欢迎访问作物学报,今天是

作物学报 ›› 2025, Vol. 51 ›› Issue (12): 3184-3197.doi: 10.3724/SP.J.1006.2025.55032

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

过表达BnNRT2.3-like对油菜氮素吸收利用及产量的影响

黄绒, 周渠晨, 陈楚铭, 罗倩, 易东, 杜常欢, 黄祥宇, 盛锋(), 杜雪竹()   

  1. 湖北大学生命科学学院, 湖北武汉 430062
  • 收稿日期:2025-05-15 接受日期:2025-09-10 出版日期:2025-12-12 网络出版日期:2025-09-17
  • 通讯作者: *盛锋, E-mail: shengfsk@163.com;杜雪竹, E-mail: duxuezhusk@163.com
  • 基金资助:
    本研究由湖北省科技创新计划项目(2025BBB012);科技创新2030—重大项目(2023ZD04070)

Effects of BnNRT2.3-like overexpression on nitrogen uptake, utilization efficiency, and yield in Brassica napus L.

HUANG Rong, ZHOU Qu-Chen, CHEN Chu-Ming, LUO Qian, YI Dong, DU Chang-Huan, HUANG Xiang-Yu, SHENG Feng(), DU Xue-Zhu()   

  1. School of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
  • Received:2025-05-15 Accepted:2025-09-10 Published:2025-12-12 Published online:2025-09-17
  • Contact: *E-mail: shengfsk@163.com;E-mail: duxuezhusk@163.com
  • Supported by:
    Hubei Provincial Science and Technology Innovation Plan Project(2025BBB012);Science and Technology Innovation 2030-Major Project(2023ZD04070)

摘要: 硝酸盐转运蛋白2 (NRT2)是一种高亲和硝酸盐转运蛋白, 在植物硝酸盐的吸收和转运过程中发挥重要作用。本研究利用实时荧光定量PCR (qRT-PCR)鉴定到响应低氮胁迫的关键基因BnNRT2.3-like, 对其进行生物信息学分析, 构建BnNRT2.3-like过表达载体, 获得转基因植株, 通过盆栽试验对油菜成熟期的重要农艺性状进行观察和分析, 并在油菜苗期测定其氮素积累量、氮素利用效率、叶绿素含量、氮素利用相关基因表达量以及硝酸还原酶(NR)和谷氨酰胺合成酶(GS)活性。结果表明, BnNRT2.3-like蛋白分子量为61.87 kD, 等电点为9.08, 具有MFS超家族和NNP家族基因的典型特征。与野生型相比, BnNRT2.3-like过表达植株的株高、千粒重和单株籽粒产量分别提高9.1%、20.0%和62.1%, 有效分枝高度、主轴有效长度、主轴有效角果数、全株有效角果数、每角果长度、平均每角果粒数均显著提高。在低氮处理下, 过表达油菜与野生型相比主根长平均增加1.22 cm, 植株鲜重增加0.633 g, 地上部和根部干重分别增加55.0%和13.6%, 单株总干重增加42.1%; 地上部氮积累量较野生型增加17.0%。此外, 在低氮胁迫下, 过表达植株苗期的氮素积累量、氮素利用效率、硝酸还原酶和谷氨酰胺合成酶活性以及叶绿素含量与野生型相比均显著提高, 氮素利用相关基因BnNPF4.6BnNPF6.3-likeBnAMT1.1a在叶片中表达水平上升而在根中显著降低。因此, 过表达BnNRT2.3-like可以增强油菜对低氮胁迫的耐受性, 提高油菜产量性状, 为提高油菜氮素利用效率提供了种质资源及理论依据。

关键词: 甘蓝型油菜, BnNRT2.3-like, 硝酸盐, 氮素利用率, 产量

Abstract:

Nitrate transporter 2 (NRT2) is a high-affinity nitrate transporter that plays a crucial role in nitrate uptake and translocation in plants. In this study, we identified a key low-nitrogen-responsive gene, BnNRT2.3-like, using real-time quantitative PCR (RT-qPCR). Bioinformatics analysis was conducted, and an overexpression vector of BnNRT2.3-like was constructed to generate transgenic plants. Key agronomic traits of rapeseed at the mature stage were evaluated through a natural pot experiment. At the seedling stage, we assessed nitrogen accumulation, nitrogen use efficiency (NUE), chlorophyll content, expression levels of nitrogen utilization-related genes, and the activities of nitrate reductase (NR) and glutamine synthetase (GS). The results indicated that BnNRT2.3-like protein was found to have a molecular weight of 61.87 kD and an isoelectric point of 9.08, exhibiting typical features of the MFS superfamily and NNP gene family. Compared to the wild type (WT), BnNRT2.3-like overexpression lines showed increases of 9.1% in plant height, 20.0% in thousand-seed weight, and 62.1% in grain yield per plant. Significant improvements were also observed in effective branch height, main inflorescence length, number of siliques per main inflorescence, total siliques per plant, silique length, and average seeds per silique. Under low-nitrogen (LN) conditions, the overexpression lines exhibited an average increase of 1.22 cm in primary root length, a 0.633 g increase in fresh weight, and 55.0% and 13.6% increases in shoot and root dry weights, respectively, resulting in a 42.1% increase in total dry weight per plant. Shoot nitrogen accumulation was also 17.0% higher than in WT. Furthermore, under LN stress at the seedling stage, the overexpression lines demonstrated significant enhancements in nitrogen accumulation, NUE, NR and GS activities, and chlorophyll content compared to WT plants. Notably, expression levels of nitrogen utilization-related genes (BnNPF4.6, BnNPF6.3-like, and BnAMT1.1a) were upregulated in the leaves but markedly downregulated in the roots. Together, these findings demonstrate that BnNRT2.3-like overexpression enhances low-nitrogen tolerance and yield-related traits in rapeseed, providing valuable germplasm resources and a theoretical foundation for improving nitrogen use efficiency in Brassica napus.

Key words: Brassica napus L., BnNRT2.3-like, nitrate, nitrogen use efficiency, yield

表1

本研究所用的引物序列"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
BnNRT2.3-like-F TCTCGAGCTTTCGCGAGCTCATGGCTTCTAATGAAGAA
BnNRT2.3-like-R AGGTCGACTCTAGAGGATCCTTACGGAAACGTGAAACA
Bn-Kan-F ACTGGGCACAACAGACAATCG
Bn-Kan-R GCATCAGCCATGATGGATACTTT
Q-BnActin7F TCTTCCTCACGCTATCCTCCG
Q-BnActin7R AGCCGTCTCCAGCTCTTGC
Q-BnNRT2.3L-F ATGTTTTTGAGACCGTCTAGCG
Q-BnNRT2.3L-R GGTTCG CATCAGAGTTCCAG
Q-BnAMT1.12-F GAAACTTCTTGGGGCTCAGC
Q-BnAMT1.12-R TGCCGGGTCATATCCATACC
Q-BnNPF4.6-F GTCATTACCGTCGCATGGAG
Q-BnNPF4.6-R TCCCCATTCCCATCCTTTGT
Q-BnNPF6.4-F CGCATACCAATCAGTTCCGG
Q-BnNPF6.4-R CAATGTGACGGTCCATGGTC

图1

BnNRT2基因家族表达模式分析 A: 低氮处理下(0.3 mmol L-1 NO3-) Westar油菜叶片BnNRT2s表达量; B: 低氮处理下(0.3 mmol L-1 NO3-) Westar油菜根部BnNRT2s表达量。"

图2

BnNRT2.3-like基因结构及蛋白序列比对 A: BnNRT2.3-like基因结构示意图; B: BnNRT2.3-like和拟南芥AtNRT2.3蛋白序列比对结果, 其中120至140位氨基酸处的黑色框部分为MFS家族的保守序列(G-x-x-x-D-x-x-G-x-R), 第200位氨基酸处黑色框部分为NPP家族的保守序列(G-W/LG-N-M/A-G)。"

图3

不同物种的NRT2.3基因进化树"

图4

BnNRT2.3-like蛋白跨膜结构模式图"

图5

BnNRT2.3-like转基因株系阳性鉴定及表达量分析 A: T0代阳性转化苗PCR鉴定; B: 对照Westar与转基因株系中BnNRT2.3-like表达量的定量检测。WT: Westar; OE-18、OE-25、OE-36为过表达BnNRT2.3-like的T2代转基因株系。***表示在0.001水平差异显著。"

图6

BnNRT2.3-like过表达油菜表型分析 A: 野生型油菜和过表达BnNRT2.3-like油菜表型; B: 过表达BnNRT2.3-like油菜叶面积, ***表示在0.001水平差异显著。缩写同图5。"

表2

转基因植株与野生型(WT)农艺性状分析"

性状
Character
WT OE-18 OE-25 OE-36
株高Plant height (cm) 150.43±9.85 b 164.52±6.78 a 166.73±4.71 a 161.30±7.73 ab
一次有效分枝数First effective branch number 6.14±1.36 a 7.80±3.60 a 6.60±2.06 a 7.20±2.13 a
有效分枝高度Effective branch height (cm) 65.86±9.72 a 26.84±2.71 b 26.68±2.26 b 28.70±2.30 b
一次分枝角度First branch angle 33.69±3.79 a 32.26±6.53 a 29.62±6.86 a 36.00±5.83 a
主轴有效长度Effective length of spindle (cm) 49.43±5.48 c 63.00±5.87 b 54.20±4.41 bc 75.60±7.36 a
主轴有效角果数Effective pod number of main shaft 16.43±5.85 b 26.20±2.03 a 23.83±1.83 a 26.80±1.32 a
全株有效角果数Effective pod number of whole plant 191.29±43.33 b 256.20±24.32 a 244.25±27.84 ab 247.62±43.26 ab
每角果长度Length per pod (cm) 4.30±0.93 b 5.40±0.19 a 5.48±0.63 a 5.56±0.35 a
平均每角粒数Average number of grains per pod 21.59±4.68 b 30.69±1.56 a 31.16±2.23 a 30.42±4.15 a
千粒重1000-grain weight (g) 4.40±0.64 b 4.86±0.42 ab 5.64±0.82 a 4.95±0.29 ab
单株籽粒产量Seed yield per plant (g) 19.70±6.45 b 32.88±6.45 a 33.13±5.17 a 29.77±3.71 a

表3

不同氮处理下的油菜主根长及鲜重"

株系
Variety
主根长
Main shoot length (cm)
鲜重
Fresh weight (g)
-N +N -N +N
WT 32.27±0.59 c 22.35±0.39 b 1.11±0.14 c 1.88±0.03 a
OE-18 34.62±0.10 a 24.40±0.13 a 1.83±0.08 a 1.91±0.08 a
OE-25 33.63±0.15 b 22.35±0.29 b 1.60±0.07 b 1.85±0.03 a
OE-36 35.23±0.21 a 22.39±0.21 b 1.79±0.07 ab 2.04±0.16 a

表4

不同氮处理下的油菜干重"

株系Variety 地上部
Overground part (g)
地下部
Underground portion (g)
单株干重
Total dry weight (g)
-N +N -N +N -N +N
WT 0.227±0.006 c 0.410±0.020 a 0.105±0.005 a 0.089±0.0015 c 0.332±0.011 b 0.499±0.005 b
OE-18 0.355±0.005 a 0.430±0.020 a 0.126±0.090 a 0.090±0.001 bc 0.481±0.009 a 0.522±0.008 a
OE-25 0.345±0.001 b 0.425±0.005 a 0.112±0.002 a 0.098±0.005 a 0.470±0.015 a 0.520±0.005 a
OE-36 0.358±0.002 a 0.410±0.010 a 0.120±0.005 a 0.095±0.002 ab 0.465±0.014 a 0.528±0.010 a

图7

不同氮处理下油菜硝态氮、地上/下部氮含量及氮素利用率 A: 不同氮处理7 d后油菜下部叶片硝态氮含量; B: 不同氮处理7 d后油菜地上部氮素积累量; C: 不同氮处理7 d后油菜根中氮素积累量; D: 不同氮处理7 d后BnNRT2.3-like过表达油菜植株的氮素利用率。***表示在0.001水平差异显著。缩写同图5。-N: 0.3 mmol L-1 N; +N: 6 mmol L-1 N。"

图8

油菜氮代谢相关基因在BnNRT2.3-like过表达油菜中的表达 A: 0.3 mmol L-1 NO3-处理7 d后油菜上部(叶片)氮素利用相关基因的表达量; B: 0.3 mmol L-1 NO3-处理7 d后油菜根部相关基因的表达量。****表示在0.0001水平差异显著。缩写同图5。"

图9

不同氮处理下油菜叶片NR和GS活性 A: 不同氮处理7 d后油菜下部叶片硝酸还原酶活性; B: 不同氮处理7 d后油菜下部叶片谷氨酰胺合成酶活性。****表示过表达材料与WT间在0.0001水平差异显著。缩写同图5。-N: 0.3 mmol L-1 N; +N: 6 mmol L-1 N。"

图10

不同氮处理下油菜叶绿素含量 A: 6 mmol L-1 NO3-处理7 d后油菜下部叶片叶绿素含量; B: 0.3 mmol L-1 NO3-处理7 d后油菜下部叶片叶绿素含量。**、***、****分别表示过表达材料与WT在0.01、0.001和0.0001概率水平差异显著。缩写同图5。"

[1] Du E C, Guo W Z, Zhao N, Chen F, Fan Q W, Zhang W, Huang S W, Zhou G S, Fu T D, Wei J T. Effects of diets with various levels of forage rape (Brassica napus) on growth performance, carcass traits, meat quality and rumen microbiota of Hu lambs. J Sci Food Agric, 2022, 102: 1281-1291.
doi: 10.1002/jsfa.v102.3
[2] Wang X D, Ma H, Guan C Y, Guan M. Germplasm screening of green manure rapeseed through the effects of short-term decomposition on soil nutrients and microorganisms. Agriculture, 2021, 11: 1219.
doi: 10.3390/agriculture11121219
[3] 甘国渝, 邹家龙, 陈曦, 朱海, 金慧芳, 李继福. 中国油菜生产格局与施肥研究现状. 湖北农业科学, 2022, 61(1): 5-11.
Gan G Y, Zou J L, Chen X, Zhu H, Jin H F, Li J F. Research status of rape production pattern and fertilization in China. Hubei Agric Sci, 2022, 61(1): 5-11 (in Chinese with English abstract).
[4] 张婧妤, 许本波, 郑家喜. 我国食用植物油消费变化分析及改革对策. 中国油脂, 2022, 47(3): 5-10.
Zhang J Y, Xu B B, Zheng J X. Analysis on consumption changes and reform countermeasures of edible vegetable oil in China. China Oils Fats, 2022, 47(3): 5-10 (in Chinese with English abstract).
[5] de Bang T C, Husted S, Laursen K H, Persson D P, Schjoerring J K. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytol, 2021, 229: 2446-2469.
doi: 10.1111/nph.17074 pmid: 33175410
[6] 刘陈, 王昆昆, 廖世鹏, 杨佳群, 丛日环, 任涛, 李小坤, 鲁剑巍. 氮肥用量对玉米-油菜和水稻-油菜轮作模式下油菜产量及氮素吸收利用的影响. 作物学报, 2024, 50: 2067-2077.
doi: 10.3724/SP.J.1006.2024.34181
Liu C, Wang K K, Liao S P, Yang J Q, Cong R H, Ren T, Li X K, Lu J W. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields. Acta Agron Sin, 2024, 50: 2067-2077 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2024.34181
[7] 郭子琪, 王慧, 韩上, 李敏, 雷之萌, 张军, 程文龙, 卜容燕, 武际, 朱林. 氮肥用量对直播油菜产量及氮素吸收利用的影响. 中国土壤与肥料, 2020, (5): 40-44.
Guo Z Q, Wang H, Han S, Li M, Lei Z M, Zhang J, Cheng W L, Bu R Y, Wu J, Zhu L. Effect of nitrogen application rate on yield and nitrogen uptake and utilization of direct seeding rape. Soil Fert Sci China, 2020, (5): 40-44 (in Chinese with English abstract).
[8] Zhan N, Xu K, Ji G X, Yan G X, Chen B Y, Wu X M, Cai G Q. Research progress in high-efficiency utilization of nitrogen in rapeseed. Int J Mol Sci, 2023, 24: 7752.
doi: 10.3390/ijms24097752
[9] Hao P F, Lin B G, Ren Y, Hu H, Xue B W, Huang L, Hua S J. Auxin-regulated timing of transition from vegetative to reproductive growth in rapeseed (Brassica napus L.) under different nitrogen application rates. Front Plant Sci, 2022, 13: 927662.
[10] Yahbi M, Nabloussi A, Maataoui A, El Alami N, Boutagayout A, Daoui K. Effects of nitrogen rates on yield, yield components, and other related attributes of different rapeseed (Brassica napus L.) varieties. Ocl, 2022, 29: 8.
doi: 10.1051/ocl/2022001
[11] Hao P F, Ren Y, Lin B G, Yi K G, Huang L, Li X, Jiang L X, Hua S J. Transcriptomic analysis of the reduction in seed oil content through increased nitrogen application rate in rapeseed (Brassica napus L.). Int J Mol Sci, 2023, 24: 16220.
[12] Zhang J L, Li J, Geng G T, Hu W S, Ren T, Cong R H, Li X K, Lu J W. Combined application of nitrogen and potassium reduces seed yield loss of oilseed rape caused by Sclerotinia stem rot disease. Agron J, 2020, 112: 5143-5157.
doi: 10.1002/agj2.v112.6
[13] Hu Y, Zhang F F, Hassan Javed H, Peng X, Chen H L, Tang W Q, Lai Y, Wu Y C. Controlled-release nitrogen mixed with common nitrogen fertilizer can maintain high yield of rapeseed and improve nitrogen utilization efficiency. Plants, 2023, 12: 4105.
doi: 10.3390/plants12244105
[14] Dunn P J, Gilbertson L M. A mechanistic model for determining factors that influence inorganic nitrogen fate in corn cultivation. Environ Sci Proc Impacts, 2025, 27: 549-562.
[15] Tang J Q, Qian H Y, Zhu X C, Liu Z S, Kuzyakov Y, Zou J W, Wang J Y, Xu Q, Li G H, Liu Z H, et al. Soil pH determines nitrogen effects on methane emissions from rice paddies. Glob Change Biol, 2024, 30: e17577.
[16] Romero F, Hilfiker S, Edlinger A, Held A, Hartman K, Labouyrie M, van der Heijden M G A. Soil microbial biodiversity promotes crop productivity and agro-ecosystem functioning in experimental microcosms. Sci Total Environ, 2023, 885: 163683.
[17] Pereira E G, Ribeiro de Lima B, Alves Medeiros L R, Ribeiro S A, Bucher C A, Santos L A, Fernandes M S, Vieira Rossetto C A. Nutripriming with ammonium nitrate improves emergence and root architecture and promotes an increase in nitrogen content in upland rice seedlings. Biocatal Agric Biotechnol, 2022, 42: 102331.
[18] Xiao C B, Fang Y, Wang S M, He K. The alleviation of ammonium toxicity in plants. J Integr Plant Biol, 2023, 65: 1362-1368.
doi: 10.1111/jipb.13467
[19] Xu N, Cheng L, Kong Y, Chen G L, Zhao L F, Liu F. Functional analyses of the NRT2 family of nitrate transporters in Arabidopsis. Front Plant Sci, 2024, 15: 1351998.
[20] 黄赳.NRTs基因的克隆及其功能研究. 中国农业科学院硕士学位论文, 北京, 2021.
Huang J. Cloning and Functional Study of NRTs Gene. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2021 (in Chinese with English abstract).
[21] Kou Y C, Su B D, Yang S Y, Gong W, Zhang X, Shan X Y. Phosphorylation of Arabidopsis NRT1.1 regulates plant stomatal aperture and drought resistance in low nitrate condition. BMC Plant Biol, 2025, 25: 95.
doi: 10.1186/s12870-024-06008-1
[22] Chaput V, Li J F, Séré D, Tillard P, Fizames C, Moyano T, Zuo K J, Martin A, Gutiérrez R A, Gojon A, et al. Characterization of the signalling pathways involved in the repression of root nitrate uptake by nitrate in Arabidopsis thaliana. J Exp Bot, 2023, 74: 4244-4258.
doi: 10.1093/jxb/erad149
[23] Ueda Y, Yanagisawa S. Transcription factor module NLP-NIGT1 fine-tunes NITRATE TRANSPORTER2.1 expression. Plant Physiol, 2023, 193: 2865-2879.
doi: 10.1093/plphys/kiad458
[24] De Pessemier J, Moturu T R, Nacry P, Ebert R, De Gernier H, Tillard P, Swarup K, Wells D M, Haseloff J, Murray S C, et al. Root system size and root hair length are key Phenes for nitrate acquisition and biomass production across natural variation in Arabidopsis. J Exp Bot, 2022, 73: 3569-3583.
doi: 10.1093/jxb/erac118 pmid: 35304891
[25] Puccio G, Ingraffia R, Giambalvo D, Frenda A S, Harkess A, Sunseri F, Mercati F. Exploring the genetic landscape of nitrogen uptake in durum wheat: genome-wide characterization and expression profiling of NPF and NRT2 gene families. Front Plant Sci, 2023, 14: 1302337.
[26] Huang W, Ma D N, Xia L, Zhang E, Wang P, Wang M L, Guo F, Wang Y, Ni D J, Zhao H.Overexpression of CsATG3a improves tolerance to nitrogen deficiency and increases nitrogen use efficiency in Arabidopsis. Plant Physiol Biochem, 2023, 196: 328-338.
doi: 10.1016/j.plaphy.2023.01.057
[27] Zhuo M N, Sakuraba Y, Yanagisawa S. Dof1.7 and NIGT1 transcription factors mediate multilayered transcriptional regulation for different expression patterns of NITRATE TRANSPORTER2 genes under nitrogen deficiency stress. New Phytol, 2024, 242: 2132-2147.
doi: 10.1111/nph.v242.5
[28] Akhtar K, Ain N U, Vara Prasad P V, Naz M, Aslam M M, Djalovic I, Riaz M, Ahmad S, Varshney R K, He B, et al. Physiological, molecular, and environmental insights into plant nitrogen uptake, and metabolism under abiotic stresses. Plant Genome, 2024, 17: e20461.
[29] Tong J F, Walk T C, Han P P, Chen L Y, Shen X J, Li Y S, Gu C M, Xie L H, Hu X J, Liao X, et al. Genome-wide identification and analysis of high-affinity nitrate transporter 2 (NRT2) family genes in rapeseed (Brassica napus L.) and their responses to various stresses. BMC Plant Biol, 2020, 20: 464.
doi: 10.1186/s12870-020-02648-1
[30] 李嘉欣, 黄莹莹, 吴潞梅, 赵伦, 易斌, 马朝芝, 涂金星, 沈金雄, 傅廷栋, 文静. 甘蓝型油菜BnaSLY1基因进化分析及功能研究. 作物学报, 2025, 51: 44-57.
doi: 10.3724/SP.J.1006.2025.44079
Li J X, Huang Y Y, Wu L M, Zhao L, Yi B, Ma C Z, Tu J X, Shen J X, Fu T D, Wen J. Phylogenetic and functional analysis of the BnaSLY1 genes in Brassica napus L. Acta Agron Sin, 2025, 51: 44-57 (in Chinese with English abstract).
[31] 伍晓明, 陈碧云, 陆光远. 油菜种质资源描述规范和数据标准. 北京: 中国农业出版社, 2007.
Wu X M, Chen B Y, Lu G Y. Descriptors and Data Standard for Rapeseed (Brassica spp.) . Beijing: China Agriculture Press, 2007 (in Chinese).
[32] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
Li H S. Principles and Techniques of Plant Physiological Biochemical Experiment. Beijing: Higher Education Press, 2000 (in Chinese).
[33] Qi J F, Yu L, Ding J L, Ji C C, Wang S L, Wang C, Cai H M, Ding G D, Shi L, Xu F S, et al. Transcription factor OsSNAC1 positively regulates nitrate transporter gene expression in rice. Plant Physiol, 2023, 192: 2923-2942.
doi: 10.1093/plphys/kiad290
[34] Fan X R, Tang Z, Tan Y W, Zhang Y, Luo B B, Yang M, Lian X M, Shen Q R, Miller A J, Xu G H. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proc Natl Acad Sci USA, 2016, 113: 7118-7123.
doi: 10.1073/pnas.1525184113 pmid: 27274069
[35] Chen J G, Liu X Q, Liu S H, Fan X R, Zhao L M, Song M Q, Fan X R, Xu G H. Co-overexpression of OsNAR2.1 and OsNRT2.3a increased agronomic nitrogen use efficiency in transgenic rice plants. Front Plant Sci, 2020, 11: 1245.
doi: 10.3389/fpls.2020.01245
[36] Xie Y Y, Nan Y Y, Atif A, Shi D R, Tian H, Hui J, Zhang Y F, Jones A M, Gao Y J. Enhancing seed yield and nitrogen use efficiency of Brassica napus L. under low nitrogen by overexpression of G-proteins from Arabidopsis thaliana. J Exp Bot, 2025, 76: 3954-3971.
doi: 10.1093/jxb/eraf130
[37] 王娟, 陈皓宁, 石大川, 于天一, 闫彩霞, 孙全喜, 苑翠玲, 赵小波, 牟艺菲, 王奇, 等. 花生高亲和硝酸盐转运蛋白基因AhNRT2.7a响应低氮胁迫的功能研究. 中国农业科学, 2022, 55: 4356-4372.
doi: 10.3864/j.issn.0578-1752.2022.22.003
Wang J, Chen H N, Shi D C, Yu T Y, Yan C X, Sun Q X, Yuan C L, Zhao X B, Mou Y F, Wang Q, et al. Functional analysis of AhNRT2.7a in response to low-nitrogen in peanut. Sci Agric Sin, 2022, 55: 4356-4372 (in Chinese with English abstract).
[38] Ju Y W, Jia Y Y, Cheng B S, Wang D, Gu D L, Jing W J, Zhang H, Chen X H, Li G. NRT1.1B mediates rice plant growth and soil microbial diversity under different nitrogen conditions. AMB Express, 2024, 14: 39.
doi: 10.1186/s13568-024-01683-7 pmid: 38647736
[1] 付江鹏, 柳发财, 闫宝琴, 王永栋, 李利利, 魏玮, 周英霞. 控释肥替代普通尿素对旱作高粱干物质积累分配、产量和品质的影响[J]. 作物学报, 2025, 51(9): 2501-2513.
[2] 杨姝, 白伟, 蔡倩, 杜桂娟. 玉米‖紫花苜蓿间作群体光分布特征及对植物性状和产量的影响[J]. 作物学报, 2025, 51(9): 2514-2526.
[3] 张海燕, 解备涛, 董顺旭, 张立明, 段文学. 滴灌条件下不同水溶肥种类和配比对鲜食甘薯产量和品质的影响[J]. 作物学报, 2025, 51(9): 2485-2500.
[4] 郭保卫, 王旺, 王开, 王岩, 曾鑫, 景秀, 王晶, 倪新华, 许轲, 张洪程. 长江中下游两类型糯稻高产群体动态特征及超高产形成规律[J]. 作物学报, 2025, 51(9): 2433-2453.
[5] 杨婷婷, 陈娟, ABDUL Rehman, 李婧, 闫素辉, 汪建来, 李文阳. 花后弱光对软质小麦干物质积累转运、籽粒产量和淀粉品质的影响[J]. 作物学报, 2025, 51(8): 2204-2219.
[6] 尤根基, 谢昊, 梁毓文, 李龙, 王玉茹, 蒋晨炀, 郭剑, 李广浩, 陆大雷. 氮肥减施措施对江淮春玉米产量和氮素吸收利用的影响[J]. 作物学报, 2025, 51(8): 2152-2163.
[7] 李宜谦, 徐守振, 刘萍, 马麒, 谢斌, 陈红. 基于40K SNP芯片的陆地棉产量构成因素全基因组关联分析及单铃重位点挖掘[J]. 作物学报, 2025, 51(8): 2128-2138.
[8] 王彬, 蒙姜宇, 邱浩良, 贺亚军, 钱伟. 甘蓝型油菜BnaDUF579基因家族的鉴定与表达模式分析[J]. 作物学报, 2025, 51(8): 2100-2110.
[9] 樊友众, 王先领, 王宗铠, 王春云, 王天尧, 谢捷, 蒯婕, 汪波, 王晶, 徐正华, 赵杰, 周广生. 秸秆还田耦合氮肥运筹对稻茬油菜光合性能及产量的影响[J]. 作物学报, 2025, 51(8): 2139-2151.
[10] 武斌, 曹永刚, 胡发龙, 殷文, 樊志龙, 范虹, 柴强. 免耕轮作对减氮小麦产量下降的补偿效果[J]. 作物学报, 2025, 51(7): 1959-1968.
[11] 吴柳格, 陈坚, 张鑫, 邓艾兴, 宋振伟, 郑成岩, 张卫建. 近二十年国审冬小麦品种的产量与品质性状变化趋势研究[J]. 作物学报, 2025, 51(7): 1814-1826.
[12] 李秋云, 李世贵, 范军亮, 刘昊天, 赵晓斌, 吕硕, 王艳浩, 岳云, 张宁, 司怀军. 离子锌和纳米锌对马铃薯生理特性、产量及品质的影响[J]. 作物学报, 2025, 51(7): 1838-1849.
[13] 赵佳雯, 李子洪, 欧星雨, 王伊朗, 丁小飞, 梁乐瑶, 丁文金, 张海鹏, 马尚宇, 樊永惠, 黄正来, 张文静. 氮肥与钾肥运筹对弱筋小麦籽粒产量、品质的影响[J]. 作物学报, 2025, 51(7): 1914-1933.
[14] 李炳霖, 叶晓磊, 肖红, 肖国滨, 吕伟生, 刘君权, 任涛, 陆志峰, 鲁剑巍. 镁肥用量对油菜产量和镁吸收量及因冻害减产程度的影响[J]. 作物学报, 2025, 51(7): 1850-1860.
[15] 霍建喆, 于爱忠, 王玉珑, 王鹏飞, 尹波, 刘亚龙, 张冬玲, 姜科强, 庞小能, 王凤. 有机肥替代化肥对绿洲灌区甜玉米产量、品质及氮素利用的影响[J]. 作物学报, 2025, 51(7): 1887-1900.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!