欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (12): 3211-3223.doi: 10.3724/SP.J.1006.2025.54045

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

不同耐荫性谷子对遮阴的生理响应及转录组分析

朱灿灿(), 李君霞(), 景雅, 付森杰, 秦娜, 王春义, 代书桃, 魏昕, 张程炀   

  1. 河南省农业科学院粮食作物研究所, 河南郑州 450002
  • 收稿日期:2025-04-07 接受日期:2025-08-13 出版日期:2025-12-12 网络出版日期:2025-08-25
  • 通讯作者: *李君霞, E-mail: lijunxia@126.com
  • 作者简介:朱灿灿, E-mail: 840565387@qq.com
    李君霞, E-mail: lijunxia@126.com第一联系人:**同等贡献
  • 基金资助:
    本研究由河南省重点研发计划专项(231111110300);本研究由河南省重点研发计划专项(241111112100);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-06);河南省产业技术体系专项(HARS-25-04);河南省农业科学院自主创新项目(2025ZC24);河南省农业科学院创新团队专项(2024TD039)

Physiological response and transcriptome analysis of foxtail millet with different shading tolerances under shading stress

ZHU Can-Can(), LI Jun-Xia(), JING Ya, FU Sen-Jie, QIN Na, WANG Chun-Yi, DAI Shu-Tao, WEI Xin, ZHANG Cheng-Yang   

  1. Cereal Crops Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
  • Received:2025-04-07 Accepted:2025-08-13 Published:2025-12-12 Published online:2025-08-25
  • Contact: *E-mail: lijunxia@126.com
  • About author:First author contact:**Contributed equally to this work
  • Supported by:
    Key Research and Development Project of Henan Province(231111110300);Key Research and Development Project of Henan Province(241111112100);China Agriculture Research System of MOF and MARA(CARS-06);Henan Province Agriculture Research System(HARS-25-04);Henan Academy of Agricultural Sciences Independent Innovation Fund Project(2025ZC24);Innovation Teams of Henan Academy of Agricultural Sciences(2024TD039)

摘要: 为研究不同耐荫性谷子对遮阴胁迫的响应机制, 本研究以豫谷29 (YG29)和保谷25 (BG25)为试验材料, 于灌浆期搭建遮阴网进行遮阴处理, 分析2个谷子品种的产量性状、光合色素、光合作用、抗氧化酶活性以及转录组学差异。结果表明, 遮阴胁迫显著降低了2个谷子品种的产量、净光合速率、蒸腾速率、气孔导度, 显著增加了叶绿素a和叶绿素b含量, 增强了POD、SOD和CAT活性; 与BG25相比, YG29在遮阴条件下具有更高的产量、叶绿素含量、净光合速率和抗氧化酶活性, 更低的叶绿素a/b值, 表现出较强的耐荫性。转录组分析发现, BG25和YG29中分别有2961个和2966个响应遮阴胁迫的差异表达基因; BG25和YG29的差异基因分别显著富集在24个和16个GO类别、13条和6条KEGG通路, 2个品种共同显著富集的通路有光合作用-天线蛋白、卟啉与叶绿素代谢、苯丙素生物合成和氰基氨基酸代谢。对关键代谢通路上基因进行分析发现, 与BG25相比, 遮阴下YG29中叶绿素降解相关基因NOLHCARSGRPPHRCCR的表达量较低, 碳固定相关基因RBCRCAPEPCMDHGAPCFBA和抗氧化酶相关基因PRXCAT的表达量较高, 这些基因可能在谷子耐荫中发挥重要作用。

关键词: 谷子, 遮阴胁迫, 生理特性, 产量, 转录组

Abstract:

To investigate the response mechanisms of foxtail millet cultivars with different shade tolerance to shading stress, Yugu 29 (YG29) and Baogu 25 (BG25) were used as experimental materials. Shading nets were applied during the grain filling stage to simulate shading conditions. We examined the differences between the two cultivars in yield traits, photosynthetic pigments, photosynthetic parameters, antioxidant enzyme activities, and transcriptomic profiles. The results showed that shading stress significantly reduced yield, photosynthetic rate, transpiration rate, and stomatal conductance, while significantly increasing chlorophyll a and b contents as well as the activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT). Compared with BG25, YG29 exhibited higher yield, chlorophyll content, photosynthetic rate, and antioxidant enzyme activities, along with a lower chlorophyll a/b ratio, indicating greater tolerance to shading stress. Transcriptome analysis identified 2961 and 2966 differentially expressed genes (DEGs) in BG25 and YG29 under shading conditions, respectively. These DEGs were significantly enriched in 24 and 16 Gene Ontology (GO) categories and 13 and 6 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in BG25 and YG29, respectively. Four pathways were commonly enriched in both cultivars: photosynthesis-antenna proteins, porphyrin and chlorophyll metabolism, phenylpropanoid biosynthesis, and cyanoamino acid metabolism. Further analysis of key metabolic pathways revealed that, under shading stress, YG29 showed lower expression levels of chlorophyll degradation-related genes (NOL, HCAR, SGR, PPH, and RCCR), and higher expression levels of genes related to carbon fixation (RBC, RCA, PEPC, MDH, GAPC, and FBA) and antioxidant enzymes (PRX, CAT) compared with BG25. These genes may play critical roles in the enhanced shade tolerance of YG29.

Key words: foxtail millet, shading stress, physiological characteristics, yield, transcriptome

表1

遮阴对谷子光合色素含量的影响"

项目
Item
处理Treatment
YG29 CK YG29 S BG25 CK BG25 S
叶绿素a Chl a (mg g-1) 1.71 b 1.81 a 1.51 c 1.67 b
叶绿素b Chl b (mg g-1) 0.43 b 0.47 a 0.38 c 0.41 b
总叶绿素Chl a+b (mg g-1) 2.14 b 2.28 a 1.89 c 2.08 b
类胡萝卜素Car (mg g-1) 0.35 a 0.37 a 0.36 a 0.37 a
叶绿素a/b Chl a/b 3.98 b 3.85 c 3.97 b 4.07 a

表2

遮阴对谷子光合参数的影响"

项目
Item
处理Treatment
YG29 CK YG29 S BG25 CK BG25 S
净光合速率Pn (μmol m-2 s-1) 20.12 a 16.80 b 19.39 a 13.64 c
气孔导度Gs (mmol m-2 s-1) 0.14 a 0.07 b 0.14 a 0.05 b
胞间CO2浓度Ci (μL L-1) 72.68 c 147.76 b 76.32 c 175.07 a
蒸腾速率Tr (mmol m-2 s-1) 4.41 a 2.32 b 4.27 a 2.24 b

图1

遮阴对谷子SOD、POD、CAT活性的影响 缩写同表1。图柱上不同小写字母表示0.05水平差异显著。"

表3

遮阴对谷子产量及相关性状的影响"

处理
Treatment
穗长
Panicle length (cm)
穗粗
Panicle diameter (mm)
单穗码数
Spike number
单码粒数
Grain number per spike
千粒重
1000-grain weight (g)
穗粒重
Grain weight per panicle (g)
产量
Yield
(kg hm-2)
YG29 CK 20.66 b 24.86 a 96.81 b 85.09 a 2.75 a 16.77 a 7333.33 a
YG29 S 20.06 b 24.12 a 95.58 b 76.50 b 2.71 a 14.67 b 6422.97 b
BG25 CK 23.78 a 25.53 a 124.34 a 69.27 c 2.80 a 17.63 a 7550.10 a
BG25 S 19.37 c 19.49 b 120.65 a 48.75 d 2.39 b 10.05 c 3697.02 c

表4

转录组测序数据统计"

样本
Sample
过滤后序列数
ReadSum
过滤后碱基数
BaseSum
G和C占总碱基数量百分比
GC (%)
Q20比例
Q20 percentage (%)
Q30比例
Q30 percentage (%)
BG25 CK-1 28,009,853 8,402,955,900 51.08 98.74 95.42
BG25 CK-2 30,791,866 9,237,559,800 51.05 98.93 96.17
BG25 CK-3 26,908,903 8,072,670,900 51.12 98.91 96.07
BG25 S-1 26,506,175 7,951,852,500 51.66 98.86 95.90
BG25 S-2 28,392,601 8,517,780,300 51.61 98.89 96.03
BG25 S-3 27,971,860 8,391,558,000 51.58 98.93 96.16
YG29 CK-1 31,034,112 9,310,233,600 50.95 98.99 96.35
YG29 CK-2 29,191,336 8,757,400,800 50.97 98.93 96.15
YG29 CK-3 26,969,835 8,090,950,500 51.10 98.95 96.25
YG29 S-1 27,555,926 8,266,777,800 51.32 98.89 95.97
YG29 S-2 27,345,884 8,203,765,200 51.26 98.93 96.16
YG29 S-3 29,655,010 8,896,503,000 51.54 98.88 95.99

图2

差异表达基因韦恩分析"

图3

遮阴和对照差异表达基因的b注释分析 缩写同表1。BP: 生物过程; CC: 细胞组成; MF: 分子功能。"

图4

遮阴和对照差异表达基因的KEGG注释分析"

图5

遮阴胁迫相关差异表达基因的表达水平值热图 缩写同表1。A图为卟啉和叶绿素代谢通路中DEGs的表达量; B图为光合相关通路中DEGs的表达量; C图为抗氧化酶相关的DEGs的表达量。颜色由蓝到红表示基因的表达数据水平(Z值)由低到高。"

表5

差异表达转录因子统计"

转录因子家族
Transcription factor family
YG29 S vs YG29 CK BG25 S vs BG25 CK
基因数
Gene number
上调
Up
下调
Down
基因数
Gene number
上调
Up
下调
Down
MYB 21 3 18 23 5 18
bHLH 21 7 14 19 6 13
AP2/ERF 14 8 6 21 9 12
WRKY 13 3 10 18 1 17
GARP 13 5 8 11 5 6
C2C2 12 5 7 14 6 8
bZIP 10 4 6 15 5 10
NAC 8 2 6 13 2 11
C2H2 7 2 5 11 2 9
HB 7 4 3 10 3 7
其他 Other 69 32 37 87 43 44
总计 Total 195 75 120 242 87 155

图6

遮阴胁迫相关差异表达转录因子基因的表达水平值热图 缩写同表1。颜色由蓝到红表示基因的表达数据水平(Z值)由低到高。"

[1] 李顺国, 刘斐, 刘猛, 程汝宏, 夏恩君, 刁现民. 中国谷子产业和种业发展现状与未来展望. 中国农业科学, 2021, 54: 459-470.
doi: 10.3864/j.issn.0578-1752.2021.03.001
Li S G, Liu F, Liu M, Cheng R H, Xia E J, Diao X M. Current status and future prospective of foxtail millet production and seed industry in China. Sci Agric Sin, 2021, 54: 459-470 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2021.03.001
[2] Lu H Y, Zhang J P, Liu K B, Wu N Q, Li Y M, Zhou K S, Ye M L, Zhang T Y, Zhang H J, Yang X Y, et al. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc Natl Acad Sci USA, 2009, 106: 7367-7372.
doi: 10.1073/pnas.0900158106 pmid: 19383791
[3] 姚德贵, 刘春, 苗雨沛, 刘善峰, 周放, 赵灿. 1961-2020年河南省夏季极端降水异常分布特征及其与大气环流和海温的关系. 气象与减灾研究, 2024, 47(2): 81-94.
Yao D G, Liu C, Miao Y P, Liu S F, Zhou F, Zhao C. Spatiotemporal characteristics of 1961-2020 summer extreme precipitation anomaly in Henan province and their relationships with the atmospheric circulation and SST. Meteor Disaster Red Res, 2024, 47(2): 81-94 (in Chinese with English abstract).
[4] 杨慧杰, 原向阳, 祁祥, 郭平毅, 郭大辛, 董淑琦, 温银元, 张丽光. 谷子对拔节期弱光胁迫的光合生理响应. 核农学报, 2017, 31: 386-393.
doi: 10.11869/j.issn.100-8551.2017.02.0386
Yang H J, Yuan X Y, Qi X, Guo P Y, Guo D X, Dong S Q, Wen Y Y, Zhang L G. Photosynthetic physiological response of foxtail millet to weak light stress at jointing-stage. J Nucl Agric Sci, 2017, 31: 386-393 (in Chinese with English abstract).
doi: 10.11869/j.issn.100-8551.2017.02.0386
[5] 刘鑫, 田岗, 王玉文, 刘永忠, 李会霞, 余爱丽, 成锴, 王振华, 刘红, 李万星, 等. 遮光对谷子植株农艺性状及干物质量的影响. 东北农业科学, 2023, 48(3): 10-14.
Liu X, Tian G, Wang Y W, Liu Y Z, Li H X, Yu A L, Cheng K, Wang Z H, Liu H, Li W X, et al. Effects of shading on agronomic characters and dry matter quality of millet plants. J Northeast Agric Sci, 2023, 48(3): 10-14 (in Chinese with English abstract).
[6] 时丽冉, 郝洪波, 崔海英, 李明哲. 遮光对谷子光合性能及快速叶绿素荧光动力学特征的影响. 作物杂志, 2019, (5): 125-128.
Shi L R, Hao H B, Cui H Y, Li M Z. Effects of shading on photosynthetic characteristics and rapid chlorophyll fluorescence kinetic characteristics of foxtail millet. Crops, 2019, (5): 125-128 (in Chinese with English abstract).
[7] 祁祥.遮阴对谷子生理特性及产量的影响. 山西农业大学硕士学位论文, 山西太谷, 2013.
Qi X. Effect of Shading on Physiological Characteristics and Yield in Millet. MS Thesis of Shanxi Agricultural University, Taigu, Shanxi, China, 2013 (in Chinese with English abstract).
[8] 田岗, 刘鑫, 王玉文, 刘永忠, 李会霞, 成锴, 王振华, 刘红. 遮光处理对谷子农艺性状、小米品质及蒸煮特性的影响. 中国农业科技导报, 2021, 23(11): 47-54.
Tian G, Liu X, Wang Y W, Liu Y Z, Li H X, Cheng K, Wang Z H, Liu H. Effects of shading treatment on millet agronomic traits, millet quality and cooking characteristics. J Agric Sci Technol, 2021, 23(11): 47-54 (in Chinese with English abstract).
[9] 李素英, 刘丹, 崔燕娇, 张静, 王凤春, 刘正理. 谷栗立体套种下谷子耐荫性评价方法的建立及应用. 西北农林科技大学学报(自然科学版), 2024, 52(8): 49-59.
Li S Y, Liu D, Cui Y J, Zhang J, Wang F C, Liu Z L. Establishment and application of evaluation method for shade tolerant of foxtail millet under stereo interplanting of foxtail millet and chestnut tree. J Northwest A&F Univ (Nat Sci Edn), 2024, 52(8): 49-59 (in Chinese with English abstract).
[10] 伍龙梅.遮阴和外源调节物质对粳稻茎秆抗倒伏性的影响及其生理和分子机理. 南京农业大学博士学位论文, 江苏南京, 2017.
Wu L M. Impacts of Shading and Exogenous Regulating Substances on Stem Lodging Resistance of Japonica Rice and Its Physiological and Molecular Mechanisms. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2017 (in Chinese with English abstract).
[11] 黄小龙, 张艳芳, 郭树春, 邢丽南, 葛明然, 张晓蒙, 张勇, 霍秀文. 光强对山药叶片结构和光合特性的影响. 植物生理学报, 2024, 60: 808-822.
Huang X L, Zhang Y F, Guo S C, Xing L N, Ge M R, Zhang X M, Zhang Y, Huo X W. Effects of light intensities on leaf structure and photosynthetic characteristics of yam. Plant Physiol J, 2024, 60: 808-822 (in Chinese with English abstract).
[12] An J, Wei X L, Huo H H.Transcriptome analysis reveals the accelerated expression of genes related to photosynthesis and chlorophyll biosynthesis contribution to shade-tolerant in Phoebe bournei. BMC Plant Biol, 2022, 22: 268.
doi: 10.1186/s12870-022-03657-y
[13] 张霞, 李国明, 李斌华, 陈燕, 陆引罡, 刘丽. 基于转录组测序的上部烟叶遮阴响应解析. 农业生物技术学报, 2023, 31: 968-978.
Zhang X, Li G M, Li B H, Chen Y, Lu Y G, Liu L. Analysis of shade response in upper tobacco (Nicotiana tabacum) leaves based on transcriptome sequencing. J Agric Biotechnol, 2023, 31: 968-978 (in Chinese with English abstract).
[14] 徐汝聪, 李丹丹, 吕东, 张春龙, 杨宏, 张健博, 罗欢, 金寿林, 李娟, 谭学林. 水稻OsSUTs基因对弱光胁迫的应答分析. 分子植物育种, 2021, 19: 697-704.
Xu R C, Li D D, Lyu D, Zhang C L, Yang H, Zhang J B, Luo H, Jin S L, Li J, Tan X L. Analysis of rice OsSUTs gene response to low light stress. Mol Plant Breed, 2021, 19: 697-704 (in Chinese with English abstract).
[15] Shriram V, Kumar V, Devarumath R M, Khare T S, Wani S H. microRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci, 2016, 7: 817.
doi: 10.3389/fpls.2016.00817 pmid: 27379117
[16] Gommers C M M, Keuskamp D H, Buti S, van Veen H, Koevoets I T, Reinen E, Voesenek L A C J, Pierik R. Molecular profiles of contrasting shade response strategies in wild plants: differential control of immunity and shoot elongation. Plant Cell, 2017, 29: 331-344.
doi: 10.1105/tpc.16.00790
[17] Yang C W, Li L. Hormonal regulation in shade avoidance. Front Plant Sci, 2017, 8: 1527.
doi: 10.3389/fpls.2017.01527 pmid: 28928761
[18] Lorrain S, Allen T, Duek P D, Whitelam G C, Fankhauser C. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J, 2008, 53: 312-323.
doi: 10.1111/j.1365-313X.2007.03341.x pmid: 18047474
[19] 方希林, 杨漫, 王鑫, 黄沆, 肖楠, 贺治洲, 王悦. 水稻叶色突变体ygr的遗传分析与基因定位. 核农学报, 2017, 31: 2096-2102.
doi: 10.11869/j.issn.100-8551.2017.11.2096
Fang X L, Yang M, Wang X, Huang H, Xiao N, He Z Z, Wang Y.Genetic analysis and gene mapping of rice leaf color mutant ygr. J Nucl Agric Sci, 2017, 31: 2096-2102 (in Chinese with English abstract).
[20] Jiang M, Zhang J. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol, 2001, 42: 1265-1273.
doi: 10.1093/pcp/pce162 pmid: 11726712
[21] Pandolfini T, Gabbrielli R, Comparini C. Nickel toxicity and peroxidase activity in seedlings of Triticum aestivum L. Plant Cell Environ, 1992, 15: 719-725.
doi: 10.1111/pce.1992.15.issue-6
[22] 常硕其, 粟琳, 欧阳翔. 水稻产量提高与光合作用之间的关系. 生命科学, 2024, 36: 1305-1310.
Chang S Q, Su L, Ouyang X. The relationship between the enhancement of rice grain yield and photosynthesis. Chin Bull Life Sci, 2024, 36: 1305-1310 (in Chinese with English abstract).
[23] 孙智超, 张吉旺. 弱光胁迫影响玉米产量形成的生理机制及调控效应. 作物学报, 2023, 49: 12-23.
doi: 10.3724/SP.J.1006.2023.13064
Sun Z C, Zhang J W. Physiological mechanism and regulation effect of low light on maize yield formation. Acta Agron Sin, 2023, 49: 12-23 (in Chinese with English abstract).
[24] Yuan X Y, Zhang L G, Huang L, Qi X, Wen Y Y, Dong S Q, Song X E, Wang H F, Guo P Y. Photosynthetic and physiological responses of foxtail millet (Setaria italica L.) to low-light stress during grain-filling stage. Photosynthetica, 2017, 55: 491-500.
doi: 10.1007/s11099-016-0645-4
[25] 李秀, 李刘龙, 李慕嵘, 尹立俊, 王小燕. 不同小麦品种旗叶叶绿素含量、叶片显微结构及产量对花后遮光的响应机制. 作物学报, 2023, 49: 286-294.
doi: 10.3724/SP.J.1006.2023.11118
Li X, Li L L, Li M R, Yin L J, Wang X Y. Effects of shading postanthesis on flag leaf chlorophyll content, leaf microstructure and yield of different wheat varieties. Acta Agron Sin, 2023, 49: 286-294 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2023.11118
[26] Gong W Z, Jiang C D, Wu Y S, Chen H H, Liu W Y, Yang W Y. Tolerance vs. avoidance: two strategies of soybean (Glycine max) seedlings in response to shade in intercropping. Photosynthetica, 2015, 53: 259-268.
doi: 10.1007/s11099-015-0103-8
[27] 孙欣欣. 遮阴对胡桃楸和紫椴苗木形态和生理的影响.东北林业大学硕士学位论文,黑龙江哈尔滨, 2013.
Sun X X. Effect of Shading on Morphology and Physiology in Juglans mandshurica and Tilia amurensis Seedlings. MS Thesis of Northeast Forestry University, Harbin, Heilongjiang, China, 2013 (in Chinese with English abstract).
[28] Yang J, Qiao H H, Wu C, Huang H, Nzambimana C, Jiang C, Wang J C, Tang D B, Zhong W R, Du K, et al. Physiological and transcriptome responses of sweet potato [Ipomoea batatas (L.) lam] to weak-light stress. Plants, 2024, 13: 2214.
doi: 10.3390/plants13162214
[29] 李素英, 崔燕娇, 张静, 刘正理. 耐荫谷子杂交种的创制及其耐荫生理机制研究. 中国农学通报, 2024, 40(14): 23-31.
doi: 10.11924/j.issn.1000-6850.casb2023-0745
Li S Y, Cui Y J, Zhang J, Liu Z L. Shade-tolerant foxtail millet hybrids [Setaria italica (L.) P. beauv.]: creation and shade-tolerant physiological mechanism study. Chin Agric Sci Bull, 2024, 40(14): 23-31 (in Chinese with English abstract).
[30] Gu J F, Zhou Z X, Li Z K, Chen Y, Wang Z Q, Zhang H. Rice (Oryza sativa L.) with reduced chlorophyll content exhibit higher photosynthetic rate and efficiency, improved canopy light distribution, and greater yields than normally pigmented plants. Field Crops Res, 2017, 200: 58-70.
doi: 10.1016/j.fcr.2016.10.008
[31] 杜成凤, 李潮海, 刘天学, 赵亚丽. 遮阴对两个基因型玉米叶片解剖结构及光合特性的影响. 生态学报, 2011, 31: 6633-6640.
Du C F, Li C H, Liu T X, Zhao Y L. Response of anatomical structure and photosynthetic characteristics to low light stress in leaves of different maize genotypes. Acta Ecol Sin, 2011, 31: 6633-6640 (in Chinese with English abstract).
[32] 董杰, 陈新新, 杨倩, 张怀渝, 陈洋尔. 高光、水分和盐胁迫下小麦光合特性和抗氧化酶系统的比较. 麦类作物学报, 2018, 38: 315-322.
Dong J, Chen X X, Yang Q, Zhang H Y, Chen Y E. Effects of high light, water and salt stresses on photosynthetic characteristics and antioxidant enzyme system in wheat. J Triticeae Crops, 2018, 38: 315-322 (in Chinese with English abstract).
[33] 张永强, 雷钧杰, 陈传信, 徐其江, 聂石辉, 段留生. 遮阴程度对小麦旗叶内源激素含量、抗氧化酶活性及光合特性的影响. 麦类作物学报, 2024, 44: 1334-1341.
Zhang Y Q, Lei J J, Chen C X, Xu Q J, Nie S H, Duan L S. Effects of shading degree on endogenous hormone content, antioxidant enzyme activity and photosynthetic characteristics of wheat flag leaves. J Triticeae Crops, 2024, 44: 1334-1341 (in Chinese with English abstract).
[34] 陈泳纬, 吴永兵, 袁华恩, 阳苇丽, 何正川, 赵俊杰, 董涵, 张宇, 赵铭钦. 光照强度对雪茄烟叶光合特性、抗氧化特性及品质的影响. 西南农业学报, 2023, 36: 2175-2182.
Chen Y W, Wu Y B, Yuan H E, Yang W L, He Z C, Zhao J J, Dong H, Zhang Y, Zhao M Q. Effect of light intensity on photosynthesis, antioxidation properties and quality of cigar leaves. Southwest China J Agric Sci, 2023, 36: 2175-2182 (in Chinese with English abstract).
[35] 刘利, 王丽, 邓飞, 黄云, 刘代银, 任万军, 杨文钰. 遮阴对不同杂交稻组合叶片渗透调节物质含量及保护酶活性的影响. 中国水稻科学, 2012, 26: 569-575.
Liu L, Wang L, Deng F, Huang Y, Liu D Y, Ren W J, Yang W Y. Osmotic regulation substance contents and activities of protective enzymes in leaves of different hybrid rice combinations as affected by shading. Chin J Rice Sci, 2012, 26: 569-575 (in Chinese with English abstract).
[36] Kuai B K, Chen J Y, Hörtensteiner S. The biochemistry and molecular biology of chlorophyll breakdown. J Exp Bot, 2018, 69: 751-767.
doi: 10.1093/jxb/erx322 pmid: 28992212
[37] Jia T, Ito H, Tanaka A.The chlorophyll b reductase NOL participates in regulating the antenna size of photosystem II in Arabidopsis thaliana. Procedia Chem, 2015, 14: 422-427.
doi: 10.1016/j.proche.2015.03.057
[38] Tang Y Y, Li M R, Chen Y P, Wu P Z, Wu G J, Jiang H W. Knockdown of OsPAO and OsRCCR1 cause different plant death phenotypes in rice. J Plant Physiol, 2011, 168: 1952-1959.
doi: 10.1016/j.jplph.2011.05.026
[39] Li Y H, Cao T J, Guo Y L, Grimm B, Li X B, Duanmu D Q, Lin R C. Regulatory and retrograde signaling networks in the chlorophyll biosynthetic pathway. J Integr Plant Biol, 2025, 67: 887-911.
doi: 10.1111/jipb.13837
[40] Li Y H, Liu H H, Ma T T, Li J L, Yuan J R, Xu Y C, Sun R, Zhang X Y, Jing Y J, Guo Y L, et al. Arabidopsis EXECUTER1 interacts with WRKY transcription factors to mediate plastid-to-nucleus singlet oxygen signaling. Plant Cell, 2023, 35: 827-851.
doi: 10.1093/plcell/koac330
[41] Zhang T, Zhang R, Zeng X Y, Lee S, Ye L H, Tian S L, Zhang Y J, Busch W, Zhou W B, Zhu X G, et al. GLK transcription factors accompany ELONGATED HYPOCOTYL 5 to orchestrate light-induced seedling development in Arabidopsis. Plant Physiol, 2024, 194: 2400-2421.
doi: 10.1093/plphys/kiae002 pmid: 38180123
[42] Qiu K, Li Z P, Yang Z, Chen J Y, Wu S X, Zhu X Y, Gao S, Gao J, Ren G D, Kuai B K, et al. EIN3 and ORE1 accelerate degreening during ethylene-mediated leaf senescence by directly activating chlorophyll catabolic genes in Arabidopsis. PLoS Genet, 2015, 11: e1005399.
[43] Guo Y F, Ren G D, Zhang K W, Li Z H, Miao Y, Guo H W. Leaf senescence: progression, regulation, and application. Mol Hortic, 2021, 1: 5.
doi: 10.1186/s43897-021-00006-9 pmid: 37789484
[44] Sakuraba Y, Jeong J, Kang M Y, Kim J, Paek N C, Choi G. Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis. Nat Commun, 2014, 5: 4636.
[45] Fang J J, Liu S T, Chen S J, Deng H J, Zhao L X, Liang X W, Chen Z Q, Zhang X Q, Xu S W, Wang C Y, et al. A R1-type MYB CmREVEILLE 2 regulates light-mediated chlorophyll biosynthesis and green color formation in Chrysanthemum flowers. Hortic Adv, 2025, 3: 17.
doi: 10.1007/s44281-025-00069-4
[46] Zhu K J, Zheng X J, Ye J L, Huang Y, Chen H Y, Mei X H, Xie Z Z, Cao L X, Zeng Y L, Larkin R M, et al.Regulation of carotenoid and chlorophyll pools in hesperidia, anatomically unique fruits found only in Citrus. Plant Physiol, 2021, 187: 829-845.
doi: 10.1093/plphys/kiab291
[47] Zou S C, Zhuo M G, Abbas F, Hu G B, Wang H C, Huang X M. Transcription factor LcNAC002 coregulates chlorophyll degradation and anthocyanin biosynthesis in Litchi. Plant Physiol, 2023, 192: 1913-1927.
doi: 10.1093/plphys/kiad118
[48] Wei W, Yang Y Y, Lakshmanan P, Kuang J F, Lu W J, Pang X Q, Chen J Y, Shan W. Proteasomal degradation of MaMYB60 mediated by the E3 ligase MaBAH1 causes high temperature-induced repression of chlorophyll catabolism and green ripening in banana. Plant Cell, 2023, 35: 1408-1428.
doi: 10.1093/plcell/koad030
[49] Yamori W. Photosynthetic response to fluctuating environments and photoprotective strategies under abiotic stress. J Plant Res, 2016, 129: 379-395.
doi: 10.1007/s10265-016-0816-1 pmid: 27023791
[50] Ruban A V, Johnson M P, Duffy C D P. The photoprotective molecular switch in the photosystem II antenna. Biochim Biophys Acta, 2012, 1817: 167-181.
doi: 10.1016/j.bbabio.2011.04.007 pmid: 21569757
[51] Ganeteg U, Klimmek F, Jansson S. Lhca5: an LHC-type protein associated with photosystem I. Plant Mol Biol, 2004, 54: 641-651.
pmid: 15356385
[52] Schlüter U, Weber A P M. Regulation and evolution of C4 photosynthesis. Annu Rev Plant Biol, 2020, 71: 183-215.
doi: 10.1146/annurev-arplant-042916-040915 pmid: 32131603
[53] Sharkey T D. Discovery of the canonical Calvin-Benson cycle. Photosynth Res, 2019, 140: 235-252.
doi: 10.1007/s11120-018-0600-2
[54] 姜振升, 刘培培, 王美玲, 毕焕改, 艾希珍. 黄瓜幼苗Rubisco与Rubisco活化酶对光强的响应. 西北农业学报, 2011, 20(9): 95-99.
Jiang Z S, Liu P P, Wang M L, Bi H G, Ai X Z. Response of rubisco and rubisco activase in cucumber seedlings to light intensity. Acta Agric Boreali-Occident Sin, 2011, 20(9): 95-99 (in Chinese with English abstract).
[55] 李春荣, 张馨, 刘翠敏. 卡尔文-本森-巴萨姆循环的调节. 生命科学, 2024, 36: 1213-1225.
Li C R, Zhang X, Liu C M. Regulation of the Calvin-Benson- Bassham cycle. Chin Bull Life Sci, 2024, 36: 1213-1225 (in Chinese with English abstract).
[56] Hartl M, Füßl M, Boersema P J, Jost J O, Kramer K, Bakirbas A, Sindlinger J, Plöchinger M, Leister D, Uhrig G, et al. Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in Arabidopsis. Mol Syst Biol, 2017, 13: 949.
doi: 10.15252/msb.20177819
[57] Sharkey T D. Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant Cell Environ, 2005, 28: 269-277.
doi: 10.1111/pce.2005.28.issue-3
[58] Chen J H, Tang M, Jin X Q, Li H, Chen L S, Wang Q L, Sun A Z, Yi Y, Guo F Q. Regulation of Calvin-Benson cycle enzymes under high temperature stress. aBIOTECH, 2022, 3: 65-77.
doi: 10.1007/s42994-022-00068-3
[59] Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G. Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot, 2010, 61: 4197-4220.
doi: 10.1093/jxb/erq282 pmid: 20876333
[60] 陆雯佳, 汪军成, 姚立蓉, 张宏, 司二静, 杨轲, 孟亚雄, 李葆春, 马小乐, 王化俊. 大麦PRX基因家族全基因组鉴定及其干旱胁迫下的表达分析. 作物学报, 2025, 51: 1198-1214.
doi: 10.3724/SP.J.1006.2025.41053
Lu W J, Wang J C, Yao L R, Zhang H, Si E J, Yang K, Meng Y X, Li B C, Ma X L, Wang H J. Genome-wide identification of PRX gene family and analysis of their expressions under drought stress in barley. Acta Agron Sin, 2025, 51: 1198-1214 (in Chinese with English abstract).
[61] Passardi F, Longet D, Penel C, Dunand C. The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry, 2004, 65: 1879-1893.
doi: 10.1016/j.phytochem.2004.06.023 pmid: 15279994
[62] 马鑫磊, 许瑞琪, 索晓曼, 李婧实, 顾鹏鹏, 姚锐, 林小虎, 高慧. 谷子Ⅲ型PRX基因家族全基因组鉴定及干旱胁迫下表达分析. 作物学报, 2022, 48: 2517-2532.
doi: 10.3724/SP.J.1006.2022.14185
Ma X L, Xu R Q, Suo X M, Li J S, Gu P P, Yao R, Lin X H, Gao H. Genome-wide identification of the Class III PRX gene family in foxtail millet (Setaria italica L.) and expression analysis under drought stress. Acta Agron Sin, 2022, 48: 2517-2532 (in Chinese with English abstract).
[1] 付江鹏, 柳发财, 闫宝琴, 王永栋, 李利利, 魏玮, 周英霞. 控释肥替代普通尿素对旱作高粱干物质积累分配、产量和品质的影响[J]. 作物学报, 2025, 51(9): 2501-2513.
[2] 杨姝, 白伟, 蔡倩, 杜桂娟. 玉米‖紫花苜蓿间作群体光分布特征及对植物性状和产量的影响[J]. 作物学报, 2025, 51(9): 2514-2526.
[3] 张海燕, 解备涛, 董顺旭, 张立明, 段文学. 滴灌条件下不同水溶肥种类和配比对鲜食甘薯产量和品质的影响[J]. 作物学报, 2025, 51(9): 2485-2500.
[4] 郭保卫, 王旺, 王开, 王岩, 曾鑫, 景秀, 王晶, 倪新华, 许轲, 张洪程. 长江中下游两类型糯稻高产群体动态特征及超高产形成规律[J]. 作物学报, 2025, 51(9): 2433-2453.
[5] 吉白璐, 孙艺文, 刘万峰, 钱亚新, 蒋彩虹, 耿锐梅, 刘旦, 程立锐, 杨爱国, 黄立钰, 李晓旭, 蒲文宣, 高军平, 张强, 文柳璎. 烟草脂类合成关键基因NtLPAT的功能验证[J]. 作物学报, 2025, 51(9): 2527-2537.
[6] 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219.
[7] 尤根基, 谢昊, 梁毓文, 李龙, 王玉茹, 蒋晨炀, 郭剑, 李广浩, 陆大雷. 氮肥减施措施对江淮春玉米产量和氮素吸收利用的影响[J]. 作物学报, 2025, 51(8): 2152-2163.
[8] 李宜谦, 徐守振, 刘萍, 马麒, 谢斌, 陈红. 基于40K SNP芯片的陆地棉产量构成因素全基因组关联分析及单铃重位点挖掘[J]. 作物学报, 2025, 51(8): 2128-2138.
[9] 贺红利, 张雨涵, 杨静, 程云清, 赵杨, 李星诺, 司洪亮, 张兴政, 杨向东. 大豆e1-as基因突变体的创制及生理分析[J]. 作物学报, 2025, 51(8): 2228-2239.
[10] 樊友众, 王先领, 王宗铠, 王春云, 王天尧, 谢捷, 蒯婕, 汪波, 王晶, 徐正华, 赵杰, 周广生. 秸秆还田耦合氮肥运筹对稻茬油菜光合性能及产量的影响[J]. 作物学报, 2025, 51(8): 2139-2151.
[11] 武斌, 曹永刚, 胡发龙, 殷文, 樊志龙, 范虹, 柴强. 免耕轮作对减氮小麦产量下降的补偿效果[J]. 作物学报, 2025, 51(7): 1959-1968.
[12] 吴柳格, 陈坚, 张鑫, 邓艾兴, 宋振伟, 郑成岩, 张卫建. 近二十年国审冬小麦品种的产量与品质性状变化趋势研究[J]. 作物学报, 2025, 51(7): 1814-1826.
[13] 王若楠, 张颖星, 于筱菡, 刘少雄, 王跃, 薛亚鹏, 辛旭霞, 张莉, 刘敏轩. 基于近红外快速检测技术的谷子淀粉多样性分析及模型构建[J]. 作物学报, 2025, 51(7): 1757-1768.
[14] 李秋云, 李世贵, 范军亮, 刘昊天, 赵晓斌, 吕硕, 王艳浩, 岳云, 张宁, 司怀军. 离子锌和纳米锌对马铃薯生理特性、产量及品质的影响[J]. 作物学报, 2025, 51(7): 1838-1849.
[15] 赵佳雯, 李子洪, 欧星雨, 王伊朗, 丁小飞, 梁乐瑶, 丁文金, 张海鹏, 马尚宇, 樊永惠, 黄正来, 张文静. 氮肥与钾肥运筹对弱筋小麦籽粒产量、品质的影响[J]. 作物学报, 2025, 51(7): 1914-1933.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!