欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (12): 3171-3183.doi: 10.3724/SP.J.1006.2025.53024

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于抗旱玉米自交系SL001的抗旱优异基因资源挖掘

魏琦1,2(), 何冠华2,*(), 张登峰2, 李永祥2, 刘旭洋2, 唐怀君3, 刘成3, 王天宇2, 黎裕2, 路运才1,*(), 李春辉2   

  1. 1黑龙江大学现代农业与生态环境学院, 黑龙江哈尔滨 150080
    2作物基因资源与育种全国重点实验室 / 中国农业科学院作物科学研究所, 北京 100081
    3新疆维吾尔自治区农业科学院作物研究所, 新疆乌鲁木齐 830091
  • 收稿日期:2025-04-17 接受日期:2025-08-13 出版日期:2025-12-12 网络出版日期:2025-08-19
  • 通讯作者: *何冠华: E-mail: heguanhua@caas.cn;路运才: E-mail: luyuncai@hlju.edu.cn
  • 作者简介:E-mail: 1961307629@qq.com
  • 基金资助:
    本研究由国家自然科学基金项目(32201751);财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-02-03);黑龙江省高等学校基本科研业务费项目(2024-KYYWF-0119)

Identifying of excellent drought-tolerant gene resources based on drought- tolerant maize inbred line SL001

WEI Qi1,2(), HE Guan-Hua2,*(), ZHANG Deng-Feng2, LI Yong-Xiang2, LIU Xu-Yang2, TANG Huai-Jun3, LIU Cheng3, WANG Tian-Yu2, LI Yu2, LU Yun-Cai1,*(), LI Chun-Hui2   

  1. 1College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, Heilongjiang, China
    2State Key Laboratory of Crop Gene Resources and Breeding / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3Crop Research Institute, Xinjiang Uygur Autonomous Region Academy of Agricultural Sciences, Urumqi 830091, Xinjiang, China
  • Received:2025-04-17 Accepted:2025-08-13 Published:2025-12-12 Published online:2025-08-19
  • Contact: *E-mail: heguanhua@caas.cn;E-mail: luyuncai@hlju.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32201751);China Agriculture Research System of MOF and MARA(CARS-02-03);Basic Research Funds for Higher Education Institutions in Heilongjiang Province(2024-KYYWF-0119)

摘要: 干旱是玉米生长发育过程中影响最严重的非生物胁迫因素之一, 挖掘玉米抗旱相关基因并将其应用于培育抗旱新品种是解决该问题的有效途径。为了挖掘玉米抗旱关键基因, 本研究利用干旱敏感自交系B73及抗旱自交系SL001开展抗旱表型鉴定, 发现干旱胁迫后SL001较B73的萎蔫程度更小, 复水后的存活率显著高于B73, 且干旱胁迫后SL001相对含水量和净光合速率等表型性状均显著高于B73。通过对B73和SL001不同干旱胁迫条件下的转录组数据分析, 共鉴定出11,240个差异表达基因, 其中4354个基因在中度干旱胁迫和重度干旱胁迫处理时差异表达, 且不在正常水分处理时差异表达。这些基因主要富集于植物激素信号转导途径和植物-病原体互作途径。在这些基因中预测了2个玉米抗旱候选基因Zm00001eb439810Zm00001eb365420, 并进行了qRT-PCR验证, 结果表明作为抗旱候选基因Zm00001eb439810可能正向调控玉米对干旱胁迫的响应, 而Zm00001eb365420可能负向调控玉米对干旱胁迫的响应。本研究为玉米抗旱提供了重要材料和基因资源。

关键词: 玉米, 干旱胁迫, 转录组分析, 脱落酸, 表达量

Abstract:

Drought is one of the most severe abiotic stresses limiting the growth and development of maize. Identifying drought-resistant genes and applying them to the development of new drought-tolerant varieties is an effective strategy to address this challenge. In this study, the drought-sensitive inbred line B73 and the drought-tolerant inbred line SL001 were used to evaluate drought tolerance phenotypes. SL001 exhibited a lower degree of wilting and a significantly higher survival rate after rehydration compared to B73. In addition, under drought conditions, SL001 showed significantly higher relative water content and net photosynthetic rate than B73. Transcriptome analysis of B73 and SL001 under varying drought stress conditions identified a total of 11,240 differentially expressed genes (DEGs), of which 4354 were specifically expressed under moderate and severe drought stress, but not under well-watered conditions. These DEGs were mainly enriched in plant hormone signaling and plant-pathogen interaction pathways. Among them, two candidate drought-resistance genes, Zm00001eb439810 and Zm00001eb365420, were predicted and further validated by qRT-PCR. The results suggested that Zm00001eb439810 may positively regulate the maize drought stress response, whereas Zm00001eb365420 may act as a negative regulator. This study provides valuable genetic resources and potential targets for improving drought tolerance in maize.

Key words: maize, drought stress, transcriptome analysis, ABA, expression level

表1

本研究所使用的引物"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
引物名称
Primer name
引物序列
Primer sequence (5'-3')
GAPDH-F CCCTTCATCACCACGGACTAC ZmSAPK4-R TCTTGGGGTCATCTGGGTCT
GAPDH-R AACCTTCTTGGCACCACCCT ZmPP2C8-F GGCGCAGGATAGCACGGAT
ZmWRKY30-F CACCTCGACGACGGCTATAG ZmPP2C8-R ATGGCGGCCAGTACCTTGTC
ZmWRKY30-R CACGCGCTTCTTCACTGTG Zm00001eb331200-F CTCGCTGGGGCAAAATCCTA
ZmCPK35-F CTGGGCAGAAACGGAACAG Zm00001eb331200-R GGAAATCGATGGTGCCGTTG
ZmCPK35-R CGTTTTGGGTCCGGATTC ZmCPK39-F ATGAAAGCTGGAGTGGACTGG
ZmCML3-F CCGGAAGATGAAGGATGGCG ZmCPK39-R TTGTTGTTCTTTGACGGCTG
ZmCML3-R CTCAACCGGGGAGATGAAGC Zm00001eb439810-F GAAGAAGAAGCCCCACCAGC
ZmPP2C-A6-F GGCGCAGGATAGCACGGAT Zm00001eb439810-R GCGTACTTCTCCTCGATCCC
ZmPP2C-A6-R ATGGCGGCCAGTACCTTGTC ZmARR7-F CGCCTAGCCATCTTTATGCC
ZmSnRK2.3-F GTGCTTTTCAGTCTGCTTTGCT ZmARR7-R TGTACATGTCAGTGCCGGTG
ZmSnRK2.3-R ATCCGGGATGGAGTATTGCAC Zm00001eb247920-F CTGGAACTGTTAGGCACGGT
ZmSAPK4-F CCCGTCACGAATACGATGGA Zm00001eb247920-R AGGCGTAGATCCCCGTGTAA

图1

B73和SL001的抗旱表型鉴定 A: 正常水分; B: 干旱胁迫处理21 d; C: 复水7 d; D: 复水7 d的存活率; E: 正常水分和干旱处理10 d的净光合速率; F: 相对含水量; ns表示无显著差异, ***表示在P < 0.001水平差异显著。WW: 正常水分; MD: 中度干旱(干旱处理12 d)胁迫; SD: 重度干旱(干旱处理16 d )胁迫。"

图2

转录组数据分析 A: 转录组样本的主成分分析, 不同形状分别代表不同样本; B: Venn图描述所有差异表达基因的数量; C: SL001 vs B73上调、下调的差异表达基因总数。WW: 正常水分; MD: 中度干旱(干旱处理12 d)胁迫; SD: 重度干旱(干旱处理16 d)胁迫。"

图3

差异表达基因的K-means聚类分析 C1: 簇1; C2: 簇2; C3: 簇3; C4: 簇4。WW: 正常水分; MD: 中度干旱(干旱处理12 d)胁迫; SD: 重度干旱(干旱处理16 d)胁迫。"

图4

抗旱相关基因的RT-PCR分析 *、**和***分别表示在0.05、0.01和0.001水平差异显著; ns表示无显著差异。WW: 正常水分; MD: 中度干旱(干旱处理12 d)胁迫; SD: 重度干旱(干旱处理16 d)胁迫。"

图5

差异表达基因的GO富集分析 A: 簇3差异表达基因的GO富集分析; B: 簇1差异表达基因的GO富集分析。"

表2

簇3主要KEGG代谢通路注释"

条目
Term
数目
Number
显著性
P
DNA复制DNA replication 7 0.009
氨基糖和核苷酸糖代谢Amino sugar and nucleotide sugar metabolism 13 0.010
脂肪酸降解Fatty acid degradation 6 0.028
核苷酸糖生物合成Biosynthesis of nucleotide 9 0.032
烟酸盐和烟酰胺代谢Nicotinate and nicotinamide metabolism 4 0.056
苯丙氨酸、酪氨酸、色氨酸生物合成Phenylalanine, tyrosine, tryptophan biosynthesis 5 0.124
内质网蛋白加工Protein processing in endoplasmic reticulum 14 0.130
植物-病原体互作Plant-pathogen interaction 13 0.131
植物激素信号转导Plant hormone signal transduction 22 0.133
精氨酸和脯氨酸代谢Arginine and proline metabolism 5 0.136
胞葬作用Efferocytosis 5 0.148
ABC转运蛋白ABC transporters 5 0.154
脂肪酸代谢Fatty acid metabolism 6 0.168
戊糖与葡萄糖醛酸相互转化Pentose and glucuronate interconversions 6 0.196
甘油酯代谢Glycerolipid metabolism 6 0.196
马达蛋白Motor proteins 6 0.219
果糖和甘露糖代谢Fructose and mannose metabolism 5 0.219
多种植物次生代谢物的生物合成Biosynthesis of various plant secondary metabolites 5 0.219
苯丙素生物合成Phenylpropanoid biosynthesis 10 0.234
氨基酸生物合成Biosynthesis of amino acids 13 0.243

表3

簇1主要KEGG代谢通路注释"

条目
Term
数目
Number
显著性
P
类胡萝卜素生物合成Carotenoid biosynthesis 7 0.002
谷胱甘肽生物合成Glutathione metabolism 9 0.032
植物MAPK信号通路MAPK signaling pathway-plant 12 0.043
核苷酸代谢Nucleotide metabolism 8 0.044
苯丙氨酸代谢Phenylalanine metabolism 4 0.093
淀粉和蔗糖代谢Starch and sucrose metabolism 10 0.104
甘油磷脂代谢Glycerophospholipid metabolism 8 0.109
玉米素生物合成Zeatin biosynthesis 4 0.126
植物激素信号转导Plant hormone signal transduction 21 0.141
糖酵解/糖异生Glycolysis/gluconeogenesis 9 0.143
酪氨酸代谢Tyrosine metabolism 4 0.148
嘌呤类代谢Purine metabolism 7 0.164
半乳糖代谢Galactose metabolism 5 0.178
果糖和甘露糖代谢Fructose and mannose metabolism 5 0.196
多种植物次生代谢物的生物合成Biosynthesis of various plant secondary metabolites 5 0.196
嘧啶类代谢Pyrimidine metabolism 5 0.254
脂肪酸生物合成Fatty acid biosynthesis 4 0.266
植物-病原体互作Plant-pathogen interaction 11 0.313
半胱氨酸和蛋氨酸代谢Cysteine and methionine metabolism 7 0.314
脂肪酸代谢Fatty acid metabolism 5 0.326

图6

抗旱候选基因的RT-PCR分析 ns表示无显著差异, ***表示在P < 0.001水平差异显著。WW: 正常水分; MD: 中度干旱(干旱处理12 d)胁迫; SD: 重度干旱(干旱处理16 d)胁迫。"

[1] Yang Z R, Cao Y B, Shi Y T, Qin F, Jiang C F, Yang S H. Genetic and molecular exploration of maize environmental stress resilience: toward sustainable agriculture. Mol Plant, 2023, 16: 1496-1517.
doi: 10.1016/j.molp.2023.07.005
[2] Yang Z R, Wang C, Zhu T F, He J F, Wang Y J, Yang S P, Liu Y, Zhao B C, Zhu C H, Ye S Q, et al. An LRR-RLK protein modulates drought- and salt-stress responses in maize. J Genet Genom, 2025, 52: 388-399.
doi: 10.1016/j.jgg.2024.10.016
[3] Liu H J, Liu J, Zhai Z W, Dai M Q, Tian F, Wu Y R, Tang J H, Lu Y L, Wang H Y, Jackson D, et al. Maize2035: a decadal vision for intelligent maize breeding. Mol Plant, 2025, 18: 313-332.
doi: 10.1016/j.molp.2025.01.012
[4] Liu S X, Li C P, Wang H W, Wang S H, Yang S P, Liu X H, Yan J B, Li B L, Beatty M, Zastrow-Hayes G, et al. Mapping regulatory variants controlling gene expression in drought response and tolerance in maize. Genome Biol, 2020, 21: 163.
doi: 10.1186/s13059-020-02069-1 pmid: 32631406
[5] Zhong Y, Yan X C, Wang N, Zenda T, Dong A Y, Zhai X Z, Yang Q, Duan H J. ZmHB53, a maize homeodomain-leucine zipper I transcription factor family gene, contributes to abscisic acid sensitivity and confers seedling drought tolerance by promoting the activity of ZmPYL4. Plant Cell Environ, 2025, 48: 3829-3843.
doi: 10.1111/pce.v48.6
[6] Xiang Y, Liu W J, Niu Y X, Li Q, Zhao C Y, Pan Y T, Li G D, Bian X L, Miao Y D, Zhang A Y.The maize GSK3-like kinase ZmSK1 negatively regulates drought tolerance by phosphorylating the transcription factor ZmCPP2. Plant Cell, 2025, 37: koaf032.
[7] He F, Niu M X, Wang T, Li J L, Shi Y J, Zhao J J, Li H, Xiang X, Yang P, Wei S Y, et al. The ubiquitin E3 ligase RZFP1 affects drought tolerance in poplar by mediating the degradation of the protein phosphatase PP2C-9. Plant Physiol, 2024, 196: 2936-2955.
doi: 10.1093/plphys/kiae497
[8] Wang Y L, Cheng J K, Guo Y Z, Li Z, Yang S H, Wang Y, Gong Z Z. Phosphorylation of ZmAL14 by ZmSnRK2.2 regulates drought resistance through derepressing ZmROP8 expression. J Integr Plant Biol, 2024, 66: 1334-1350.
doi: 10.1111/jipb.v66.7
[9] Liu L J, Tang C, Zhang Y H, Sha X Y, Tian S B, Luo Z Y, Wei G C, Zhu L, Li Y X, Fu J Y, et al. The SnRK2.2-ZmHsf28-JAZ14/17 module regulates drought tolerance in maize. New Phytol, 2025, 245: 1985-2003.
doi: 10.1111/nph.20355 pmid: 39686522
[10] Gulzar F, Fu J Y, Zhu C Y, Yan J, Li X L, Meraj T A, Shen Q Q, Hassan B, Wang Q. Maize WRKY transcription factor ZmWRKY79 positively regulates drought tolerance through elevating ABA biosynthesis. Int J Mol Sci, 2021, 22: 10080.
[11] Hu X Y, Cheng J K, Lu M M, Fang T T, Zhu Y J, Li Z, Wang X Q, Wang Y, Guo Y, Yang S H, et al. Ca2+-independent ZmCPK2 is inhibited by Ca2+-dependent ZmCPK17 during drought response in maize. J Integr Plant Biol, 2024, 66: 1313-1333.
doi: 10.1111/jipb.v66.7
[12] Guo Y Z, Shi Y B, Wang Y L, Liu F, Li Z, Qi J S, Wang Y, Zhang J B, Yang S H, Wang Y, et al. The clade F PP2C phosphatase ZmPP84 negatively regulates drought tolerance by repressing stomatal closure in maize. New Phytol, 2023, 237: 1728-1744.
doi: 10.1111/nph.v237.5
[13] Dai K, Zhang Z Y, Wang S, Yang J W, Wang L F, Jia T J, Li J J, Wang H, Song S, Lu Y C, et al. Molecular mechanisms of heterosis under drought stress in maize hybrids Zhengdan 7137 and Zhengdan 7153. Front Plant Sci, 2024, 15: 1487639.
[14] 刘爽, 李珅, 王东梅, 沙小茜, 何冠华, 张登峰, 李永祥, 刘旭洋, 王天宇, 黎裕, 等. 基于大刍草渗入系的玉米抗旱优异等位基因挖掘. 作物学报, 2024, 50: 1896-1906.
doi: 10.3724/SP.J.1006.2024.43007
Liu S, Li S, Wang D M, Sha X Q, He G H, Zhang D F, Li Y X, Liu X Y, Wang T Y, Li Y, et al. Superior allele genes mining for drought tolerance in maize based on introgression line from a cross between maize and teosinte. Acta Agron Sin, 2024, 50: 1896-1906 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2024.43007
[15] Wei S W, Xia R, Chen C X, Shang X L, Ge F Y, Wei H M, Chen H B, Wu Y R, Xie Q. ZmbHLH124 identified in maize recombinant inbred lines contributes to drought tolerance in crops. Plant Biotechnol J, 2021, 19: 2069-2081.
doi: 10.1111/pbi.13637 pmid: 34031958
[16] Xiang Y, Li G D, Li Q, Niu Y X, Pan Y T, Cheng Y, Bian X L, Zhao C Y, Wang Y H, Zhang A Y. Autophagy receptor ZmNBR1 promotes the autophagic degradation of ZmBRI1a and enhances drought tolerance in maize. J Integr Plant Biol, 2024, 66: 1068-1086.
doi: 10.1111/jipb.13662
[17] Li Y P, Su Z J, Lin Y N, Xu Z H, Bao H Z, Wang F G, Liu J, Hu S P, Wang Z G, Yu X F, et al. Utilizing transcriptomics and metabolomics to unravel key genes and metabolites of maize seedlings in response to drought stress. BMC Plant Biol, 2024, 24: 34.
doi: 10.1186/s12870-023-04712-y pmid: 38185653
[18] Gu L, Chen X X, Hou Y Y, Cao Y Y, Wang H C, Zhu B, Du X Y, Wang H N. ZmWRKY30 modulates drought tolerance in maize by influencing myo-inositol and reactive oxygen species homeostasis. Physiol Plant, 2024, 176: e14423.
[19] Li X D, Gao Y Q, Wu W H, Chen L M, Wang Y. Two calcium-dependent protein kinases enhance maize drought tolerance by activating anion channel ZmSLAC1 in guard cells. Plant Biotechnol J, 2022, 20: 143-157.
doi: 10.1111/pbi.v20.1
[20] Li D, Wang H Q, Luo F S, Li M R, Wu Z Q, Liu M Y, Wang Z, Zang Z Y, Jiang L Y. A maize calmodulin-like 3 gene positively regulates drought tolerance in maize and Arabidopsis. Int J Mol Sci, 2025, 26: 1329.
doi: 10.3390/ijms26031329
[21] He Z H, Wu J F, Sun X P, Dai M Q. The maize clade A PP2C phosphatases play critical roles in multiple abiotic stress responses. Int J Mol Sci, 2019, 20: 3573.
doi: 10.3390/ijms20143573
[22] Li P C, Zhu T Z, Wang Y Y, Zhang X M, Yang X Y, Fang S, Li W, Rui W Y, Yang A Q, Duan Y M, et al. Natural variation in a cortex/epidermis-specific transcription factor bZIP89 determines lateral root development and drought resilience in maize. Sci Adv, 2025, 11: eadt1113.
[23] Chong L, Xu R, Huang P C, Guo P C, Zhu M K, Du H, Sun X L, Ku L X, Zhu J K, Zhu Y F. The tomato OST1-VOZ1 module regulates drought-mediated flowering. Plant Cell, 2022, 34: 2001-2018.
doi: 10.1093/plcell/koac026
[24] Fàbregas N, Yoshida T, Fernie A R. Role of Raf-like kinases in SnRK2 activation and osmotic stress response in plants. Nat Commun, 2020, 11: 6184.
doi: 10.1038/s41467-020-19977-2 pmid: 33273465
[25] Du C, Bai H Y, Yan Y J, Liu Y R, Wang X Y, Zhang Z H. Exploring ABI5 5 regulation: Post-translational control and cofactor interactions in ABA signaling. Plant J, 2025, 121: e17232.
[26] Li G J, Chen K, Sun S J, Zhao Y.Osmotic signaling releases PP2C-mediated inhibition of Arabidopsis SnRK2s via the receptor-like cytoplasmic kinase BIK1. EMBO J, 2024, 43: 6076-6103.
doi: 10.1038/s44318-024-00277-0
[27] Xiong Y L, Song X Y, Mehra P, Yu S H, Li Q Y, Tashenmaimaiti D, Bennett M, Kong X Z, Bhosale R, Huang G Q. ABA-auxin cascade regulates crop root angle in response to drought. Curr Biol, 2025, 35: 542-553.
doi: 10.1016/j.cub.2024.12.003
[28] Hasan M M, Liu X D, Waseem M, Yao G Q, Alabdallah N M, Jahan M S, Fang X W. ABA activated SnRK2 kinases: an emerging role in plant growth and physiology. Plant Signal Behav, 2022, 17: 2071024.
[29] Song J, Sun P P, Kong W N, Xie Z Z, Li C L, Liu J H. SnRK2.4-mediated phosphorylation of ABF2 regulates ARGININE DECARBOXYLASE expression and putrescine accumulation under drought stress. New Phytol, 2023, 238: 216-236.
doi: 10.1111/nph.v238.1
[30] Qin C H, Fan X, Fang Q Q, Ni L, Jiang M Y. The CBL-interacting protein kinase OsCIPK1 phosphorylated by SAPK10 positively regulates responses to ABA and osmotic stress in rice. Crop J, 2024, 12: 364-374.
doi: 10.1016/j.cj.2024.01.004
[31] Li X X, Yu B, Wu Q, Min Q, Zeng R F, Xie Z Z, Huang J L. OsMADS23 phosphorylated by SAPK9 confers drought and salt tolerance by regulating ABA biosynthesis in rice. PLoS Genet, 2021, 17: e1009699.
[32] Wu Q, Liu Y F, Xie Z Z, Yu B, Sun Y, Huang J L.OsNAC 016 regulates plant architecture and drought tolerance by interacting with the kinases GSK2 and SAPK8. Plant Physiol, 2022, 189: 1296-1313.
doi: 10.1093/plphys/kiac146
[33] Bae Y, Lim C W, Lee S C. Pepper stress-associated protein 14 is a substrate of CaSnRK2.6 that positively modulates abscisic acid- dependent osmotic stress responses. Plant J, 2023, 113: 357-374.
doi: 10.1111/tpj.v113.2
[34] Lan G, Ma W F, Nai G J, Liang G P, Lu S X, Ma Z H, Mao J, Chen B H. Grape SnRK2.7 positively regulates drought tolerance in transgenic Arabidopsis. Int J Mol Sci, 2024, 25: 4473.
doi: 10.3390/ijms25084473
[35] Lu F Z, Li W C, Peng Y L, Cao Y, Qu J T, Sun F A, Yang Q Q, Lu Y L, Zhang X H, Zheng L J, et al. ZmPP2C26 alternative splicing variants negatively regulate drought tolerance in maize. Front Plant Sci, 2022, 13: 851531.
[36] Wang J Y, Li C N, Li L, Gao L F, Hu G, Zhang Y F, Reynolds M P, Zhang X Y, Jia J Z, Mao X G, et al. DIW1 encoding a clade I PP2C phosphatase negatively regulates drought tolerance by de-phosphorylating TaSnRK1.1 in wheat. J Integr Plant Biol, 2023, 65: 1918-1936.
doi: 10.1111/jipb.v65.8
[37] Zhai Z K, Ao Q Q, Yang L Q, Lu F X, Cheng H K, Fang Q X, Li C, Chen Q Q, Yan J L, Wei Y S, et al. Rapeseed PP2C37 interacts with PYR/PYL abscisic acid receptors and negatively regulates drought tolerance. J Agric Food Chem, 2024, 72: 12445-12458.
[38] Zhu C G, Jing B Y, Lin T, Li X Y, Zhang M, Zhou Y H, Yu J Q, Hu Z J. Phosphorylation of sugar transporter TST2 by protein kinase CPK27 enhances drought tolerance in tomato. Plant Physiol, 2024, 195: 1005-1024.
doi: 10.1093/plphys/kiae124 pmid: 38431528
[39] Ma X, Li Y, Gai W X, Li C, Gong Z H. The CaCIPK3 gene positively regulates drought tolerance in pepper. Hortic Res, 2021, 8: 216.
doi: 10.1038/s41438-021-00651-7
[40] Li T, Zhou X N, Wang Y X, Liu X Q, Fan Y D, Li R Q, Zhang H Y, Xu Y F. AtCIPK20 regulates microtubule stability to mediate stomatal closure under drought stress in Arabidopsis. Plant Cell Environ, 2024, 47: 5297-5314.
doi: 10.1111/pce.v47.12
[41] Nguyen K H, Ha C V, Nishiyama R, Watanabe Y, Leyva-González M A, Fujita Y, Tran U T, Li W Q, Tanaka M, Seki M, et al. Arabidopsis type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought. Proc Natl Acad Sci USA, 2016, 113: 3090-3095.
doi: 10.1073/pnas.1600399113 pmid: 26884175
[1] 杨姝, 白伟, 蔡倩, 杜桂娟. 玉米‖紫花苜蓿间作群体光分布特征及对植物性状和产量的影响[J]. 作物学报, 2025, 51(9): 2514-2526.
[2] 蒋环琪, 段奥, 郭超, 黄晓梦, 艾德骏, 刘小雪, 谭静怡, 彭成林, 李曼菲, 杜何为. 渍水胁迫对玉米幼苗根系代谢的影响[J]. 作物学报, 2025, 51(9): 2295-2306.
[3] 高源, 王宇琦, 姜佳宁, 赵健雄, 王雪贺缘, 王浩宇, 张芮嘉, 徐晶宇, 贺琳. 玉米低温响应基因ZmNTL1ZmNTL5的鉴定及功能分析[J]. 作物学报, 2025, 51(9): 2318-2329.
[4] 朱维佳, 王蕊, 薛英杰, 田红丽, 范亚明, 王璐, 李松, 徐丽, 卢柏山, 史亚兴, 易红梅, 陆大雷, 杨扬, 王凤格. 兼容双平台的玉米糯质基因InDel功能标记开发与应用[J]. 作物学报, 2025, 51(9): 2330-2340.
[5] 何鹏旭, 姚立蓉, 陈远玲, 闫妍, 张宏, 汪军成, 李葆春, 杨轲, 司二静, 孟亚雄, 马小乐, 王化俊. 大麦干旱胁迫萌发生理及分子机理的差异性与相关性研究[J]. 作物学报, 2025, 51(9): 2412-2432.
[6] 尤根基, 谢昊, 梁毓文, 李龙, 王玉茹, 蒋晨炀, 郭剑, 李广浩, 陆大雷. 氮肥减施措施对江淮春玉米产量和氮素吸收利用的影响[J]. 作物学报, 2025, 51(8): 2152-2163.
[7] 闫喆林, 任强, 樊志龙, 殷文, 孙亚丽, 范虹, 何蔚, 胡发龙, 闫丽娟, 柴强. 氮肥后移优化绿洲灌区小麦间作玉米种间关系提高氮素利用效率[J]. 作物学报, 2025, 51(8): 2190-2203.
[8] 许忆葳, 张莹莹, 李瑞, 燕永亮, 刘允军, 孔照胜, 郑军, 王逸茹. 戈壁异常球菌csp2基因提高玉米的抗旱性[J]. 作物学报, 2025, 51(8): 1981-1990.
[9] 张建鹏, 王国瑞, 别海, 叶飞宇, 马晨晨, 梁小菡, 鲁晓民, 尚霄丽, 曹丽茹. 转录因子ZmMYB153通过ABA信号调节气孔运动增强玉米苗期抗旱性[J]. 作物学报, 2025, 51(7): 1827-1837.
[10] 霍建喆, 于爱忠, 王玉珑, 王鹏飞, 尹波, 刘亚龙, 张冬玲, 姜科强, 庞小能, 王凤. 有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响[J]. 作物学报, 2025, 51(7): 1887-1900.
[11] 闫尚龙, 王琦明, 柴强, 殷文, 樊志龙, 胡发龙, 刘志鹏, 韦金贵. 绿洲灌区玉米籽粒产量及品质对密植及间作豌豆的响应[J]. 作物学报, 2025, 51(6): 1665-1675.
[12] 杨晓慧, 晏宣军, 杨文妍, 付俊杰, 杨琴, 谢玉心. 玉米ZmKL1优异等位基因调控籽粒大小的效应评估及分子机制解析[J]. 作物学报, 2025, 51(6): 1501-1513.
[13] 袁鑫, 赵卓凡, 赵瑞清, 刘孝伟, 郑名敏, 刘育生, 董好胜, 邓丽娟, 曹墨菊, 黄强. 一份玉米小籽粒发育突变体mn-like1的遗传分析与分子鉴定[J]. 作物学报, 2025, 51(6): 1569-1581.
[14] 张世博, 李宏岩, 李培富, 任瑞华, 路海东. 自然条件下气温升高3℃至4℃对地膜玉米根-冠衰老和产量的影响[J]. 作物学报, 2025, 51(6): 1599-1617.
[15] 郑浩飞, 杨楠, 杜健, 贾改秀, 邹悦, 麻文浩, 王彦婷, 索东让, 赵建华, 孙宁科, 张建文. 西北灌漠土区长期有机无机配施协同提升玉米产量和品质[J]. 作物学报, 2025, 51(6): 1618-1628.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!