Acta Agron Sin ›› 2018, Vol. 44 ›› Issue (01): 82-94.doi: 10.3724/SP.J.1006.2018.00082
• TILLAGE & CULTIVATION · PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
ZHANG Jin-Fei1, 2, LI Xia1,*, HE Ya-Fei1, 2,XIE Yin-Feng2
[1] Khush G S. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol, 2005, 59: 1–6 [2] Todaka D, Shinozaki K, Yamaguchi-Shinozaki K. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front Plant Sci, 2015, 6: 84 [3] Long S P, Marshall-Colon A, Zhu X G. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell, 2015, 161: 56–66 [4] Aubry S, Brown N J, Hibberd J M. The role of proteins in C3 plants prior to their recruitment into the C4 pathway. J Exp Bot, 2011, 62: 3049–3059 [5] Ku M S B, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotechnol, 1999, 17: 76–80 [6] Orta D R, Merchant S S, Alric J, Barkan A, Blankenship R E, Bock R, Moore T A. Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci USA, 2015, 112: 8529–8536 [7] Johnson J F, Vance C P, Allan D L. Phosphorus deficiency in Lupinus albus altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase. Plant Physiol, 1996, 112: 31–41 [8] Chen P B, Li X, Huo K, Wei X D, Dai C C, Lu C G. Promotion of photosynthesis in transgenic rice over-expressing of maize C4 phosphoenolpyruvate carboxylase gene by nitric oxide donors. J Plant Physiol, 2014, 171: 458–466 [9] Ren C G, Li X, Liu X L, Wei X D, Dai C C. Hydrogen peroxide regulated photosynthesis in C4-pepc transgenic rice. Plant Physiol Biochem, 2014, 74: 218–229 [10] 方立锋, 丁在松, 赵明. 转ppc基因水稻苗期抗旱特性研究. 作物学报, 2008, 34: 1220–1226 Fang L F, Ding Z S, Zhao M. Characteristics of drought tolerance in ppc overexpressed rice seedlings. Acta Agron Sin, 2008, 34: 1220–1226 (in Chinese with English abstract) [11] Qian B, Li X, Liu X, Wang M. Improved oxidative tolerance in suspension cultured cells of C4-pepc transgenic rice by H2O2 and Ca2+ under PEG-6000. J Integr Plant Biol, 2015, 57: 534–549 [12] 周宝元, 丁在松, 赵明. PEPC过表达可以减轻干旱胁迫对水稻光合的抑制作用. 作物学报, 2011, 37: 112–118 Zhou B Y, Ding Z S, Zhao M. Alleviation of drought stress inhibition on photosynthesis by overexpression of PEPC gene in rice. Acta Agron Sin, 2011, 37: 112–118 (in Chinese with English abstract) [13] 丁在松, 周宝元, 孙雪芳, 赵明. 干旱胁迫下PEPC过表达增强水稻的耐强光能力. 作物学报, 2012, 38: 285–292 Ding Z S, Zhou B Y, Sun X F, Zhao M. High light tolerance is enhanced by overexpressed PEPC in rice under drought stress. Acta Agron Sin, 2012, 38: 285–292 (in Chinese with English abstract) [14] Vavasseur A, Raghavendra A S. Guard cell metabolism and CO2 sensing. New Phytol, 2005, 16: 665–682 [15] Liu X L, Li X, Zhang C, Dai C C, Zhou J Y, Ren C G, Zhang J F. Phosphoenolpyruvate carboxylase regulation in C4-PEPC expressing transgenic rice during early responses to drought stress. Physiol Plant, 2017, 159: 178–200 [16] Li L, Sheen J. Dynamic and diverse sugar signaling. Curr Opin Plant Biol, 2016, 33: 116–125 [17] Moore B, Zhou L, Rolland F, Hall Q, Cheng W H, Liu Y X, Hwang I, Jones T, Sheen J. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science, 2003, 300: 332–336 [18] Kelly G, David-Schartz R, Sade N, Moshelion M, Levi A, Alchanatis V, Granot D. The pitfalls of transgenic selection and new roles of AtHXK1: a high level of AtHXK1 expression uncouples hexokinas1-dependent sugar signaling from exogenous sugar. Plant Physiol, 2012, 159: 47–51 [19] Kim Y M, Heinzel N, Giese J O, Koeber J, Melzer M, Rutten T, Wiren N, Sonnewald U, Hajirezaei M R. A dual role of tobacco hexokinase1 in primary metabolism and sugar sensing. Plant Cell Environ, 2013, 36: 1311–1327 [20] Considine M J, Foyer C H. Redox regulation of plant development. Antioxid Redox Signal, 2014, 21: 1305–1326 [21] Matsoukas I G. Interplay between sugar and hormone signaling pathways modulate floral signal transduction. Front Genet, 2014, 5: 218 [22] Tsai A Y, Gazzarrini S. Trehalose-6-phosphate and SnRK1 kinases in plant development and signaling: the emerging picture. Front Plant Sci, 2014, 5: 119 [23] Jung K, Nemhauser J L, Perata P. New mechanistic links between sugar and hormone signalling networks. Curr Opin Plant Biol, 2015, 25: 130–137 [24] Yu S, Lian H, Wang J W. Plant development transitions: the role of microRNAs and sugars. Curr Opin Plant Biol, 2015, 27: 1–7 [25] Sheen J. Master regulators in plant glucose signaling networks. J Plant Biol, 2014, 57: 67–79 [26] Zhang Z W, Yaun S, Xu F, Yang H, Zhang N H, Cheng J, Lin H H. The plastid hexokinase pHXK: a node of convergence for sugar and plastid signals in Arabidopsis. FEBS Lett, 2010, 584: 3573–3579 [27] Hanson J, Smeekens S. Sugar perception and signaling: an update. Curr Opin Plant Biol, 2009, 12: 562–567 [28] Toroser D, Plaut Z, Huber S C. Regulation of a plant SNF1-related protein kinase by glucose-6-phosphate. Plant Physiol, 2000, 123: 403–412 [29] Zhang Y, Primavesi L F, Jhurreea D, Andraloj P J, Mitchell R A C, Powers S J, Schluepmann H, Delatte T, Wingler A, Paul M J. Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiol, 2009, 149: 1860–1871 [30] Li X, Wang C. Physiological and metabolic enzymes activity changes in transgenic rice plants with increased phosphoenolpyruvate carboxylase activity during the flowering stage. Acta Physiol Plant, 2013, 35: 1503–1512 [31] Doubnerová V, Ry?lavá H. What can enzymes of C4 photosynthesis do for C3 plants under stress? Plant Sci, 2011, 180: 575–583 [32] Yoshida S, Forno D A, Cock J H. Laboratory Manual for Physiological Studies of Rice. Philippines: International Rice Research Institute, 1976. pp 61–64 [33] Smart R E, Bingham G E. Rapid estimates of relative water-content. Plant Physiol, 1974, 53: 258–260 [34] Ambavaram, M M, Basu S, Krishnan A, Ramegowda V, Batlang U, Rahman L, Pereira A. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. Nat Commun, 2014, 5: 93 [35] Li X, Wang C, Ren C G. Effects of 1-butanol, neomycin and calcium on the photosynthetic characteristics of pepc transgenic rice. Afr J Biol Technol, 2011, 10: 17466–17476 [36] Yang C Q, Liu W N, Zhao Z H, Wu H Y. Determination of the content of serum calcium with methylthymol blue as chromogenic reagent. Spectrosc Spectr Anal, 1998, 18: 485–487 [37] Murphy M E, Noack E. Nitric oxide assay using hemoglobin method. Methods Enzymol, 1994, 233: 240–250 [38] Schaffer A A, Petreikov M. Sucrose-to-starch metabolism in tomato fruit undergoing transient starch accumulation. Plant Physiol, 1997, 113: 739–746 [39] Jung H, Kim J K, Ha S W. Use of animal viral IRES sequence makes multiple truncated transcripts without mediating polycistronic expression in rice. J Korean Soc Biol Chem, 2011, 54: 678–684 [40] Izui K, Matsumura H, Furumoto T, Kai Y. Phosphoenolpyruvate carboxylase: a new era of structural biology. Annu Rev Plant Physiol, 2004, 55: 69–84 [41] Sethi D, Dash S, Mohapatra S, Mohanty P. C4 rice: an advance technique for enhancing rice production. Adv Life Sci, 2016, 5: 2535–2542 [42] 吴琼, 许为钢, 李艳, 齐学礼, 胡琳, 张磊, 韩琳琳. 田间条件下转玉米C4型PEPC基因小麦的光合生理特性. 作物学报, 2010, 37: 2046–2052 Wu Q, Xu W G, Li Y, Qi X L, Hu L, Zhang L, Han L L. Physiological characteristics of photosynthesis in transgenic wheat with maize C4-PEPC gene under field conditions. Acta Agron Sin, 2010, 37: 2046–2052 (in Chinese with English abstract) [43] Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko K R, Marsch-Martinez N, Pereira A. Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Nat Aca Sci USA, 2007, 104: 15270–15275 [44] Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch H J, Rosenkranz R, Peterh?nsel C. Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol, 2007, 25: 593–599 [45] Abebe T, Guenzi A C, Martin B, Cushman J C. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol, 2003, 131: 1748–1755 [46] Daloso D M, Anjos L, Fernie A R. Roles of sucrose in guard cell regulation. New Phytol, 2016, 211: 809 [47] Granot D, Lugassi N, Kottapalli J, Kelly G. Sensing sugar and saving water. Proc Environ Sci, 2015, 29: 3 [48] Griffiths C A, Sagar R, Geng Y, Primavesi L F, Patel M K, Passarelli M K, Davis B G. Chemical intervention in plant sugar signaling increases yield and resilience. Nature, 2016, 540: 574–578 [49] Corpas F J, Barroso J B. Peroxisomal plant metabolism–an update on nitric oxide, Ca2+ and the NADPH recycling network. J Cell Sci, 2017, jcs. 202978. [50] Furuichi T, Cunningham K W, Muto S. A putative two pore channel AtTPC1 mediates Ca2+ flux in Arabidopsis leaf cells. Plant Cell Physiol, 2001, 42: 900–905 [51] Li Z Y, Xu Z S, Chen Y, He G Y, Yang G X, Chen M, Ma Y Z. A novel role for Arabidopsis CBL1 in affecting plant responses to glucose and gibberellin during germination and seedling development. PLoS One, 2013, 8: e56412 [52] Batistic O, Kudla J. Plant calcineurin B-like proteins and their interacting protein kinases. Biochim Biophys Acta, 2009, 1790: 985–992 [53]T ominaga M, Harada A, Kinoshita T, Shimazaki K. Biochemical characterization of calcineurin B-like-interacting protein kinase in Vicia guard cells. Plant Cell Physiol, 2010, 51: 408–421 [54] Mao J, Manik S M, Shi S, Chao J, Jin Y, Wang Q, Liu H. Mechanisms and physiological roles of the CBL-CIPK networking system in Arabidopsis thaliana. Genes, 2016, 7: 62 [55] Li J, Long Y, Qi G N, Xu Z J, Wu W H, Wang Y. The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex. Plant Cell, 2014, 26: 3387-3402. [56] Kudahettige N P, Pucciariello C, Parlanti S, Alpi A, Perata P. Regulatory interplay of the Sub1A and CIPK15 pathways in the regulation of α-amylase production in flooded rice plants. Plant Biol, 2011, 13: 611–619. |
[1] | XU Gao-Feng, SHEN Shi-Cai, ZHANG Fu-Dou, YANG Shao-Song, JIN Gui-Mei, ZHENG Feng-Ping, WEN Li-Na, ZHANG Yun, WU Ran-Di. Effects of soil microbes on rice allelopathy and its mechanism of wild rice (Oryza longistaminata) and its descendants [J]. Acta Agronomica Sinica, 2023, 49(9): 2562-2571. |
[2] | HU Yan-Juan, XUE Dan, GENG Di, ZHU Mo, WANG Tian-Qiong, WANG Xiao-Xue. Mutation effects of OsCDF1 gene and its genomic variations in rice [J]. Acta Agronomica Sinica, 2023, 49(9): 2362-2372. |
[3] | LIU Kai, CHEN Ji-Jin, LIU Shuai, CHEN Xu, ZHAO Xin-Ru, SUN Shang, XUE Chao, GONG Zhi-Yun. Dynamic change profile of histone H3K18cr on rice whole genome under cold stress [J]. Acta Agronomica Sinica, 2023, 49(9): 2398-2411. |
[4] | JIA Lu-Qi, SUN You, TIAN Ran, ZHANG Xue-Fei, DAI Yong-Dong, CUI Zhi-Bo, LI Yang-Yang, FENG Xin-Yu, SANG Xian-Chun, and WANG Xiao-Wen. Identification of the rgs1 mutant with rapid germination of seed and isolation of the regulated gene in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2288-2295. |
[5] | CHEN Li, WANG Jing, QIU Xiao, SUN Hai-Lian, ZHANG Wen-Hao, WANG Tian-Zuo. Differences of physiological responses and transcriptional regulation of alfalfa with different drought tolerances under drought stresses [J]. Acta Agronomica Sinica, 2023, 49(8): 2122-2132. |
[6] | TANG Jie, LONG Tuan, WU Chun-Yu, LI Xin-Peng, ZENG Xiang, WU Yong-Zhong, HUANG Pei-Jin. Identification of OsGMS2 and construction of seed production system for genic male sterile line in rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2025-2038. |
[7] | SONG Zhao-Jian, FENG Zi-Yi, QU Tian-Ge, LYU Pin-Cang, YANG Xiao-Lu, ZHAN Ming-Yue, ZHANG Xian-Hua, HE Yu-Chi, LIU Yu-Hua, CAI De-Tian. Indica-japonica attribute identification and heterosis utilization of diploid rice lines reverted from tetraploid rice [J]. Acta Agronomica Sinica, 2023, 49(8): 2039-2050. |
[8] | WEI Xin-Yu, ZENG Yue-Hui, YANG Wang-Xing, XIAO Chang-Chun, HOU Xin-Po, HUANG Jian-Hong, ZOU Wen-Guang, XU Xu-Ming. Development of high-quality fragrant indica CMS line by editing Badh2 gene using CRISPR-Cas9 technology in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(8): 2144-2159. |
[9] | CHEN Ting, JIAO Yan-Yang, ZHOU Xin-Ye, WU Lin-Kun, ZHANG Zhong-Yi, LIN Yu, LIN Sheng, LIN Wen-Xiong. Effects of different soil intensification treatments on growth and development of Radix pseudostellariae in continuous cropping system [J]. Acta Agronomica Sinica, 2023, 49(8): 2225-2239. |
[10] | DENG Ai-Xing, LI Ge-Xing, LYU Yu-Ping, LIU You-Hong, MENG Ying, ZHANG Jun, ZHANG Wei-Jian. Effect of shading duration after heading on grain yield and quality of japonica rice in northwest China [J]. Acta Agronomica Sinica, 2023, 49(7): 1930-1941. |
[11] | WEI Zheng-Xin, LIU Chang-Yan, CHEN Hong-Wei, LI Li, SUN Long-Qing, HAN Xue-Song, JIAO Chun-Hai, SHA Ai-Hua. Analysis of ASPAT gene family based on drought-stressed transcriptome sequencing in Vicia faba L. [J]. Acta Agronomica Sinica, 2023, 49(7): 1871-1881. |
[12] | XU Na, XU Quan, XU Zheng-Jin, CHEN Wen-Fu. Research progress on physiological ecology and genetic basis of rice plant architecture [J]. Acta Agronomica Sinica, 2023, 49(7): 1735-1746. |
[13] | YUAN Da-Shuang, ZHANG Xiao-Li, ZHU Dong-Ming, YANG You-Hong, YAO Meng-Nan, LIANG Ying. Effects of BnMAPK2 on drought tolerance in Brassica napus [J]. Acta Agronomica Sinica, 2023, 49(6): 1518-1531. |
[14] | ZHU Xu-Dong, YANG Lan-Feng, CHEN Yuan-Yuan, HOU Ze-Hao, LUO Yi-Rou, XIONG Ze-Hao, FANG Zheng-Wu. Biological functional analysis of common buckwheat (Fagopyrum esculentum) FeSGT1 gene in enhancing drought stress resistance [J]. Acta Agronomica Sinica, 2023, 49(6): 1573-1583. |
[15] | LIN Xiao-Xin, HUANG Ming-Jiang, WEI Yi, ZHU Hong-Hui, WANG Zi-Yi, LI Zhong-Cheng, ZHUANG Hui, LI Yan-Xi, LI Yun-Feng, CHEN Rui. Identification and gene mapping of long grain and degenerated palea (lgdp) in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2023, 49(6): 1699-1707. |
|