚佃明, 邱法展. 玉米果穗相关性状QTL定位及重要候选基因分析[J]. 作物学报, 2024, 50(6): 1435-1450.
[14] 韩洁楠, 张泽, 刘晓丽, 李冉, 上官小川, 周婷芳, 潘越, 郝转芳, 翁建峰, 雍洪军, 周志强, 徐晶宇, 李新海, 李明顺. o2突变引起糯玉米籽粒淀粉积累差异研究[J]. 作物学报, 2024, 50(5): 1207-1222.
[15] 王永亮, 胥子航, 李申, 梁哲铭, 白炬, 杨治平. 不同覆盖措施对土壤水热状况及春玉米产量和水分利用效率的影响[J]. 作物学报, 2024, 50(5): 1312-1324.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!