欢迎访问作物学报,今天是

作物学报 ›› 2024, Vol. 50 ›› Issue (10): 2586-2598.doi: 10.3724/SP.J.1006.2024.32051

• 耕作栽培·生理生化 • 上一篇    下一篇

增密减肥处理对籼型杂交稻产量及生长发育的影响

卢建祥(), 高倩文, 高志强*(), 阳会兵, 文双雅, 石楠, 胡文瑞, 金宇豪, 陈龙, 刘芸, 曹正邓渊   

  1. 湖南农业大学, 湖南长沙 410000
  • 收稿日期:2023-12-01 接受日期:2024-05-21 出版日期:2024-10-12 网络出版日期:2024-06-18
  • 通讯作者: *高志强, E-mail: 100640117@qq.com
  • 作者简介:E-mail: lujianxiang@stu.hunau.edu.cn
  • 基金资助:
    国家重点研发计划项目(水稻生产过程监测与智能服务平台建设, 2017YFD0301506)

Effect of high-density planting and fertilizer reduction on yield and growth and development of indica hybrid rice

LU Jian-Xiang(), GAO Qian-Wen, GAO Zhi-Qiang*(), YANG Hui-Bing, WEN Shuang-Ya, SHI Nan, HU Wen-Rui, JIN Yu-Hao, CHEN Long, LIU Yun, CAO Zheng-Deng-Yuan   

  1. Hunan Agricultural University, Changsha 410000, Hunan, China
  • Received:2023-12-01 Accepted:2024-05-21 Published:2024-10-12 Published online:2024-06-18
  • Contact: *E-mail: 100640117@qq.com
  • Supported by:
    National Key Research and Development Program of China (Rice Production Process Monitoring and Intelligent Service Platform Construction, 2017YFD0301506)

摘要:

为探究增密减肥对水稻地上部干物质积累、产量等的影响, 在2021—2022年, 采用有序机抛技术, 设置3种移栽密度, 低密度(low density, LD)、中密度(medium density, MD)和高密度(high density, HD)分别为18万株 hm-2、22万株 hm-2和27万株 hm-2, 设置3种施肥量水平, 低肥料(low fertility, LF)、中肥料(medium fertility, MF)和高肥料(high fertility, HF)分别为450 kg hm-2、525 kg hm-2和675 kg hm-2进行大田试验。 结果表明: 中密中肥(medium density and medium fertilizer, MDMF)处理的产量最高, 与低密高肥(low density and high fertilizer, LDHF)相比, MDMF处理的产量2年平均增幅3.15%, 显著增加了有效穗数, 稳定了其他产量因素, 但收获指数增幅不高, 甚至降低。齐穗期前高密高肥(high density and high fertilizer, HDHF)处理的地上部干物质量最高, 2年平均增幅0.17%, 齐穗后MDMF处理的地上部干物质量最高, 2年平均增幅0.16%。MDMF处理在各生育时期的叶面积指数(leaf area index, LAI)、叶绿素相对含量(soil and plant analyzer development, SPAD)与LDHF处理相差不大, 但MDMF处理的SPAD衰减率和LAI衰减率维持在较高水平, 2021年和2022年MDMF处理条件下水稻SPAD衰减率分别为12.65%和16.85%, LAI衰减率分别为6.42%和6.74%。随着移栽密度和肥料的增加水稻分蘖数增加。由以上可知, 适当的增密减肥可增加有效穗数, 构造较高的群体结构和地上部干物质量, 增加齐穗期至成熟期籼型杂交稻群体光合物质的生产及转运能力, 保持了源的稳定, 增加了产量库容量而获得高产, 籼型杂交稻生产上宜采用栽插密度为22万株 hm-2和施肥量为525 kg hm-2的组合。

关键词: 籼型杂交稻, 移栽密度, 肥料, 产量, 干物质积累

Abstract:

To investigate the effects of increased planting density and reduced fertilizer application on the biological traits, accumulation of dry matter, and yield of rice, this study employed three transplanting densities: low density (LD), medium density (MD), and high density (HD) with 18×104, 22×104, and 27×104 plants hm-2, respectively. Three fertilizer application levels were also set: low fertility (LF), medium fertility (MF), and high fertility (HF) with rates of 450, 525, and 675 kg hm-2, respectively. Field experiments were conducted using sequential machine throwing technology during the period from 2021 to 2022. The results demonstrated that the medium density and medium fertilizer (MDMF) treatment exhibited the highest yield. Compared to the low density and high fertilizer (LDHF) treatment, the yield of MDMF treatment increased by 3.15% on average in two years. This treatment significantly increased the effective panicle number and stabilized other yield factors. However, there was no significant increase, and possibly a negative effect, on the harvest index. Prior to full heading, the shoot dry matter treated with high density and high fertilizer (HDHF) exhibited the highest quality, with an average increase of 0.17% over two years. On the other hand, the shoot dry matter treated with MDMF showed the highest quality after full heading, with an average increase of 0.16%. The leaf area index (LAI) and soil and plant analyzer development (SPAD) values of the MDMF treatment did not differ significantly from those of the LDHF treatment at each growth stage. However, the SPAD attenuation rate and LAI attenuation rate of the MDMF treatment remained consistently high. The SPAD attenuation rates were 12.65% and 16.85%, respectively, and the decay rates of LAI were 6.42% and 6.74%, respectively. The number of rice tillers increased with higher transplanting density and fertilizer application. In summary, appropriate densification and fertilizer reduction can increase the number of effective panicles, establish a more robust population structure and aboveground dry matter weight, enhance the production and transport capacity of indica hybrid rice from the full heading stage to the mature stage, maintain source stability, improve yield potential, and achieve high yields. The recommended combination for the production of indica hybrid rice is a planting density of 22×104 plants hm-2 and a fertilizer application rate of 525 kg hm-2.

Key words: indica hybrid rice, transplanting density, fertilization, yield, accumulation of dry matter

图1

2021年和2022年水稻全生育期的逐日平均温度和降水量"

表1

不同处理对杂交稻产量及产量构成因素的影响"

年份
Year
处理
Treatment
有效穗数
Effective panicle number
(panicle m-2)
每穗粒数
Grain number per panicle
结实率
Seed-setting
percentage
(%)
千粒重
1000-grain weight
(g)
产量
Grain yield
(t hm-2)
收获指数
Harvest index
2021 LDHF 284.21±5.12 bcd 179.49±3.12 d 83.08±0.51 ab 24.25±0.75 abc 9.58±0.19 bc 0.51±0.02 c
LDMF 271.99±24.88 d 197.64±2.34 b 78.62±0.50 d 23.11±0.67 cd 8.94±0.64 cd 0.52±0.04 abc
LDLF 221.04±3.96 f 217.37±5.16 a 81.46±1.06 bc 23.76±0.44 bcd 8.41±0.15 d 0.57±0.02 a
MDHF 302.71±3.94 ab 168.98±7.51 e 83.54±0.51 a 25.09±0.17 a 9.87±0.52 ab 0.49±0.02 c
MDMF 305.44±8.76 a 170.58±4.85 e 84.21±0.26 a 24.92±0.31 ab 10.28±0.23 a 0.51±0.02 bc
MDLF 265.25±4.96 d 198.70±3.25 b 84.82±1.54 a 22.73±0.12 d 9.31±0.40 bc 0.57±0.03 ab
HDHF 292.97±10.58 abc 173.92±1.94 de 80.31±0.55 cd 25.44±1.48 a 9.50±0.26 bc 0.49±0.01 c
HDMF 274.59±5.98 cd 188.64±7.36 c 78.74±0.91 d 24.49±0.12 ab 9.42±0.37 bc 0.54±0.02 abc
HDLF 246.10±5.20 e 205.51±4.98 b 75.75±1.75 e 24.56±0.34 ab 8.49±0.34 d 0.53±0.02 abc
2022 LDHF 278.52±8.49 bc 188.66±1.13 cd 85.55±0.34 a 23.33±0.56 ab 9.63±0.21 abc 0.57±0.02 a
LDMF 237.58±4.20 d 196.3±12.27 bc 85.47±4.84 a 23.77±0.53 a 8.74±0.51 cde 0.54±0.05 a
LDLF 217.88±4.66 e 204.21±3.87 ab 81.69±0.88 a 22.96±0.41 ab 7.80±0.62 e 0.55±0.15 a
MDHF 289.11±2.69 b 186.28±7.99 cd 83.31±2.72 a 24.24±0.97 a 9.85±0.69 ab 0.58±0.07 a
MDMF 309.33±7.05 a 179.91±8.25 d 85.56±2.92 a 22.95±0.96 ab 10.10±0.16 a 0.55±0.05 a
MDLF 236.30±13.40 d 200.18±8.44 abc 85.68±6.70 a 22.09±1.75 b 8.50±1.12 de 0.55±0.13 a
HDHF 286.22±4.29 b 191.61±7.71 bcd 84.70±5.18 a 23.10±0.03 ab 9.76±0.56 abc 0.58±0.10 a
HDMF 267.41±12.49 c 194.43±10.06 bcd 81.12±5.05 a 22.86±0.71 ab 8.96±0.32 bcd 0.54±0.08 a
HDLF 221.82±10.32 e 213.74±6.63 a 79.01±1.06 a 22.66±0.45 ab 8.11±0.12 de 0.51±0.01 a
方差分析ANOVA
移栽密度 Density (D) ** ** ** NS ** NS
施肥量 Fertilizer (F) ** ** NS ** ** NS
D×F * NS NS NS NS NS

表2

不同处理对地上部干物质量的影响"

年份
Year
处理
Treatment
分蘖中期
Middle tillering
stage
孕穗期
Booting
stage
齐穗期
Full heading
stage
灌浆中期
Mid-filling
stage
乳熟期
Milk ripening
stage
成熟期
Maturity
stage
2021 LDHF 2.92±0.27 c 7.83±1.44 a 11.70±0.66 a 14.66±2.04 ab 16.56±0.78 b 18.97±0.56 b
LDMF 2.53±0.25 cd 7.17±1.67 a 10.99±0.59 ab 12.50±1.29 bc 13.84±1.08 bc 17.24±0.13 cd
LDLF 1.95±0.17 e 5.00±0.29 b 9.10±0.37 c 10.38±1.30 c 11.75±0.19 c 14.70±0.38 f
MDHF 4.55±0.18 a 8.00±0.76 a 11.79±2.01 a 15.29±3.38 ab 16.89±0.62 b 20.18±1.17 a
MDMF 3.70±0.41 b 7.95±0.22 a 11.20±0.51 ab 17.26±2.54 a 19.05±0.75 a 20.33±1.21 a
MDLF 2.03±0.06 e 6.54±0.91 ab 9.87±0.35 bc 12.13±1.07 bc 12.69±1.95 c 16.30±0.43 de
HDHF 4.94±0.35 a 8.21±0.59 a 11.89±0.44 a 15.10±0.97 ab 16.78±0.40 b 19.30±0.19 ab
HDMF 2.55±0.27 cd 7.49±1.35 a 11.25±0.40 ab 13.25±0.79 bc 15.05±0.22 ab 17.55±0.13 c
HDLF 2.27±0.06 de 7.40±0.24 a 9.98±0.55 bc 11.98±2.37 bc 12.51±2.22 c 15.90±0.17 e
2022 LDHF 2.47±0.08 abc 8.71±0.71 a 11.42±1.48 ab 13.20±1.96 abc 13.74±1.65 b 16.94±1.03 a
LDMF 2.22±0.14 bc 8.08±0.55 a 11.03±1.53 ab 12.61±1.34 bc 14.34±0.46 b 16.13±1.10 a
LDLF 2.13±0.22 c 7.20±1.26 a 9.82±2.10 b 11.12±1.18 c 13.72±1.11 b 14.78±3.50 a
MDHF 2.58±0.21 ab 8.95±1.21 a 11.62±1.19 ab 14.76±1.80 ab 17.14±0.80 a 17.29±2.71 a
MDMF 2.37±0.12 abc 8.31±0.48 a 11.31±0.65 ab 16.03±1.94 a 16.99±0.31 a 18.57±1.38 a
MDLF 2.14±0.21 c 7.33±0.91 a 9.86±1.42 b 12.59±0.43 bc 13.79±0.15 b 15.69±2.18 a
HDHF 2.68±0.35 a 9.17±1.89 a 13.18±0.55 a 14.16±0.57 ab 16.72±1.90 a 17.02±2.47 a
HDMF 2.40±0.15 abc 8.39±0.97 a 11.39±2.14 ab 13.52±1.86 abc 14.59±0.66 b 16.69±1.62 a
HDLF 2.17±0.13 c 7.79±0.34 a 11.16±1.04 ab 12.15±1.83 bc 13.25±1.30 b 16.06±0.23 a
方差分析ANOVA
移栽密度Density (D) * NS NS ** ** *
施肥量Fertilizer (F) ** ** ** ** ** **
D×F NS NS NS NS ** NS

表3

不同处理对水稻叶片SPAD值的影响"

年份
Year
处理
Treatment
分蘖中期
Middle tillering stage
孕穗期
Booting stage
齐穗期
Full heading stage
灌浆中期
Mid-filling stage
乳熟期
Milk ripening stage
成熟期
Maturity stage
SPAD衰减率
SPAD decay rate (%)
2021 LDHF 37.08±1.37 abcde 42.93±0.44 a 44.35±0.56 bcde 44.54±0.99 a 42.33±0.43 a 36.48±0.49 ab 4.57±3.38 c
LDMF 35.59±1.68 cde 40.86±0.39 abc 41.9±0.43 fg 42.09±1.57 abc 41.48±0.52 ab 37.53±0.6 a 4.34±6.09 c
LDLF 35.16±1.47 de 39.95±0.53 abcdef 40.51±1.16 g 41.68±1.15 abcd 39.45±2.81 bcd 34.57±0.53 ab 12.37±1.76bc
MDHF 39.56±0.38 a 40.19±0.24 abcde 43.57±0.82 bcdef 43.48±2.04 ab 40.55±1.91 abc 33.69±3.47bc 10.45±7.78 c
MDMF 37.01±1.04 abcde 40.84±0.97 cdef 41.34±0.82f g 41.51±1.28 cdefg 40.29±1.76 cde 34.46±2.62 ab 12.65±3.8 bc
MDLF 34.71±1.51 e 36.94±0.48 f 41.01±1.2 g 37.69±1.66 efgh 37.18±0.31 de 27.51±1.93d 27.27±4.72 a
HDHF 39.37±0.93 a 41.28±0.45 abc 44.65±0.61 abcd 43.91±1.48 ab 40.86±0.27 abc 35.3±1.91 ab 7.04±4.4 c
HDMF 39.27±1.08 ab 38.01±0.9 def 42.83±1.44 cdefg 38.91±0.89 defgh 38.22±0.56 cde 30.76±1.19 c 20.69±2.75 ab
HDLF 36.07±2.13 cde 37.1±0.57 ef 41.74±0.45 fg 35.53±0.76 cdefg 33.97±1.36 f 36.1±1.63 ab 9.08±5.3 c
2022 LDHF 38.08±2.03 abcd 40.05±1.99 abcdef 45.85±0.54 ab 41.41±1.6 bcdef 40.02±0.77 abc 34.32±0.83 cd 16.94±5.63 a
LDMF 37.84±0.33 abcd 40.03±1.64 abcdef 45.81±1.15 ab 38.9±1.25 defgh 38.62±1.12 cde 37.42±0.54 ab 3.73±2.93 bc
LDLF 37.43±1.8 abcde 39.6±0.69 bcdef 42.08±1.07 efg 38.7±0.81 efgh 38.49±0.72 cde 34.19±1.13 cd 11.59±4.8 ab
MDHF 38.41±1.16 abc 41.83±3.76 ab 46.96±0.85 a 41.58±0.39 bcde 40.33±1.3 abc 39.18±1.54 a 5.77±3.49b c
MDMF 38.31±1.07 abc 39.9±0.24 abcdef 45.87±0.55 ab 38.61±0.34 fgh 39.05±0.81 bcde 32.10±1.61 d 16.85±4.56 a
MDLF 36.73±0.83 abcde 39.76±2.40 bcdef 42.34±1.67 defg 36.34±2.37 he 36.37±1.49 e 34.71±1.55 c 4.2±6.63 bc
HDHF 37.73±0.7 abcde 39.93±0.45 abcdef 45.39±1.45 ab 41.82±0.5 abcd 40.47±0.33 abc 38.32±0.72 ab 8.36±1.81 abc
HDMF 36.25±0.78 bcde 39.53±0.42 bcdef 45.01±1.09 abc 39.62±0.24 cdefg 39.33±0.29 bcd 37.11±1.55 ab 6.31±4.51 bc
HDLF 35.03±0.58 de 39.47±0.49 bcdef 42.9±1.47 cdefg 36.64±0.84 he 38.14±0.2 cde 36.21±1.09 bc 1.07±5.62 c
方差分析ANOVA
移栽密度Density (D) NS NS NS ** * * NS
施肥量Fertilizer (F) ** ** ** ** ** * NS
D×F NS NS NS NS NS * *

表4

不同处理对水稻LAI的影响"

年份
Year
处理
Treatment
分蘖中期
Middle tillering stage
孕穗期
Booting stage
齐穗期
Full heading stage
灌浆中期
Mid-filling stage
乳熟期
Milk ripening stage
成熟期
Maturity stage
叶面积衰减率
Decreasing rate of leaf area (%)
2021 LDHF 2.83±0.11 bcd 5.74±0.16 bc 7.17±0.32 abcd 6.18±0.36 bc 5.46±0.10 b 4.52±0.34 abc 6.03±1.40 a
LDMF 2.67±0.14 cd 5.60±0.42 bc 6.70±0.36 cd 5.94±0.34 c 5.14±0.12 cd 5.52±0.28 a 2.67±1.40 b
LDLF 2.50±0.29 d 5.12±0.10 c 6.38±0.14 d 5.69±0.14 c 5.16±0.03 bcd 4.44±0.17 abc 6.11±2.20 a
MDHF 3.17±0.21 ab 5.20±0.08 c 7.27±0.32 abc 6.32±0.2b c 5.18±0.17 bcd 4.2±0.08 bc 6.97±0.80 a
MDMF 3.09±0.27 bc 5.20±0.19 c 7.02±0.80 bcd 5.9±0.13 c 5.34±0.25 bc 4.2±0.19 bc 6.42±2.00 a
MDLF 2.87±0.29 bcd 4.52±0.25 d 6.39±0.23 d 5.8±0.14 c 5.01±0.02 d 3.52±0.25 d 6.54±0.50 a
HDHF 3.16±0.12 ab 6.52±0.28 a 7.88±0.07 a 7.28±1.1 a 5.91±0.23 a 4.74±0.16 b 7.14±0.50 a
HDMF 3.53±0.34 a 6.20±0.73 ab 7.66±0.68 ab 6.91±0.17 ab 5.8±0.14 a 4.60±0.42 bc 6.96±2.10 a
HDLF 3.09±0.11 bc 5.52±0.34 c 7.31±0.53 abc 6.13±0.39 bc 5.44±0.2 bc 4.12±0.10 c 7.24±1.40 a
2022 LDHF 2.69±0.23 bc 5.65±0.63 bc 6.72±0.46 bc 6±0.37 bcd 5.14±0.35 ab 4.12±0. 20 b 6.19±0.70 bc
LDMF 2.64±0.20 bc 5.05±0.14 cd 6.58±0.20 c 5.79±0.3 cd 4.98±0.18 b 4.44±0.08 ab 5.11±0.70 bc
LDLF 2.47±0.15 c 4.52±0.24 d 6.50±0.4 c 5.32±0.16 d 4.88±0.48 b 4.49±0.50 ab 4.78±1.70 c
MDHF 3.11±0.10 ab 5.75±0.39 b 7.33±0.22 b 6.54±0.14 abc 5.45±1.00 ab 4.29±0.10 ab 7.23±0.30 ab
MDMF 2.9±0.15 bc 5.82±0.37 b 7.04±0.49 bc 6.10±0.87 bcd 5.28±0.54 ab 4.21±0.46 b 6.74±1.90 abc
MDLF 2.60±0.20 c 5.05±0.39 cd 7.00±0.34 bc 6.04±0.58 bcd 5.13±0.27 ab 4.54±0.24 ab 5.84±1.40 bc
HDHF 3.49±0.28 a 6.65±0.29 a 8.24±0.38 a 7.07±0.45 a 6.20±0.30 a 4.59±0.05 ab 8.70±1.00 a
HDMF 3.13±0.27 ab 6.20±0.25 ab 7.39±0.15 b 6.80±0.06 ab 5.81±0.57 ab 4.32±0.27 ab 7.31±0.30 ab
HDLF 3.11±0.51 ab 5.77±0.39 b 7.35±0.39 b 6.23±0.44 bc 5.56±0.79 ab 4.80±0.24 a 6.08±1.50 bc
方差分析ANOVA
移栽密度 Density (D) ** ** ** ** ** ** *
施肥量 Fertilizer (F) ** ** ** ** ** NS **
D×F NS NS NS NS NS NS NS

图2

2021-2022年水稻分蘖动态变化 a、b分别为2021、2022年水稻分蘖动态。处理缩写注释同表1。"

图3

增密减肥条件对籼型杂交稻各生理指标的偏最小二乘路径模型(PLS-PM)分析 a分别为移栽密度、施肥量对产量构成因素、地上部干物质量、LAI、SPAD的总效应图; b为产量构成因素、地上部干物质量、LAI、SPAD对产量的总效应图。实线表示有正影响, 虚线表示有负影响。"

[1] 袁隆平. 杂交水稻超高产育种. 杂交水稻, 2000, 12(增刊2): 31-33.
Yuan L P. Hybrid rice breeding for super high yield. Hybrid Rice, 2000, 12(S2): 31-33 (in Chinese).
[2] 刘建丰, 袁隆平. 超高产杂交稻产量性状研究. 湖南农业大学学报(自然科学版), 2002, 28: 453-456.
Liu J F, Yuan L P. A study on the yielding traits of super high-yielding hybrid rice. J Hunan Agric Univ (Nat Sci), 2002, 28: 453-456 (in Chinese with English abstract).
[3] 孟维韧. 栽培措施对水稻产量和品质的影响. 沈阳农业大学博士学位论文, 辽宁沈阳, 2008.
Meng W R. Effect of Cultivation Measures on Rice Yield and Quality. PhD Dissertation of Shenyang Agricultural University, Shenyang, Liaoning, China, 2008 (in Chinese with English abstract).
[4] 罗玉坤, 朱智伟, 金连登, 闵捷, 陈能, 许立, 陈铭学, 章林平. 从普查结果看我国水稻品种品质的现状. 中国稻米, 2002, 8(1): 5-9.
Luo Y K, Zhu Z W, Jin L D, Min J, Chen N, Xu L, Chen M X, Zhang L P. The quality status of rice varieties in China was analysed based on the census results. China Rice, 2002, 8(1): 5-9 (in Chinese).
[5] 李军, 顾德法, 李林峰. 环境和栽培因子对稻米品质影响的研究进展. 上海农业学报, 1997, 13(1): 94-97.
Li J, Gu D F, Li L F. Effects of environmental and cultural factors on rice quality. Acta Agric Shanghai, 1997, 13(1): 94-97 (in Chinese with English abstract).
[6] Hao H L, Wei Y Z, Yang X E, Feng Y, Wu C Y. Effects of different nitrogen fertilizer levels on Fe, Mn, Cu and Zn concentrations in shoot and grain quality in rice (Oryza sativa). Rice Sci, 2007, 14: 289-294.
[7] 叶全宝, 张洪程, 魏海燕, 张瑛, 汪本福, 夏科, 霍中洋, 戴其根, 许轲. 不同土壤及氮肥条件下水稻氮利用效率和增产效应研究. 作物学报, 2005, 31: 1422-1428.
Ye Q B, Zhang H C, Wei H Y, Zhang Y, Wang B F, Xia K, Huo Z Y, Dai Q G, Xu K. Effects of nitrogen fertilizer on nitrogen use efficiency and yield of rice under different soil conditions. Acta Agron Sin, 2005, 31: 1422-1428 (in Chinese with English abstract).
[8] 朱兆良. 我国土壤供氮和化肥氮去向研究的进展. 土壤, 1985, 17: 2-9.
Zhu Z L. Research in soil supply nitrogen and fate of fertilizer nitrogen Chinese. Soils, 1985, 17: 2-9 (in Chinese).
[9] Wang G H, Dobermann A, Witt C, Sun Q Z, Fu R X. Performance of site-specific nutrient management for irrigated rice in Southeast China. Agron J, 2001, 93: 869-878.
[10] 林文雄, 王松良, 梁义元, 郭玉春, 何水林, 洪来水, 郑履端, 翁定河, 潘增铣. 水稻旱育稀植高产栽培的生理生态研究: I. 早稻肥床旱育秧苗素质及其生态生理特性. 应用生态学报, 1997, 8: 566-570.
Lin W X, Wang S L, Liang Y Y, Guo Y C, He S L, Hong L S, Zheng L D, Weng D H, Pan Z X. Physiological and ecological study on the high-yield cultivation of rice in dry thinning: I. Quality and ecophysiological characteristics of rice seedlings grown on dry-fertile nursery. Chin J Appl Ecol, 1997, 8: 566-570 (in Chinese with English abstract).
[11] 邹应斌, 周上游, 唐起源. 中国超级杂交水稻超高产栽培研究的现状与展望. 中国农业科技导报, 2003, 5(1): 31-35.
Zou Y B, Zhou S Y, Tang Q Y. Status and outlook of high yielding cultivation researches on China super hybrid rice. J Agric Sci Technol, 2003, 5(1): 31-35 (in Chinese with English abstract).
[12] 袁小乐, 潘晓华, 石庆华, 吴建富, 漆映雪. 超级早、晚稻的养分吸收和根系分布特性研究. 植物营养与肥料学报, 2010, 16: 27-32.
Yuan X Y, Pan X H, Shi Q H, Wu J F, Qi Y X. Characteristics of nutrient uptake and root system distribution in super early and super late rice. Plant Nutr Fert Sci, 2010, 16: 27-32 (in Chinese with English abstract).
[13] Peng S B, Tang Q Y, Zou Y B. Current status and challenges of rice production in China. Plant Prod Sci, 2009, 12: 3-8.
[14] Tian G L, Gao L M, Kong Y L, Hu X Y, Xie K L, Zhang R Q, Ling N, Shen Q R, Guo S W. Improving rice population productivity by reducing nitrogen rate and increasing plant density. PLoS One, 2017, 12: e0182310.
[15] 刘子琛, 尚李岩, 叶佳雨, 盛添, 李瑞杰, 邓俊, 田小海, 张运波, 黄礼英. 增密减氮栽培对杂交籼稻稻米品质的影响. 作物杂志, 网络首发[2023-10-31], https://link.cnki.net/urlid/11.1808.S.20231031.1526.004.
Liu Z C, Shang L Y, Ye J Y, Sheng T, Li R J, Deng J, Tian X H, Zhang Y B, Huang L Y. Effects of dense planting with reduced nitrogen input cultivation on the grain quality of hybrid rice. Crops, Published online [2023-10-31], https://link.cnki.net/urlid/11.1808.S.20231031.1526.004 (in Chinese with English abstract).
[16] 种浩天, 尚程, 张运波, 黄礼英. 增密减氮对不同类型水稻品种颖花形成的影响. 作物杂志, 2022, (6): 226-233.
Chong H T, Shang C, Zhang Y B, Huang L Y. Effects of dense planting with reduced nitrogen application on spikelet formation of different types of rice varieties. Crops, 2022, (6): 226-233 (in Chinese with English abstract).
[17] 蒋鹏, 徐富贤, 张林, 周兴兵, 朱永川, 郭晓艺, 刘茂, 陈琳, 张容, 熊洪. 高温高湿区增密减氮对杂交稻‘内6优107’产量形成和氮肥利用率的影响. 中国生态农业学报, 2021, 29: 1679-1691.
Jiang P, Xu F X, Zhang L, Zhou X B, Zhu Y C, Guo X Y, Liu M, Chen L, Zhang R, Xiong H. Effects of nitrogen densification and nitrogen reduction in high temperature and high humidity areas on yield formation and nitrogen utilization efficiency of hybrid rice ‘Nei 6 You 107’. Chin J Eco-Agric, 2021, 29: 1679-1691 (in Chinese with English abstract).
[18] 李敏, 罗德强, 江学海, 蒋明金, 姬广梅, 李立江, 周维佳. 控水增密模式对杂交籼稻减氮后产量形成的调控效应. 作物学报, 2020, 46: 1430-1447.
doi: 10.3724/SP.J.1006.2020.02017
Li M, Luo D Q, Jiang X H, Jiang M J, Ji G M, Li L J, Zhou W J. Regulations of controlled irrigations and increased densities on yield formation of hybrid indica rice under nitrogen-reduction conditions. Acta Agron Sin, 2020, 46: 1430-1447 (in Chinese with English abstract).
[19] Zheng H B, Chen Y W, Chen Q M, Li B, Zhang Y S, Jia W, Mo W W, Tang Q Y. High-density planting with lower nitrogen application increased early rice production in a double-season rice system. Agron J, 2020, 112: 205-214.
[20] 金千瑜. 我国水稻抛秧栽培技术的应用与发展. 中国稻米, 1996, 2(1): 10-13.
Jin Q Y. Application and development of rice transplanting cultivation technology in China. China Rice, 1996, 2(1): 10-13 (in Chinese with English abstract).
[21] 匡莉, 郭栋梁. 水稻高速有序抛秧技术的推广前景分析. 时代农机, 2018, 45: 186.
Kuang L, Guo D L. Analysis of the promotion prospect of high-speed orderly rice transplanting technology in rice. Times Agric Mach, 2018, 45: 186 (in Chinese).
[22] Tenenhaus M, Vinzi V E, Chatelin Y M, Lauro C. Partial least PLS path modeling. Comput Stat Data Analy, 2005, 48: 159-205.
[23] 朱相成, 张振平, 张俊, 邓艾兴, 张卫建. 增密减氮对东北水稻产量、氮肥利用效率及温室效应的影响. 应用生态学报, 2016, 27: 453-461.
Zhu X C, Zhang Z P, Zhang J, Deng A X, Zhang W J. Effects of increased planting density with reduced nitrogen fertilizer application on rice yield, N use efficiency and greenhouse gas emission in Northeast China. Chin J Appl Ecol, 2016, 27: 453-461 (in Chinese with English abstract).
[24] 张洪程, 吴桂成, 戴其根, 霍中洋, 许轲, 高辉, 魏海燕, 吕修涛, 万靓军, 黄银忠. 水稻氮肥精确后移及其机制. 作物学报, 2011, 37: 1837-1851.
doi: 10.3724/SP.J.1006.2011.01837
Zhang H C, Wu G C, Dai Q G, Huo Z Y, Xu K, Gao H, Wei H Y, Lyu X T, Wan L J, Huang Y Z. Precise postponing nitrogen application and its mechanism in rice. Acta Agron Sin, 2011, 37: 1837-1851 (in Chinese with English abstract).
[25] 周江明, 赵琳, 董越勇, 徐进, 边武英, 毛杨仓, 章秀福. 氮肥和栽植密度对水稻产量及氮肥利用率的影响. 植物营养与肥料学报, 2010, 16: 274-281.
Zhou J M, Zhao L, Dong Y Y, Xu J, Bian W Y, Mao Y C, Zhang X F. Effects of nitrogen fertilizer and planting density on rice yield and nitrogen fertilizer use efficiency. Plant Nutr Fert Sci, 2010, 16: 274-281 (in Chinese with English abstract).
[26] 李超, 陈恺林, 刘洋, 杨光立, 汤文光, 胡杨, 张玉烛. 增苗节氮对早稻抛秧群体生物学特性及产量的影响. 中国生态农业学报, 2014, 22: 774-781.
Li C, Chen K L, Liu Y, Yang G L, Tang W G, Hu Y, Zhang Y Z. Effects of seedling enhancement and nitrogen saving on biological characteristics and yield of early rice transplanting population. Chin J Eco-Agric, 2014, 22: 774-781 (in Chinese with English abstract).
[27] 周梦, 王雪艳, 王松, 郝蓉蓉, 党程成, 胡玉婷, 刘越, 穆麒麟, 田小海. 施氮量对江汉平原优质稻产量和品质的影响. 河南农业科学, 2022, 51(9): 25-34.
Zhou M, Wang X Y, Wang S, Hao R R, Dang C C, Hu Y T, Liu Y, Mu Q L, Tian X H. Effect of nitrogen application rate on yield and quality of high-quality rice in the Jianghan Plain. J Henan Agric Sci, 2022, 51(9): 25-34 (in Chinese with English abstract).
[28] Alipour A F, Mobasser H R. Effect of planting density on growth characteristics and grain yield increase in successive cultivations of two rice cultivars. Agrosyst Geosci Environ, 2021, 4: e20213.
[29] 田广丽, 李东伟, 甄博, 李会贞, 周新国. 灌溉模式和氮肥用量对水稻分蘖期生长特征的影响. 灌溉排水学报, 2018, 37(12): 46-52.
Tian G L, Li D W, Zhen B, Li H Z, Zhou X G. Effect of irrigation and nitrogen application on growth of two rice cultivars at the tillering stage. J Irrig Drain, 2018, 37(12): 46-52 (in Chinese with English abstract).
[30] Zhong X H, Peng S B, Sanico A L, Liu H X. Quantifying the interactive effect of leaf nitrogen and leaf area on tillering of rice. J Plant Nutr, 2003, 26: 1203-1222.
[31] 张凯, 陈明睿, 刘秋员. 减氮增密对籼粳杂交稻产量和稻米品质的影响. 河南农业科学, 2023, 52(10): 14-21.
Zhang K, Chen M R, Liu Q Y. Effects of nitrogen reduction and densification on yield and rice quality of indica-japonica hybrid rice. J Henan Agric Sci, 2023, 52(10): 14-21 (in Chinese with English abstract).
[32] 梁尹明, 林贤青, 孙永飞, 朱德峰, 石国安. 水稻强化栽培下协优9308的产量及穗粒结构研究. 中国农学通报, 2004, 20(3): 84-86.
Liang Y M, Lin X Q, Sun Y F, Zhu D F, Shi G A. Study on yield and its components of Xieyou 9308 under the system of rice intensification. Chin Agric Sci Bull, 2004, 20(3): 84-86 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.040384
[33] 郎有忠, 王美娥, 吕川根, 张祖建, 朱庆森. 水稻叶片形态、群体结构和产量对种植密度的响应. 江苏农业学报, 2012, 28(1): 7-11.
Lang Y Z, Wang M E, Lyu C G, Zhang Z J, Zhu Q S. Response of leaf morphology, population structure and yield to planting density in rice. Jiangsu J Agric Sci, 2012, 28(1): 7-11 (in Chinese with English abstract).
[34] 孔丽丽, 侯云鹏, 尹彩侠, 李前, 张磊, 赵胤凯, 徐新朋. 秸秆还田下寒地水稻实现高产高氮肥利用率的氮肥运筹模式. 植物营养与肥料学报, 2021, 27: 1282-1293.
Kong L L, Hou Y P, Yin C X, Li Q, Zhang L, Zhao Y K, Xu X P. Nitrogen fertilizer management for high nitrogen utilization efficiency and rice yield under straw incorporation in a cold region. J Plant Nutr Fert, 2021, 27: 1282-1293 (in Chinese with English abstract).
[35] 刘文祥, 青先国, 艾治勇, 朱佳文. 氮密互作对陆两优996冠层特性和产量的影响. 华北农学报, 2013, 28(1): 213-220.
doi: 10.3969/j.issn.1000-7091.2013.01.038
Liu W X, Qing X G, Ai Z Y, Zhu J W. Effects of nitrogen-density interactions on canopy characteristics and yield of Lu Liangyou 996. Acta Agric Boreali-Sin, 2013, 28(1): 213-220 (in Chinese with English abstract).
[36] 杨艳君, 王宏富, 郭平毅, 王玉国, 原向阳, 邢国芳, 邵东红, 祁祥, 解丽丽, 聂萌恩, 郭俊, 宁娜. 施肥和密度对张杂谷5号光合特性及产量的影响. 植物营养与肥料学报, 2013, 19: 566-576.
Yang Y J, Wang H F, Guo P Y, Wang Y G, Yuan X Y, Xing G F, Shao D H, Qi X, Xie L L, Nie M E, Guo J, Ning N. Effects of fertilization and density on photosynthetic characteristics and yield of hybrid foxtail millet 5. Plant Nutr Fert Sci, 2013, 19: 566-576 (in Chinese with English abstract).
[37] 金剑, 刘晓冰, 王光华, 张秋英, Stephen J H. 大豆高产群体的生态生理特征. 中国油料作物学报, 2003, 25: 111-116.
Jin J, Liu X B, Wang G H, Zhang Q Y, Stephen J H. Eco-physiological characters of high yielding population in soybean. Chin J Oil Crop Sci, 2003, 25: 111-116 (in Chinese with English abstract).
[38] 潘月卓, 付立东, 詹贵生, 隋亚杰. 不同移栽基本苗对机插水稻生育及产量的影响. 北方水稻, 2014, 44(1): 14-16.
Pan Y Z, Fu L D, Zhan G S, Sui Y J. Effect of translating basal seedlings on growth and yield of mechanical transplanting rice. North Rice, 2014, 44(1): 14-16 (in Chinese with English abstract).
[39] 魏永华, 何双红, 徐长明. 控制灌溉条件下水肥耦合对水稻叶面积指数及产量的影响. 农业系统科学与综合研究, 2010, 26: 500-505.
Wei Y H, He S H, Xu C M. Influence of water-fertilizer coupling on rice LAI and yield under the condition of controlling irrigation. Syst Sci Compr Stud Agric, 2010, 26: 500-505 (in Chinese with English abstract).
[40] 孙永健, 陈宇, 孙园园, 徐徽, 许远明, 刘树金, 马均. 不同施氮量和栽插密度下三角形强化栽培杂交稻抗倒伏性与群体质量的关系. 中国水稻科学, 2012, 26: 189-196.
Sun Y J, Chen Y, Sun Y Y, Xu H, Xu Y M, Liu S J, Ma J. Relationship between culm lodging resistance and population quality of hybrids under triangle-planted system of rice intensification at different nitrogen application rates and planting densities. Chin Rice Sci, 2012, 26: 189-196 (in Chinese with English abstract).
[41] 田广丽, 周毅, 孙博, 张瑞卿, 周新国, 郭世伟. 氮素及栽培密度影响水稻分蘖动态的机制. 植物营养与肥料学报, 2018, 24: 896-904.
Tian G L, Zhou Y, Sun B, Zhang R Q, Zhou X G, Guo S W. Application of rice tiller with different cardinal numbers of each population. J Plant Nutr Fert, 2018, 24: 896-904 (in Chinese with English abstract).
[42] 史济林, 洪晓富, 冯来定, 蒋彭炎. 水稻不同群体基数的分蘖利用研究. 浙江农业学报, 1992, 4: 142-144.
Shi J L, Hong X F, Feng L D, Jiang P Y. Effects of nitrogen and transplanting density on the mechanisms of tillering dynamic of rice. Zhejiang Agric Sci, 1992, 4: 142-144 (in Chinese with English abstract).
[1] 徐一帆, 徐彩龙, 李瑞东, 吴宗声, 华建鑫, 杨琳, 宋雯雯, 吴存祥. 侧深施肥通过优化叶片功能与氮素积累来提高大豆产量[J]. 作物学报, 2024, 50(9): 2335-2346.
[2] 杨煜琛, 靳雅荣, 骆金婵, 祝鑫, 李葳航, 贾纪原, 王小珊, 黄德均, 黄琳凯. 珍珠粟WD40基因家族鉴定及表达特征分析[J]. 作物学报, 2024, 50(9): 2219-2236.
[3] 刘志鹏, 苟志文, 柴强, 殷文, 樊志龙, 胡发龙, 范虹, 王琦明. 干旱灌区绿肥对多样化种植小麦玉米产量性能指标的影响[J]. 作物学报, 2024, 50(9): 2415-2424.
[4] 孙照华, 任昊, 王洪章, 王子强, 姚海燕, 辛爱美, 赵斌, 张吉旺, 任佰朝, 刘鹏. 叶面喷施硅制剂对滨海盐碱地夏玉米叶片光合性能及籽粒产量的影响[J]. 作物学报, 2024, 50(9): 2383-2395.
[5] 彭杰, 谢晓麒, 张钊, 姚晓芬, 邱深, 陈丹丹, 顾晓娜, 王玉洁, 王晨晨, 杨国正. 夏直播棉花产量与冠层微环境的关系[J]. 作物学报, 2024, 50(9): 2371-2382.
[6] 张贵芹, 王洪章, 郭新送, 朱福军, 高涵, 张吉旺, 赵斌, 任佰朝, 刘鹏, 任昊. 有机物料投入对滨海盐碱地土壤理化性状和夏玉米产量形成的影响[J]. 作物学报, 2024, 50(9): 2323-2334.
[7] 张振, 何建宁, 石玉, 于振文, 张永丽. 行距和种植方式对小麦光合特性和产量的影响[J]. 作物学报, 2024, 50(9): 2396-2407.
[8] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响[J]. 作物学报, 2024, 50(8): 2067-2077.
[9] 宋志文, 赵蕾, 毕俊国, 唐清芸, 王国栋, 李玉祥. 滴灌条件下施氮量对不同氮效率水稻品种物质积累及养分吸收的影响[J]. 作物学报, 2024, 50(8): 2025-2038.
[10] 娄洪祥, 黄肖玉, 江萌, 宁宁, 卞孟磊, 张磊, 罗东旭, 秦梦倩, 蒯婕, 汪波, 王晶, 赵杰, 徐正华, 周广生. 长江流域迟播甘蓝型油菜播种期和播种量优化配置研究[J]. 作物学报, 2024, 50(8): 2091-2105.
[11] 杨启睿, 李岚涛, 张铎, 王雅娴, 盛开, 王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响[J]. 作物学报, 2024, 50(7): 1841-1854.
[12] 曹秭琦, 赵小庆, 张向前, 王建国, 李娟, 韩云飞, 刘丹, 高艳华, 路战远, 任永峰. 施氮水平对沙质土壤油莎豆氮磷钾累积、分配及产量的影响[J]. 作物学报, 2024, 50(7): 1805-1817.
[13] 韩笑晨, 张贵芹, 王亚辉, 任昊, 王洪章, 刘国利, 林佃旭, 王子强, 张吉旺, 赵斌, 任佰朝, 刘鹏. 土壤调理剂对滨海盐碱地土壤盐分含量及夏玉米产量的影响[J]. 作物学报, 2024, 50(7): 1776-1786.
[14] 李长喜, 董占鹏, 关永虎, 刘金伟, 李航, 梅拥军. 南疆陆地棉农艺性状与皮棉产量性状的遗传贡献及决策系数分析[J]. 作物学报, 2024, 50(6): 1486-1502.
[15] 王菲儿, 郭瑶, 李盼, 韦金贵, 樊志龙, 胡发龙, 范虹, 何蔚, 殷文, 陈桂平. 绿洲灌区增密对水氮减量玉米产量的补偿机制[J]. 作物学报, 2024, 50(6): 1616-1627.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杜永;王艳;王学红;孙乃立;杨建昌. 黄淮地区不同粳稻品种株型、产量与品质的比较分析[J]. 作物学报, 2007, 33(07): 1079 -1085 .
[2] 贺立源;徐尚忠;李建生. 玉米自交系苗期耐酸的生物学和营养学特性[J]. 作物学报, 2000, 26(02): 205 -209 .
[3] 宋开山;张柏;李方;段洪涛;王宗明. 玉米叶绿素含量的高光谱估算模型研究[J]. 作物学报, 2005, 31(08): 1095 -1097 .
[4] 潘庆民;于振文;王月福;田奇卓. 公顷产9000 kg小麦氮素吸收分配的研究[J]. 作物学报, 1999, 25(05): 541 -547 .
[5] 王爱云;田煦. 螯合稀土——硼在苎麻上的应用研究[J]. 作物学报, 1997, 23(05): 597 -602 .
[6] 张磊;张宝石;周荣华;高丽峰;赵光耀;宋彦霞;贾继增. 小麦细胞分裂素氧化/脱氢酶基因(TaCKX2)的克隆及其遗传作图[J]. 作物学报, 2007, 33(09): 1419 -1425 .
[7] 庄克章;郭新宇;王纪华;王空军;吴正锋;刘鹏;董树亭;张吉旺. 高油115籽粒灌浆期光能利用效率[J]. 作物学报, 2007, 33(02): 230 -235 .
[8] 程颖;宋伟;刘志勇;解超杰;倪中福;彭惠茹;聂秀玲;杨作民;孙其信. 小麦品种贵农21抗条锈病基因的SSR标记[J]. 作物学报, 2006, 32(12): 1867 -1872 .
[9] 杨典洱;张承亮;陈翠霞;王岳光; 王斌;张超良;陈绍江. 禾谷镰刀菌引起玉米青枯病的抗性基因遗传分析[J]. 作物学报, 2002, 28(03): 389 -393 .
[10] 郑克武;邹江石;吕川根. N肥和栽插密度对杂交稻“两优培九”产量及N素吸收利用的影响[J]. 作物学报, 2006, 32(06): 885 -893 .