Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (10): 2435-2446.doi: 10.3724/SP.J.1006.2024.32060

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development of low-glutelin rice germplasm by gene editing technology

ZHOU Tian-Tian1,2(), TANG Zhao-Cheng1, LI Xiao1, ZHU Peng1, DENG Jing-Jing1, YANG Yu-Wen1, ZHANG Bao-Long1,2, GUO Dong-Shu1,*()   

  1. 1Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
    2College of Life Sciences, Nanjing Agricultural University, Nanjing 210014, Jiangsu, China
  • Received:2023-12-22 Accepted:2024-05-21 Online:2024-10-12 Published:2024-06-21
  • Contact: E-mail: guods_cau@163.com
  • Supported by:
    Jiangsu Key Research and Development Program(BE2022365);Jiangsu Agricultural Science and Technology Innovation Fund (cx(cx(21)1002)

Abstract:

Rice (Oryza sativa L.) is a crucial cereal crop worldwide, with protein being its second-most significant nutritional component. Patients with kidney diseases are required to limit their protein intake to alleviate the metabolic burden on their kidneys and control disease progression. In regular rice cultivars, glutelin is the predominant protein component and is easily digested by the human body. In this study, simultaneous mutations were introduced into Glutelin A1 (GluA1), GluA2, and GluA3 using CRISPR/Cas9-mediated targeted mutagenesis in a japonica rice cultivar derived from Low Glutelin Content-1 (LGC-1). Consequently, a low-glutelin rice germplasm with approximately 1.8% glutelin content, free from transgenic elements, was generated. The quality and agronomic traits of this germplasm were further comprehensively evaluated. The low-glutelin germplasms generated in this study exhibited significantly lower chalkiness degree compared to the recipient cultivar, while the brown rice rate and milled rice rate were significantly higher. This study presents a highly efficient and convenient method for generating rice germplasm with reduced glutelin content and offers new genetic materials for the cultivation of functional rice cultivars suitable for patients with kidney diseases.

Key words: rice, gene editing, protein, low-glutelin rice

Table 1

Primers for vector construction and genotype"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
功能
Function
GluA1/2-1F GGCAtaggccagagcactagtcaa 谷蛋白A敲除载体构建Glutelin A CRISPR vector construction
GluA1/2-1R AAACttgactagtgctctggccta 谷蛋白A敲除载体构建Glutelin A CRISPR vector construction
GluA1/2-2F TGTGcggagtgtgaggtctcaagc 谷蛋白A敲除载体构建Glutelin A CRISPR vector construction
GluA1/2-2R AAACgcttgagacctcacactccg 谷蛋白A敲除载体构建Glutelin A CRISPR vector construction
GluA3-1F GGCAcaatggcaaagttctcgccg 谷蛋白A敲除载体构建Glutelin A CRISPR vector construction
GluA3-1R AAACcggcgagaactttgccattg 谷蛋白A敲除载体构建Glutelin A CRISPR vector construction
GluA3-2F TGTGctagtgagtcacttcatatg 谷蛋白A敲除载体构建Glutelin A CRISPR vector construction
GluA3-2R AAACcatatgaagtgactcactag 谷蛋白A敲除载体构建Glutelin A CRISPR vector construction
LGC-F1 ACCACAAGACAACACTGTCACACC LGC-1突变体鉴定正向引物
Genotyping forward primer of Lgc1 locus
LGC-R1 TATGGTCGCTCAATCGAGCAACAC LGC-1突变体鉴定反向引物
Genotyping reverse primer of Lgc1 locus
WT-R TAGTGTTTCCTAGGAGTGGG 野生型位点鉴定反向引物(正向引物LGC-F1)
Genotyping reverse primer of wild-type LGC1 locus (the forward primer is LGC-F1)
GluA1-F CATGATCACCAACAACCATG GluA1基因型鉴定正向引物
Genotyping forward primer of GluA1 gene
GluA1/2-R CTAGAGATGCACCATTAGTG GluA1GluA2基因型鉴定反向引物
Genotyping reverse primer of GluA1 and GluA2 gene
GluA2-F CAAAAAGAGGAGGGCTTTAC GluA2基因型鉴定正向引物
Genotyping forward primer of GluA2 gene
GluA3-F CACTAAAGCAACACACAACG GluA3基因型鉴定正向引物
Genotyping forward primer of GluA3 gene
GluA3-R CAAGTGTGGATTGCCATGTT GluA3基因型鉴定反向引物
Genotyping reverse primer of GluA1 gene
35S-TF1 ACAATCCCACTATCCTTCGCAAG 潮霉素基因表达盒检测 hpt cassette detection
HYG-TR GTACTTCTACACAGCCATCGGTC 潮霉素基因表达盒检测 hpt cassette detection
UBI-F1 TTTCCCCAACCTCGTGTTGTTC Cas9基因表达盒检测 Cas9 cassette detection
Cas9-R2 GAGGTTCTTCTTGATGGAGTGG Cas9基因表达盒检测 Cas9 cassette detection

Fig. 1

Schematic diagram of target sites of glutelin-coding genes and T-DNA region of CRISPR vector A: GluA1 and GluA2 gene structure, yellow and orange boxes represent the exons of GluA1 and GluA2 genes respectively, short black lines between exons represent introns, blue and green lines indicate the locations of gene editing target sites, underlined red letters indicate the sequences of gene editing target sites, and underlined black letters indicate the protospacer adjacent motif (PAM) sequence; B: GluA3 gene structure, the light blue box represents the exon of GluA3 gene, short black lines between exons represent introns, short pink and pink lines indicate the location of gene editing target sites, underlined red letters indicate the sequences of gene editing target site, and underlined black letters indicate the PAM sequence; C: Diagram of gene editing vector T-DNA segment, ZmpUBI: promoter of maize Ubiquitin1 gene. SpCas9: Cas9 gene derived from Streptococcus pyogenes after codon optimization for rice; NOST: NOS terminator; 3: rice U3b promoter; 6: rice U6b promoter; GluA1/2-1: the first target site of GluA1 and GluA2 genes; GluA1/2-2: the second target site of GluA1 and GluA2 genes; GluA3-1: the first target site of GluA3 gene; GluA3-2: the second target site of GluA3 gene; 35S Promoter: Cauliflower mosaic virus 35S promoter; HygR: hygromycin resistance gene; 35ST: 35S terminator; LB: T-DNA left boundary; RB: T-DNA right boundary."

Fig. 2

Genotype identification and Sanger sequencing peak map A: Genotyping by agarose gel electrophoresis; B: Chromatograms of Sanger sequencing; C: Identification of transgenic elements. Marker: DNA molecular weight standards; WT: wild-type japonica rice cultivar SX867; LGC-1: recipient cultivar; +CK: positive control of CRISPR plasmid; -CK: PCR negative control; LGC1: wild-type LGC1 locus; Lgc1: mutant Lgc1 locus; GluA1: GluA1 locus; GluA2: GluA2 locus; GluA3: GluA3 locus; Cas9: Cas9 gene cassette; Hyg: hygromycin resistant gene cassette. Longer bands of GluA1, GluA2, and GluA3 in A represent wild-type genotypes, and shorter bands represent mutant genotypes. The “*” and “·” under the letters in B represent the bases flanking the deletion region of target genes; Left arrows in A and C indicate the bands of DNA molecular weight standards."

Fig. 3

SDS-PAGE and amino acid composition determination in rice A: SDS-PAGE of proteins from brown rice; B: SDS-PAGE of proteins from polished rice; C: results of amino acid composition determination in rice. M: protein marker; WT: wild-type japonica rice cultivar SX867; LGC-1: transgenic receptor cultivar; GluA-2-11 and GluA-3-6: low-glutelin lines generated in this research. The right vertical lines in A and B indicate different components of rice storage protein. Asp, Glu, Ser, etc. in C represent different amino acids. Different letters indicate significant differences at the P < 0.01."

Fig. 4

Detection results of main nutrients in rice A: total protein content of brown rice; B: total protein content of milled rice; C: total starch content of brown rice; D: total fatty acid content of brown rice. A-D: each sample was measured in triplicate, and different lowercase letters represent significant differences at the P < 0.01. E-G: the results of scanning electron microscopy (SEM) of mature seeds of LGC-1, GluA-2-11, and GluA-3-6. The scale bar: 10 μm. H-J: total ion chromatogram of fatty acid content determination."

Table 2

Statistical results of appearance quality"

指标Index LGC-1 GluA-2-11 GluA-3-6
长/宽均值 Average of length/width 1.83 ± 0.02 1.88 ± 0.01 1.84 ± 0.01
糙米率 Brown rice yield 76.19 ± 0.68 a 83.22 ± 0.07 b 82.73 ± 0.39 b
精米率 Milled rice yield 68.33 ± 0.58 a 72.91 ± 0.93 b 72.83 ± 0.82 b
整精米率 Head rice yield 61.09 ± 4.34 62.54 ± 2.17 66.02 ± 2.57
垩白粒率 Chalky kernel percentage 7.52 ± 1.24 7.28 ± 0.78 6.45 ± 0.16
垩白度 Chalkiness 2.75 ± 0.90 A 1.23 ± 0.31 B 1.23 ± 0.17 B
透明度 Transparency 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00

Table 3

Statistical results of food quality"

指标 Index LGC-1 GluA-2-11 GluA-3-6
外观 Appearance 4.10 ± 0.35 4.80 ± 0.17 5.23 ± 0.44
硬度 Hardness 8.07 ± 0.26 7.77 ± 0.09 7.50 ± 0.10
黏度 Viscosity 4.67 ± 0.26 5.40 ± 0.12 5.70 ± 0.59
平衡度 Balance degree 3.93 ± 0.33 4.67 ± 0.15 5.03 ± 0.44
食味值 Comprehensive 53.4 ± 2.10 58.03 ± 0.91 60.50 ± 2.82

Fig. 5

Rice plant type and rice appearance phenotype A: the morphology of LGC-1, GluA-2-11, and GluA-3-6 mature plants; B-D: seed appearance of LGC-1, GluA-2-11, and GluA-3-6; E-G: the appearance of LGC-1, GluA-2-11, and GluA-3-6 polished rice. In A, the scale bar: 20 cm; in B-G, the scale bar: 1 cm."

Table 4

Statistical results of agronomic trait"

指标 Index LGC-1 GluA-2-11 GluA-3-6
株高 Plant height (cm) 86.16 ± 0.70 ab 87.74 ± 0.71 a 84.72 ± 0.72 b
分蘖数 Tiller number 14.80 ± 0.51 15.90 ± 0.60 16.20 ± 0.70
每穗粒数 Number of spikelets per panicle 105.00 ± 1.73 102.00 ± 1.53 104.33 ± 0.88
千粒重 1000-grain weight (g) 21.34 ± 0.22 a 20.55 ± 0.11 b 20.46 ± 0.03 b
结实率 Filled grain percentage (%) 89.68 ± 0.92 88.08 ± 0.18 88.90 ± 0.43
[1] Furukawa S, Mizuma T, Kiyokawa Y, Masumura T, Tanaka K, Wakai Y. Distribution of storage proteins in low-glutelin rice seed determined using a fluorescent antibody. J Biosci Bioeng, 2003, 96: 467-473.
pmid: 16233557
[2] Safdar L B, Foulkes M J, Kleiner F H, Searle I R, Bhosale R A, Fisk I D, Boden S A. Challenges facing sustainable protein production: opportunities for cereals. Plant Commun, 2023, 4: 100716.
[3] He W, Wang L, Lin Q L, Yu F. Rice seed storage proteins: Biosynthetic pathways and the effects of environmental factors. J Integr Plant Biol, 2021, 63: 1999-2019.
doi: 10.1111/jipb.13176
[4] Mochizuki T, Hara S. Usefulness of the low protein rice on the diet therapy in patients with chronic renal failure. Nihon Jinzo Gakkai Shi, 2000, 42: 24-29 (in Japanese with English abstract).
[5] Okita T W, Hwang Y S, Hnilo J, Kim W T, Aryan A P, Larson R, Krishnan H B. Structure and expression of the rice glutelin multigene family. J Biol Chem, 1989, 264: 12573-12581.
pmid: 2745459
[6] Kawakatsu T, Yamamoto M P, Hirose S, Yano M, Takaiwa F. Characterization of a new rice glutelin gene GluD-1 expressed in the starchy endosperm. J Exp Bot, 2008, 59: 4233-4245.
doi: 10.1093/jxb/ern265 pmid: 18980953
[7] Iida S, Amano E, Nishio T. A rice (Oryza sativa L.) mutant having a low content of glutelin and a high content of prolamine. Theor Appl Genet, 1993, 87: 374-378.
doi: 10.1007/BF01184926 pmid: 24190265
[8] 万建民, 翟虎渠, 刘世家, 江铃, 杨世湖, 陈亮明, 王春明. 功能性专用水稻品种W3660的选育. 作物杂志, 2004, (5): 58.
Wan J M, Zhai H Q, Liu S J, Jiang L, Yang S H, Chen L M, Wang C M. Breeding of functional rice variety W3660. Crops, 2004, (5): 58 (in Chinese).
[9] 张云辉, 张所兵, 周金云亮, 林静, 汪迎节, 方先文. 水稻低谷蛋白创新种质的选育和鉴定. 植物遗传资源学报, 2015, 16: 158-162.
doi: 10.13430/j.cnki.jpgr.2015.01.024
Zhang Y H, Zhang S B, Zhou J Y L, Lin J, Wang Y J, Fang X W. Enhancement and identification of new rice germplasms with low glutelin content. J Plant Genet Resour, 2015, 16: 158-162 (in Chinese with English abstract).
doi: 10.13430/j.cnki.jpgr.2015.01.024
[10] Lu Y, Wang J Y, Chen B, Mo S D, Lian L, Luo Y M, Ding D H, Ding Y H, Cao Q, Li Y C, Li Y, Liu G Z, Hou Q Q, Cheng T T, Wei J T, Zhang Y R, Chen G W, Song C, Hu Q, Sun S, Fan G Y, Wang Y T, Liu Z T, Song B A, Zhu J K, Li H R, Jiang L J. A donor-DNA-free CRISPR/Cas-based approach to gene knock-up in rice. Nat Plants, 2021, 7: 1445-1452.
doi: 10.1038/s41477-021-01019-4 pmid: 34782773
[11] Yang Y H, Shen Z Y, Li Y G, Xu C D, Xia H, Zhuang H, Sun S Y, Guo M, Yan C J. Rapid improvement of rice eating and cooking quality through gene editing toward glutelin as target. J Integr Plant Biol, 2022, 64: 1860-1865.
doi: 10.1111/jipb.13334
[12] Chen Z H, Du H X, Tao Y J, Xu Y, Wang F Q, Li B, Zhu Q H, Niu H B, Yang J. Efficient breeding of low glutelin content rice germplasm by simultaneous editing multiple glutelin genes via CRISPR/Cas9. Plant Sci, 2022, 324: 111449.
[13] Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant, 2015, 8: 1274-1284.
doi: 10.1016/j.molp.2015.04.007 pmid: 25917172
[14] Miao J, Guo D S, Zhang J Z, Huang Q P, Qin G J, Zhang X, Wan J M, Gu H Y, Qu L J. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res, 2013, 23: 1233-1236.
doi: 10.1038/cr.2013.123 pmid: 23999856
[15] Takemoto Y, Coughlan S J, Okita T W, Satoh H, Ogawa M, Kumamaru T. The rice mutant esp2 greatly accumulates the glutelin precursor and deletes the protein disulfide isomerase. Plant Physiol, 2002, 128: 1212-1222.
pmid: 11950970
[16] Zhu D W, Zheng X, Yu J, Chen M X, Li M, Shao Y F. Effects of starch molecular structure and physicochemical properties on eating quality of indica rice with similar apparent amylose and protein contents. Foods, 2023, 12: 3535.
[17] Lynch J M, Barbano D M. Kjeldahl nitrogen analysis as a reference method for protein determination in dairy products. J AOAC Int, 1999, 82: 1389-1398.
pmid: 10589493
[18] 张华瑜, 潘永东, 柳小宁, 包奇军. 利用近红外谷物分析仪快速检测青稞粗蛋白质含量研究. 甘肃农业科技, 2020, (1): 33-36.
Zhang H Y, Pan Y D, Liu X N, Bao Q J. Study on content of crude protein of highland barley by near infrared grain analyzer. Gansu Agric Sci Technol, 2020, (1): 33-36 (in Chinese with English abstract).
[19] 王情, 黄谊, 王未, 魏晓蝶, 钱鑫雅, 陈小举, 陈敏敏. 小茴香精油的提取工艺研究. 云南化工, 2023, 50(6): 17-19.
Wang Q, Huang Y, Wang W, Wei X D, Qian X Y, Chen X J, Chen M M. Study on extraction of essential oil from fennel. Yunnan Chem Techn, 2023, 50(6): 17-19 (in Chinese with English abstract).
[20] 赖红芳, 潘立卫, 韦雪梅, 覃国乐, 黄秀香. 柱前衍生-高效液相色谱法测定构树饲料中氨基酸的含量. 中国饲料, 2023, 1(20): 74-78.
Lai H F, Pan L W, Wei X M, Qin G L, Huang X X. Determination of amino acids in Broussonetia papyrifera feed by HPLC with precolumn derivatization. China Feed, 2023, 1(20): 74-78 (in Chinese with English abstract).
[21] 张诚信, 郭保卫, 唐健, 许方甫, 许轲, 胡雅杰, 邢志鹏, 张洪程, 戴其根, 霍中洋, 魏海燕, 黄丽芬, 陆阳, 唐闯, 戴琪星, 周苗, 孙君仪. 灌浆结实期低温弱光复合胁迫对稻米品质的影响. 作物学报, 2019, 45: 1208-1220.
doi: 10.3724/SP.J.1006.2019.82067
Zhang C X, Guo B W, Tang J, Xu F F, Xu K, Hu Y J, Xing Z P, Zhang H C, Dai Q G, Huo Z Y, Wei H Y, Huang L F, Lu Y, Tang C, Dai Q X, Zhou M, Sun J Y. Combined effects of low temperature and weak light at grain-filling stage on rice grain quality. Acta Agron Sin, 2019, 45: 1208-1220 (in Chinese with English abstract).
[22] GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2020, 395: 709-733.
doi: S0140-6736(20)30045-3 pmid: 32061315
[23] Kusaba M, Miyahara K, Iida S, Fukuoka H, Takano T, Sassa H, Nishimura M, Nishio T. Low glutelin content1: a dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. Plant Cell, 2003, 15: 1455-1467.
[24] Shewry P R, Halford N G. Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot, 2002, 53: 947-958.
doi: 10.1093/jexbot/53.370.947 pmid: 11912237
[25] Chandra D, Cho K, Pham H A, Lee J Y, Han O. Down-regulation of rice glutelin by CRISPR-Cas9 gene editing decreases carbohydrate content and grain weight and modulates synthesis of seed storage proteins during seed maturation. Int J Mol Sci, 2023, 24: 16941.
[26] Kawakatsu T, Hirose S, Yasuda H, Takaiwa F. Reducing rice seed storage protein accumulation leads to changes in nutrient quality and storage organelle formation. Plant Physiol, 2010, 154: 1842-1854.
doi: 10.1104/pp.110.164343 pmid: 20940349
[27] Song D U, Jang M S, Kim H W, Yoon H J, Chay K O, Joo Y E, Jung Y D, Yang S Y, Ahn B W. Gastroprotective effects of glutinous rice extract against ethanol-, indomethacin-, and stress-induced ulcers in rats. Chonnam Med J, 2014, 50: 6-14.
doi: 10.4068/cmj.2014.50.1.6 pmid: 24855601
[28] Li Z T, Han S X, Pu J Y, Wang Y Y, Jiang Y, Gao M J, Zhan X B, Xu S. In vitro digestion and fecal fermentation of low-gluten rice and its effect on the gut microbiota. Foods, 2023, 12: 855.
[29] 车阳, 程爽, 田晋钰, 陶钰, 刘秋员, 邢志鹏, 窦志, 徐强, 胡雅杰, 郭保卫, 魏海燕, 高辉, 张洪程. 不同稻田综合种养模式下水稻产量形成特点及其稻米品质和经济效益差异. 作物学报, 2021, 47: 1953-1965.
doi: 10.3724/SP.J.1006.2021.02068
Che Y, Cheng S, Tian J Y, Tao Y, Liu Q Y, Xing Z P, Dou Z, Xu Q, Hu Y J, Guo B W, Wei H Y, Gao H, Zhang H C. Characteristics and differences of rice yield, quality, and economic benefits under different modes of comprehensive planting-breeding in paddy fields. Acta Agron Sin, 2021, 47: 1953-1965 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2021.02068
[30] Li P, Chen Y H, Lu J, Zhang C Q, Liu Q Q, Li Q F. Genes and their molecular functions determining seed structure, components, and quality of rice. Rice, 2022, 15: 18.
doi: 10.1186/s12284-022-00562-8 pmid: 35303197
[31] Yang Y H, Guo M, Sun S Y, Zou Y L, Yin S Y, Liu Y N, Tang S Z, Gu M H, Yang Z F, Yan C J. Natural variation of OsGluA2 is involved in grain protein content regulation in rice. Nat Commun, 2019, 10: 1949.
[32] Zhou S R, Yin L L, Xue H W. Functional genomics based understanding of rice endosperm development. Curr Opin Plant Biol, 2013, 16: 236-246.
[33] Biselli C, Bagnaresi P, Cavalluzzo D, Urso S, Desiderio F, Orasen G, Gianinetti A, Righettini F, Gennaro M, Perrini R, Hassen M B, Sacchi G A, Cattivelli L, Valè G. Deep sequencing transcriptional fingerprinting of rice kernels for dissecting grain quality traits. BMC Genomics, 2015, 16: 1091.
doi: 10.1186/s12864-015-2321-7 pmid: 26689934
[1] JIA Shu-Han, HE Can, CHEN Min, LIU Jia-Xin, HU Wei-Min, HU Jin, GUAN Ya-Jing. Study on the quality differences of seeds with different pre-harvest sprouting levels and the grading of pre-harvest sprouting in hybrid rice [J]. Acta Agronomica Sinica, 2024, 50(9): 2310-2322.
[2] HU Li-Qin, XIAO Zheng-Wu, FANG Sheng-Liang, CAO Fang-Bo, CHEN Jia-Na, HUANG Min. Effects of planting season on digestive characteristics of high amylose content rice [J]. Acta Agronomica Sinica, 2024, 50(9): 2347-2357.
[3] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[4] SONG Zhi-Wen, ZHAO Lei, BI Jun-Guo, TANG Qing-Yun, WANG Guo-Dong, LI Yu-Xiang. Effects of nitrogen fertilization levels on matter accumulation and nutrient uptake in rice cultivar with different nitrogen efficiency under drip irrigation [J]. Acta Agronomica Sinica, 2024, 50(8): 2025-2038.
[5] SHAO Mei-Hong, ZHAO Ling-Ling, CHENG Chu, CHENG Si-Ming, ZHU Shuang-Bing, ZHAI Lai-Yuan, CHEN Kai, XU Jian-Long. Screening, evaluation, and utilization of low nitrogen tolerance for the selected introgression lines in rice with Huanghuazhan background [J]. Acta Agronomica Sinica, 2024, 50(8): 1907-1919.
[6] HE Dan-Dan, SHU Ya-Zhou, ZHOU Hai-Lian, WU Song-Guo, WEI Xiao-Shuang, YANG Ming-Chong, LI Bo, WU Zheng-Dan, HAN Shi-Jian, YANG Juan, WANG Ji-Bin, WANG Ling-Qiang. OsRPTA18 participated in the regulation of leaf inclination in rice [J]. Acta Agronomica Sinica, 2024, 50(8): 1934-1947.
[7] GUO Chun-Lin, LIN Man-Hong, CHEN Ting, CHEN Hong-Fei, LIN Wen-Fang, LIN Wen-Xiong. Evolution characteristics of rhizosphere microorganisms in response to ratoon rice senescence and underlying carry-over effect mechanism [J]. Acta Agronomica Sinica, 2024, 50(8): 2039-2052.
[8] FU Jing, MA Meng-Juan, ZHANG Qi-Fei, DUAN Ju-Qi, WANG Yue-Tao, WANG Fu-Hua, WANG Sheng-Xuan, BAI Tao, YIN Hai-Qing, WANG Ya. Effects of alternate wetting and drying irrigation and different nitrogen application levels on photosynthetic characteristics and nitrogen absorption and utilization of japonica rice [J]. Acta Agronomica Sinica, 2024, 50(7): 1787-1804.
[9] BI Jun-Ge, ZENG Zhan-Kui, LI Qiong, HONG Zhuang-Zhuang, YAN Qun-Xiang, ZHAO Yue, WANG Chun-Ping. QTL mapping and KASP marker development of grain quality-relating traits in two wheat RIL populations [J]. Acta Agronomica Sinica, 2024, 50(7): 1669-1683.
[10] CHENG Shuang, XING Zhi-Peng, TIAN Chao, HU Qun, WEI Hai-Yan, ZHANG Hong-Cheng. Effects of an integrated dryland tillage and soaking pattern on the reducing substances in rice field and early growth of machine transplanted rice [J]. Acta Agronomica Sinica, 2024, 50(7): 1762-1775.
[11] PEI Fa-Jing, ZHANG Wen-Xuan, ZHANG Xiao, WANG Xin-Yu, PENG Shao-Bing, MI Jia-Ming. Developing new rice lines with ultrashort-duration, long-grain, and fragrance [J]. Acta Agronomica Sinica, 2024, 50(7): 1684-1698.
[12] YU Quan-Xin, YANG Zong-Tao, ZHANG Hai, CHENG Guang-Yuan, JIAO Wen-Di, ZENG Kang, LUO Ting-Xu, HUANG Guo-Qiang, WANG Lu, XU Jing-Sheng. Interaction between calmodulin-like ScCML13 of sugarcane and SCMV movement protein P3N-PIPO [J]. Acta Agronomica Sinica, 2024, 50(7): 1855-1866.
[13] WANG Jia-Xiang, YU Xue-Ting, LI Meng-Tao, MAI Wei-Tao, CHEN Xin, WANG Wen-Quan. Preliminary study on the regulation of cassava plant type by MeLAZY1c gene [J]. Acta Agronomica Sinica, 2024, 50(6): 1514-1524.
[14] TANG Qing-Yun, YANG Jing-Jing, ZHAO Lei, SONG Zhi-Wen, WANG Guo-Dong, LI Yu-Xiang. Effect of nitrogen application on morphological conformation and fractal characteristics of drip irrigated rice roots [J]. Acta Agronomica Sinica, 2024, 50(6): 1540-1553.
[15] ZHANG Xiao-Fang, ZHU Qi, HUA Yun-Yan, JIA Li-Hui-Ying, QIU Shi-You, CHEN Yu-Jie, MA Tao, DING Wo-Na. Screening and validation of OsCYP22 interacting proteins in rice [J]. Acta Agronomica Sinica, 2024, 50(6): 1628-1634.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!