欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (10): 2727-2737.doi: 10.3724/SP.J.1006.2025.51037

• 耕作栽培·生理生化 • 上一篇    下一篇

半干旱区燕麦与豆科作物带状复合种植的产量优势及氮素利用特征研究

陈敏1,2(), 贾蓉1,2, 张金传1,2, 张辰煜1,2, 褚俊聪1,2, 姚伟1,2, 葛军勇3, 王星宇3, 杨亚东1,2, 曾昭海1,2, 臧华栋1,2,*()   

  1. 1中国农业大学农学院玉米生物育种国家重点实验室, 北京 100193
    2中国农业大学农学院农业农村部农作制度重点实验室, 北京 100193
    3张家口市农业科学院, 河北张家口 075000
  • 收稿日期:2025-04-09 接受日期:2025-07-09 出版日期:2025-10-12 网络出版日期:2025-07-16
  • 通讯作者: *臧华栋, E-mail: zanghuadong@cau.edu.cn
  • 作者简介:E-mail: 18801291815@163.com
  • 基金资助:
    国家重点研发计划项目(2022YFD1901100);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-07-B-5);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-07-A-6)

Yield advantages and nitrogen utilization characteristics of oat and legume strip intercropping in semi-arid zones

CHEN Min1,2(), JIA Rong1,2, ZHANG Jin-Chuan1,2, ZHANG Chen-Yu1,2, CHU Jun-Cong1,2, YAO Wei1,2, GE Jun-Yong3, WANG Xing-Yu3, YANG Ya-Dong1,2, ZENG Zhao-Hai1,2, ZANG Hua-Dong1,2,*()   

  1. 1State Key Laboratory of Maize Bio-Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
    2Key Laboratory of Farming system, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
    3Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou 075000, Hebei, China
  • Received:2025-04-09 Accepted:2025-07-09 Published:2025-10-12 Published online:2025-07-16
  • Contact: *E-mail: zanghuadong@cau.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2022YFD1901100);China Agriculture Research System of MOF and MARA(CARS-07-B-5);China Agriculture Research System of MOF and MARA(CARS-07-A-6)

摘要:

为探究北方半干旱区燕麦与豆科作物带状复合种植对作物产量和氮素利用的影响, 本研究基于2019年在河北省张北县开展的田间定位试验, 系统分析了作物产量、氮素利用、土壤养分的变化规律。试验共设置5个处理, 分别为燕麦||大豆间作、燕麦||红芸豆间作、燕麦单作、大豆单作和红芸豆单作。结果表明, 燕麦||大豆、燕麦||红芸豆间作的土地当量比和氮产量当量比均大于1, 主要表现为燕麦产量增加, 而大豆、红芸豆产量降低。具体而言, 在燕麦||大豆和燕麦||红芸豆模式下, 间作比单作燕麦分别增产18.2%~32.9%和24.8%~44.8%, 燕麦偏氮产量当量比分别为1.08和0.77, 表明间作体系氮素利用优势主要来自燕麦。此外, 燕麦||大豆和燕麦||红芸豆模式的燕麦籽粒氮吸收与燕麦单作相比分别增加52.4%和115.8%, 植株氮吸收提高40.6%和112.8%。因此, 氮素的高效吸收利用是间作燕麦增产的潜在原因之一。进一步分析表明, 燕麦||红芸豆间作显著提高土壤氮获取酶活性24.1%~56.5%, 从而促进了土壤氮素转化和利用, 表现为间作燕麦根际土壤可溶性氮含量增加19.2%; 燕麦||大豆间作中大豆通过增强生物固氮作用提高根际土铵态氮含量31.8%, 为燕麦提供更多可利用氮源。综上, 燕麦与豆科作物带状复合种植模式通过增加土壤氮获取酶活性来加速可溶性氮释放或通过生物固氮提供更多铵态氮, 进而提高作物产量和氮素利用。因此, 在北方半干旱地区推广燕麦与豆科作物带状复合种植模式, 有助于优化氮素管理、提高系统生产力, 助力区域农业可持续发展。

关键词: 半干旱区, 氮当量比, 燕麦, 大豆, 燕麦, 红芸豆, 土壤养分

Abstract:

To investigate the effects of oat/legumes intercropping on crop yield and nitrogen utilization in the semi-arid northern region, a field experiment was conducted in Zhangbei county, Hebei province, in 2019. The study analyzed crop yield, nitrogen use efficiency, soil nutrients, and soil enzyme activities. Five treatments were applied as oat||soybean intercropping, oat||red kidney bean intercropping, oat monoculture, soybean monoculture, and red kidney bean monoculture. Both the land equivalent ratio and nitrogen yield equivalent ratio for oat||soybean and oat||red kidney bean intercropping were greater than 1, primarily due to increased oat yields despite reduced legume yields. Specifically, oat yields in the oat||soybean and oat||red kidney bean intercropping increased by 18.2%-32.9% and 24.8%-44.8% compared to oat monoculture, respectively. The partial factor productivity of nitrogen for oat was 1.08 and 0.77, respectively, indicating that the nitrogen utilization advantage of intercropping was mainly attributable to oat. Furthermore, oat nitrogen uptake increased by 52.4% and 115.8% in the oat||soybean and oat||red kidney bean intercropping, respectively, while total plant nitrogen uptake increased by 40.6% and 112.8% compared to oat monoculture. These results suggest that enhanced nitrogen absorption and utilization is a key factor contributing to the yield advantage of intercropped oat. Further analysis revealed that the oat||red kidney bean intercropping significantly increased soil nitrogen-acquisition enzyme activity by 24.1%-56.5%, thereby promoting nitrogen transformation and utilization, as evidenced by a 19.2% increase in soluble nitrogen content in the rhizosphere soil of intercropped oat. In the oat||soybean intercropping system, biological nitrogen fixation by soybean increased the ammonium nitrogen content in the rhizosphere soil by 31.8%. In conclusion, the oat||legume strip intercropping improves crop yield and nitrogen utilization by either enhancing soil nitrogen-acquisition enzyme activity to accelerate soluble nitrogen release or by increasing ammonium nitrogen availability via biological nitrogen fixation. Promoting this intercropping system in the semi-arid northern region could optimize nitrogen management, enhance system productivity, and support sustainable regional agricultural development.

Key words: semi-arid zone, nitrogen equivalent ratio, oats, soybeans, oats, red kidney beans, soil nutrients

图1

产量与土地当量比 (a)和(b)分别为2022年燕麦与大豆、红芸豆间作的土地当量比及产量。(c)和(d)分别为2023年燕麦与大豆、红芸豆间作的土地当量比及产量。(a)中, O为燕麦, S为大豆, R为红芸豆。(b)中O为单作燕麦, OS-O为与大豆间作的燕麦, OR-O为与红芸豆间作的燕麦, S为单作大豆, OS-S为与燕麦间作的大豆, R为单作红芸豆, OR-R为与燕麦间作的红芸豆。同年同作物不同小写字母表示差异显著(P < 0.05)。"

图2

氮产量当量比与氮产量 (a) 为燕麦与大豆、红芸豆间作的氮产量当量比, (b) 为氮产量。不同小写字母表示差异显著(P < 0.05)。缩写同图1。"

图3

氮吸收与氮浓度 (a) 为燕麦与大豆、红芸豆间作的籽粒氮吸收, (b) 为燕麦与大豆、红芸豆间作的籽粒氮含量, (c) 为燕麦与大豆、红芸豆间作的植株氮吸收, (d) 为燕麦与大豆、红芸豆间作的植株氮含量。不同小写字母表示差异显著(P < 0.05)。缩写同图1。"

图4

根际土壤理化性质和酶活性效应值 效应值为间作与单作差值之比。(a) 为燕麦与大豆间作的根际土理化性质和酶活性效应值, (b) 为燕麦与红芸豆间作的根际土理化性质和酶活性效应值。TN: 全氮; NO3--N: 硝态氮含量; NH4+-N: 铵态氮含量; DON: 可溶性有机氮; MBC: 微生物生物量碳; MBN: 微生物生物量氮; NAG: N-乙酰氨基葡萄糖苷酶; LEU: L-亮氨酸氨基肽酶; ALP: 碱性磷酸酶。*表示间作与对应单作的效应值差异显著。"

图5

氮产量的影响因素 (a) 为燕麦的氮产量影响因素, (b) 为大豆的氮产量影响因素, (c) 为红芸豆的氮产量影响因素。SWC: 含水量; pH: 酸碱度; Soil TN: 土壤全氮; NO3--N: 硝态氮含量; NH4+-N: 铵态氮含量; AN: 速效氮含量; AP: 速效磷; DOC: 可溶性有机碳; DON: 可溶性有机氮; MBC: 微生物生物量碳; MBN: 微生物生物量氮; NAG: N-乙酰氨基葡萄糖苷酶; LEU: L-亮氨酸氨基肽酶; N-acq: 氮获取酶活性; ALP: 碱性磷酸酶; Plant N conc.: 植株氮浓度; Seed N conc.: 籽粒氮浓度; Biomass: 生物量; Yield: 产量; Plant N uptake: 植株氮吸收; Seed N uptake: 籽粒氮吸收。*: P < 0.05, **: P < 0.01, ***: P < 0.001。"

[1] Li X F, Wang Z G, Bao X G, Sun J H, Yang S C, Wang P, Wang C B, Wu J P, Liu X R, Tian X L, et al. Long-term increased grain yield and soil fertility from intercropping. Nat Sustain, 2021, 4: 943-950.
[2] Tamburini G, Bommarco R, Wanger T C, Kremen C, van der Heijden M G A, Liebman M, Hallin S. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci Adv, 2020, 6: eaba1715.
[3] Yu R P, Yang H, Xing Y, Zhang W P, Lambers H, Li L. Belowground processes and sustainability in agroecosystems with intercropping. Plant Soil, 2022, 476: 263-288.
[4] Ma H Y, Zhou J, Ge J Y, Nie J W, Zhao J, Xue Z Q, Hu Y G, Yang Y D, Peixoto L, Zang H D, et al. Intercropping improves soil ecosystem multifunctionality through enhanced available nutrients but depends on regional factors. Plant Soil, 2022, 480: 71-84.
[5] Mudare S, Kanomanyanga J, Jiao X Q, Mabasa S, Lamichhane J R, Jing J Y, Cong W F. Yield and fertilizer benefits of maize/grain legume intercropping in China and Africa: a meta-analysis. Agron Sustain Dev, 2022, 42: 81.
[6] 冯晓敏, 杨永, 任长忠, 胡跃高, 曾昭海. 豆科-燕麦间作对作物光合特性及籽粒产量的影响. 作物学报, 2015, 41: 1426-1434.
doi: 10.3724/SP.J.1006.2015.01426
Feng X M, Yang Y, Ren C Z, Hu Y G, Zeng Z H. Effects of legumes intercropping with oat on photosynthesis characteristics of and grain yield. Acta Agron Sin, 2015, 41: 1426-1434 (in Chinese with English abstract).
[7] Feng W H, Ge J Y, Rodríguez A R S, Zhao B P, Wang X Y, Peixoto L, Yang Y D, Zeng Z H, Zang H D. Oat/soybean strip intercropping benefits crop yield and stability in semi-arid regions: a multi-site and multi-year assessment. Field Crops Res, 2024, 318: 109560.
[8] Yang F, Liao D P, Wu X L, Gao R C, Fan Y F, Ali Raza M, Wang X C, Yong T W, Liu W G, Liu J, et al. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Res, 2017, 203: 16-23.
[9] Chapagain T, Pudasaini R, Ghimire B, Gurung K, Choi K, Rai L, Magar S, BK B, Raizada M N. Intercropping of maize, millet, mustard, wheat and ginger increased land productivity and potential economic returns for smallholder terrace farmers in Nepal. Field Crops Res, 2018, 227: 91-101.
[10] Ma Q H, Wu Y H, Liu Y N, Shen Y Y, Wang Z K. Interspecific interaction and productivity in a dryland wheat/alfalfa strip intercropping. Field Crops Res, 2024, 309: 109335.
[11] Raza A, Asghar M A, Ahmad B, Bin C, Iftikhar Hussain M, Li W, Iqbal T, Yaseen M, Shafiq I, Yi Z, et al. Agro-techniques for lodging stress management in maize-soybean intercropping system: a review. Plants, 2020, 9: 1592.
[12] Wang W, Zhao J H, Li M Y, Zhang W, Rehman M M U, Wang B Z, Ullah F, Cheng Z G, Zhu L, Zhang J L, et al. Yield loss of inferior crop species and its physiological mechanism in a semiarid cereal-legume intercropping system. Eur J Agron, 2024, 152: 127032.
[13] Thilakarathna M S, McElroy M S, Chapagain T, Papadopoulos Y A, Raizada M N. Belowground nitrogen transfer from legumes to non-legumes under managed herbaceous cropping systems: a review. Agron Sustain Dev, 2016, 36: 58.
[14] Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci‌‌, 2018, 23: 25-41.
[15] 冯晓敏, 高翔, 臧华栋, 胡跃高, 任长忠, 郝志萍, 吕慧卿, 曾昭海. 燕麦-绿豆间作效应及氮素转移特性. 植物学报, 2023, 58: 122-131.
doi: 10.11983/CBB22176
Feng X M, Gao X, Zang H D, Hu Y G, Ren C Z, Hao Z P, Lyu H Q, Zeng Z H. Intercropping effect and nitrogen transfer characteristics of oat-mungbean intercrop. Chin Bull Bot, 2023, 58: 122-131 (in Chinese with English abstract).
[16] Xing Y, Yu R P, An R, Yang N, Wu J P, Ma H Y, Zhang J D, Bao X G, Lambers H, Li L. Two pathways drive enhanced nitrogen acquisition via a complementarity effect in long-term intercropping. Field Crops Res, 2023, 293: 108854.
[17] 覃潇敏, 潘浩男, 肖靖秀, 汤利, 郑毅. 施磷水平对玉米大豆间作系统氮素吸收与分配的影响. 植物营养与肥料学报, 2021, 27: 1173-1184.
Qin X M, Pan H N, Xiao J X, Tang L, Zheng Y. Effects of phosphorus application rate on N uptake and distribution in maize and soybean intercropping system. J Plant Nutr Fert, 2021, 27: 1173-1184 (in Chinese with English abstract).
[18] 钱玉平, 宿兵兵, 高吉星, 阮粉花, 李亚伟, 茅林春. 玉米大豆间作对喀斯特区土壤理化性质及微生物碳代谢特征的影响. 作物学报, 2025, 51: 273-284.
doi: 10.3724/SP.J.1006.2025.43010
Qian Y P, Su B B, Gao J X, Ruan F H, Li Y W, Mao L C. Effects of maize and soybean intercropping on soil physicochemical properties and microbial carbon metabolism in karst region. Acta Agron Sin, 2025, 51: 273-284 (in Chinese with English abstract).
[19] Jalloh A A, Mutyambai D M, Yusuf A A, Subramanian S, Khamis F. Maize edible-legumes intercropping systems for enhancing agrobiodiversity and belowground ecosystem services. Sci Rep, 2024, 14: 14355.
doi: 10.1038/s41598-024-64138-w pmid: 38906908
[20] Kebede G, Worku W, Jifar H, Feyissa F. Multivariate analysis for yield and yield-related traits of oat (Avena sativa L.) genotypes in Ethiopia. Ecol Genet Genom, 2023, 28: 100184.
[21] Guo S B, Guo E J, Zhang Z T, Dong M Q, Wang X, Fu Z Z, Guan K X, Zhang W M, Zhang W J, Zhao J, et al. Impacts of mean climate and extreme climate indices on soybean yield and yield components in Northeast China. Sci Total Environ, 2022, 838: 156284.
[22] 畅建武, 郝晓鹏, 王燕, 杨伟, 郜欣. 红芸豆氮磷钾肥效试验研究. 中国农学通报, 2015, 31(15): 108-113.
doi: 10.11924/j.issn.1000-6850.casb14120084
Chang J W, Hao X P, Wang Y, Yang W, Gao X. Fertilizer efficiency experiment of nitrogen phosphorus and potassium on red kidney bean. Chin Agric Sci Bull, 2015, 31(15): 108-113 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.casb14120084
[23] 张辰煜, 葛军勇, 褚俊聪, 王星宇, 赵宝平, 杨亚东, 臧华栋, 曾昭海. 燕麦红芸豆带状间作的产量效应及根系形态与土壤酶活性. 作物学报, 2025, 51: 459-469.
doi: 10.3724/SP.J.1006.2025.41019
Zhang C Y, Ge J Y, Chu J C, Wang X Y, Zhao B P, Yang Y D, Zang H D, Zeng Z H. Yield effect and its root and soil enzyme characteristics of oat and red kidney bean strip intercropping. Acta Agron Sin, 2025, 51: 459-469 (in Chinese with English abstract).
[24] Qian X, Zhou J, Luo B L, Dai H C, Hu Y G, Ren C Z, Peixoto L, Guo L C, Wang C L, Zamanian K, et al. Yield advantage and carbon footprint of oat/sunflower relay strip intercropping depending on nitrogen fertilization. Plant Soil, 2022, 481: 581-594.
[25] 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000. pp 25-109.
Bao S D. Soil Agrochemical Analysis, 3rd edn. Beijing: China Agriculture Press, 2000. pp 25-109 (in Chinese).
[26] Brookes P C, Landman A, Pruden G, Jenkinson D S. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem, 1985, 17: 837-842.
[27] Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem, 1987, 19: 703-707.
[28] Marx M C, Wood M, Jarvis S C. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol Biochem, 2001, 33: 1633-1640.
[29] Jia R, Zhou J, Chu J C, Shahbaz M, Yang Y D, Jones D L, Zang H D, Razavi B S, Zeng Z H. Insights into the associations between soil quality and ecosystem multifunctionality driven by fertilization management: a case study from the North China Plain. J Clean Prod, 2022, 362: 132265.
[30] Martin-Guay M O, Paquette A, Dupras J, Rivest D. The new Green Revolution: sustainable intensification of agriculture by intercropping. Sci Total Environ, 2018, 615: 767-772.
[31] Dettweiler M, Wilson C, Maltais-Landry G, MacDonald G. Cassava-legume intercropping is more beneficial in low-input systems: a meta-analysis. Field Crops Res, 2023, 300: 109005.
[32] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响. 作物学报, 2022, 48: 1476-1487.
doi: 10.3724/SP.J.1006.2022.13017
Yang H, Zhou Y, Chen P, Du Q, Zheng B C, Pu T, Wen J, Yang W Y, Yong T W. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system. Acta Agron Sin, 2022, 48: 1476-1487 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.13017
[33] Wang R N, Sun Z X, Zhang L Z, Yang N, Feng L S, Bai W, Zhang D S, Wang Q, Evers J B, Liu Y, et al. Border-row proportion determines strength of interspecific interactions and crop yields in maize/peanut strip intercropping. Field Crops Res, 2020, 253: 107819.
[34] Shen L, Wang X Y, Liu T T, Wei W W, Zhang S, Keyhani A B, Li L H, Zhang W. Border row effects on the distribution of root and soil resources in maize-soybean strip intercropping systems. Soil Tillage Res, 2023, 233: 105812.
[35] Li J, Zhou L J, Lin W F. Competitive characteristics related to nitrogen utilization and Calla lily growth in rubber-Calla lily intercropping systems. Ind Crops Prod, 2018, 125: 567-572.
[36] Huang B, Zou X J, Xu H S, Xu J Y, Liu H Y, Sun W T, Gong L, Niu S W, Feng L S, Yang N, et al. Seedling defoliation of cereal crops increases peanut growth and yield in an intercropping system. Crop J, 2022, 10: 418-425.
doi: 10.1016/j.cj.2021.05.012
[37] Justes E, Bedoussac L, Dordas C, Frak E, Louarn G, Boudsocq S, Journet E P, Lithourgidis A, Pankou C, Zhang C C, et al. The 4c approach as a way to understand species interactions determining intercropping productivity. Front Agric Sci Eng, 2021, 8: 387-399.
doi: 10.15302/J-FASE-2021414
[38] Liu W G, Deng Y C, Hussain S, Zou J L, Yuan J, Luo L, Yang C Y, Yuan X Q, Yang W Y. Relationship between cellulose accumulation and lodging resistance in the stem of relay intercropped soybean [Glycine max (L.) Merr.]. Field Crops Res, 2016, 196: 261-267.
[39] 冯晓敏, 杨永, 任长忠, 胡跃高, 曾昭海. 燕麦-大豆和燕麦-花生间作对根际土壤固氮细菌多样性与群落结构的影响. 中国农业大学学报, 2016, 21(1): 22-32.
Feng X M, Yang Y, Ren C Z, Hu Y G, Zeng Z H. Effects of oat-soybean and oat-groundnut intercropping on the diversity and community composition of soil nitrogen-fixing bacterial in rhizosphere soil. J China Agric Univ, 2016, 21(1): 22-32 (in Chinese with English abstract).
[40] 焦念元, 汪江涛, 尹飞, 马超, 齐付国, 刘领, 付国占, 李友军. 施用乙烯利和磷肥对玉米//花生间作氮吸收分配及间作优势的影响. 植物营养与肥料学报, 2016, 22: 1477-1484.
Jiao N Y, Wang J T, Yin F, Ma C, Qi F G, Liu L, Fu G Z, Li Y J. Effects of ethephon and phosphate fertilizer on N absorption and intercropped advantages of maize and peanut intercropping system. J Plant Nutr Fert, 2016, 22: 1477-1484 (in Chinese with English abstract).
[41] 全智, 刘轩昂, 刘东. 土壤可溶性有机氮研究进展. 应用生态学报, 2022, 33: 277-288.
doi: 10.13287/j.1001-9332.202201.010
Quan Z, Liu X A, Liu D. Research progress on soil soluble organic nitrogen. Chin J Appl Ecol, 2022, 33: 277-288 (in Chinese with English abstract).
doi: 10.13287/j.1001-9332.202201.010
[42] Burns R G, DeForest J L, Marxsen J, Sinsabaugh R L, Stromberger M E, Wallenstein M D, Weintraub M N, Zoppini A. Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem, 2013, 58: 216-234.
[43] Zhang C, Wang J, Liu G B, Song Z L, Fang L C. Impact of soil leachate on microbial biomass and diversity affected by plant diversity. Plant Soil, 2019, 439: 505-523.
doi: 10.1007/s11104-019-04032-x
[44] Schimel J P, Clein J S. Microbial response to freeze-thaw cycles in tundra and taiga soils. Soil Biol Biochem, 1996, 28: 1061-1066.
[45] Rodriguez C, Carlsson G, Englund J E, Flöhr A, Pelzer E, Jeuffroy M H, Makowski D, Jensen E S. Grain legume-cereal intercropping enhances the use of soil-derived and biologically fixed nitrogen in temperate agroecosystems, a meta-analysis. Eur J Agron, 2020, 118: 126077.
[46] Steinauer K, Tilman D, Wragg P D, Cesarz S, Cowles J M, Pritsch K, Reich P B, Weisser W W, Eisenhauer N. Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment. Ecology, 2015, 96: 99-112.
pmid: 26236895
[47] Nygren P, Leblanc H A. Dinitrogen fixation by legume shade trees and direct transfer of fixed N to associated cacao in a tropical agroforestry system. Tree Physiol, 2015, 35: 134-147.
doi: 10.1093/treephys/tpu116 pmid: 25618898
[1] 贺红利, 张雨涵, 杨静, 程云清, 赵杨, 李星诺, 司洪亮, 张兴政, 杨向东. 大豆e1-as基因突变体的创制及生理分析[J]. 作物学报, 2025, 51(8): 2228-2239.
[2] 王克晶, 李向华. 我国珍稀的大豆属多年生烟豆和短绒野大豆物种遗传资源濒危性评估分析[J]. 作物学报, 2025, 51(8): 2009-2019.
[3] 孟然, 李赵嘉, 冯薇, 陈悦, 刘路平, 杨春燕, 鲁雪林, 王秀萍. 大豆不同生育时期耐盐性综合评价及耐盐种质筛选[J]. 作物学报, 2025, 51(8): 1991-2008.
[4] 胡蒙, 沙丹, 张晟瑞, 谷勇哲, 张世碧, 李静, 孙君明, 邱丽娟, 李斌. 大豆分枝数QTL定位及候选基因筛选[J]. 作物学报, 2025, 51(7): 1747-1756.
[5] 王琼, 邹丹霞, 陈兴运, 张威, 张红梅, 刘晓庆, 贾倩茹, 魏利斌, 崔晓艳, 陈新, 王学军, 陈华涛. 大豆开花时间和成熟期性状全基因组关联分析与候选基因预测[J]. 作物学报, 2025, 51(6): 1558-1568.
[6] 殷丛丛, 李睿琦, 岳霈尧, 李晨, 牛景萍, 赵晋忠, 杜维俊, 岳爱琴. 基于闭合哑铃介导等温扩增可视化检测大豆花叶病毒SC15方法的建立及应用[J]. 作物学报, 2025, 51(5): 1248-1260.
[7] 张辰煜, 葛军勇, 褚俊聪, 王星宇, 赵宝平, 杨亚东, 臧华栋, 曾昭海. 燕麦红芸豆带状间作的产量效应及根系形态与土壤酶活性[J]. 作物学报, 2025, 51(2): 459-469.
[8] 李威, 朱玉鹏, 孙宾成, 温有祥, 吴宗声, 徐一帆, 宋雯雯, 徐彩龙, 吴存祥. 转基因大豆结合免耕平作实现东北地区大豆生产轻简化[J]. 作物学报, 2025, 51(10): 2738-2749.
[9] 钱玉平, 宿兵兵, 高吉星, 阮粉花, 李亚伟, 茅林春. 玉米大豆间作对喀斯特区土壤理化性质及微生物碳代谢特征的影响[J]. 作物学报, 2025, 51(1): 273-284.
[10] 丁树启, 程彤, 王弼琨, 于德彬, 饶德民, 孟凡钢, 赵胤凯, 王晓慧, 张伟. 密植对不同年代大豆品种群体光合生产和产量形成的影响[J]. 作物学报, 2025, 51(1): 161-173.
[11] 聂波涛, 刘德泉, 陈健, 崔正果, 侯云龙, 陈亮, 邱红梅, 王跃强. 北方春大豆品种农艺和品质性状分析与综合评价[J]. 作物学报, 2024, 50(9): 2248-2266.
[12] 孙现军, 胡正, 姜雪敏, 王世佳, 陈向前, 张惠媛, 张辉, 姜奇彦. 大豆种质资源苗期耐盐性鉴定评价与筛选[J]. 作物学报, 2024, 50(9): 2179-2186.
[13] 刘欣玥, 郭潇阳, 王欣茹, 辛大伟, 关荣霞, 邱丽娟. 大豆萌发期耐盐性鉴定方法建立及耐盐大豆资源筛选[J]. 作物学报, 2024, 50(8): 2122-2130.
[14] 韩丽, 汤胜胜, 李佳, 胡海斌, 刘龙龙, 吴斌. 燕麦SNP高密度遗传图谱构建及β-葡聚糖含量QTL定位[J]. 作物学报, 2024, 50(7): 1710-1718.
[15] 李晓菲, 高华伟, 广慧, 石宇欣, 谷勇哲, 齐照明, 邱丽娟. 大豆种质资源萌发期耐莠去津鉴定评价及优异种质筛选[J]. 作物学报, 2024, 50(7): 1699-1709.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!