Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Development of functional markers of wheat grain size related gene TaCYP78A17

ZHANG Tian-Xing1,2,LI Meng1,2,WU Lin-Nan2,ZHAO Hui-Xian2,HU Sheng-Wu1,*,MA Meng2,*   

  1. 1 Collage of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China; 2 College of Life Science, Northwest A&F University, Yangling 712100, Shaanxi, China
  • Received:2024-02-05 Revised:2024-08-15 Accepted:2024-08-15 Published:2024-09-02
  • Supported by:
    This research was supported by the Key Research and Development Project of Shaanxi Province (2021NY-079) and the National Natural Science Foundation of China (32072059, 32072003)

Abstract:

Grain size is a crucial factor influencing wheat yield. To develop functional markers related to wheat grain size, we cloned a potential grain size-related gene, TaCYP78A17, and conducted systematic evolution, expression pattern, allelic variation, and functional marker development studies. The results revealed that TaCYP78A17 belongs to the wheat cytochrome P450 CYP78A family and is highly expressed in wheat spikes and grains. Six SNPs and two InDels were identified in the TaCYP78A17-Ap among thirty common wheat varieties. A functional marker, InDel-A17, was developed based on InDel 4 and InDel 8, classifying the thirty wheat varieties into three haplotypes: TaCYP78A17-Ap-HapI, TaCYP78A17-Ap-HapII, and TaCYP78A17-Ap-HapIII. This functional marker was validated in 323 wheat varieties, demonstrating its ability to effectively distinguish the three haplotypes. Phenotypic investigations indicated that wheat with the TaCYP78A17-Ap-HapI haplotype exhibited significantly higher thousand-grain weight and larger seed size compared to those with TaCYP78A17-Ap-HapII or TaCYP78A17-Ap-HapIII. These findings hold promise for the application of molecular marker-assisted selection in wheat breeding.

Key words: wheat, grain size, TaCYP78A17, functional marker

[1] 赵广才, 常旭虹, 王德梅, 陶志强王艳杰杨玉双朱英杰. 小麦生产概况及其发展. 作物杂志, 2018, (4): 17.

Zhao G C, Chang X H, Wang D M, Tao Z Q, Wang Y J, Yang Y S, Zhu Y J. General situation and development of wheat production. Crops2018(4): 17 (in Chinese with English abstract).

[2] Hanif M, Gao F M, Liu J D, Wen W E, Zhang Y J, Rasheed A, Xia X C, He Z H, Cao S H. TaTGW6-A1, an ortholog of rice TGW6, is associated with grain weight and yield in bread wheat. Mol Breed, 2015, 36: 1.

[3] Su Z Q, Hao C Y, Wang L F, Dong Y C, Zhang X Y. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2011, 122: 211–223.

[4] Zhang J N, Zhang Z H, Zhang R J, Yang C F, Zhang X B, Chang S Y, Chen Q, Rossi V, Zhao L, Xiao J, Xin M M, Du J K, Guo W L, Hu Z R, Liu J, Peng H R, Ni Z F, Sun Q X, Yao Y Y. Type I MADS-box transcription factor TaMADS-GS regulates grain size by stabilizing cytokinin signalling during endosperm cellularization in wheat. Plant Biotechnol J, 2024, 22: 200‒215.

[5] Jia M L, Li Y N, Wang Z Y, Tao S, Sun G L, Kong X C, Wang K, Ye X G, Liu S S, Geng S F, Mao L, Li A L. TaIAA21 represses TaARF25-mediated expression of TaERFs required for grain size and weight development in wheat. Plant J, 2021, 108: 1754‒1767.

[6] Liu Y Y, Chen J, Yin C B, Wang Z Y, Wu H, Shen K C, Zhang Z L, Kang L P, Xu S, Bi A Y, Zhao X B, Xu D X, He Z H, Zhang X Y, Hao C Y, Wu J H, Gong Y, Yu X C, Sun Z W, Ye B T, Liu D N, Zhang L L, Shen L P, Hao Y F, Ma Y Z, Lu F, Guo Z F. A high-resolution genotype-phenotype map identifies the TaSPL17 controlling grain number and size in wheat. Genome Biol, 2023, 24: 196.

[7] Niaz M, Zhang L R, Lv G G, Hu H T, Yang X, Cheng Y Z, Zheng Y T, Zhang B Y, Yan X N, Htun A, Zhao L, Sun C W, Zhang N, Ren Y, Chen F. Identification of TaGL1-B1 gene controlling grain length through regulation of jasmonic acid in common wheat. Plant Biotechnol J, 2023, 21: 979–989.

[8] Adamski N M, Anastasiou E, Eriksson S, O'Neill C M, Lenhard M. Local maternal control of seed size by KLUH/CYP78A5-dependent growth signaling. Proc Natl Acad Sci USA, 2009, 106: 20115‒20120.

[9] Anastasiou E, Kenz S, Gerstung M, MacLean D, Timmer J, Fleck C, Lenhard M. Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling. Dev Cell, 2007, 13: 843‒856.

[10] Nagasawa N, Hibara K I, Heppard E P, Vander V K A, Luck S, Beatty M, Nagato Y, Sakai H. Giant embryo encodes CYP78A13, required for proper size balance between embryo and endosperm in rice. Plant J, 2013, 75: 592‒605.

[11] Guo L J, Ma M, Wu L N, Zhou M D, Li M Y, Wu B W, Li L, Liu X L, Jing R L, Chen W, Zhao H X. Modified expression of TaCYP78A5 enhances grain weight with yield potential by accumulating auxin in wheat (Triticum aestivum L.). Plant Biotechnol J, 2022, 20: 168‒182.

[12] 马猛. 小麦穗部病毒诱导基因沉默体系的建立及籽粒大小相关基因TaCYP78A3TaCYP78A5的功能研究. 西北农林科技大学博士学位论文, 陕西杨凌, 2015.

Ma M. Establishment of Wheat Ear Virus-Induced Gene Silencing System and Function of Grain Size Related Genes TaCYP78A3 and TaCYP78A5. PhD Dissertation of Northwest A & F University, Yangling, Shaanxi, China, 2015 (in Chinese with English abstract). 

[13] 李梦瑶. 小麦驯化和育种过程中TaCYP78As-A调控产量性状的多效性和机理研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2022.

Li M Y. Study on Pleomorphy and Mechanism of TaCYP78As-A Regulating Yield Traits During Wheat Domestication and Breeding. MS Thesis of Northwest A& F University, Yangling, Shaanxi, China, 2022 (in Chinese with English abstract). 

[14] Ma M, Wang Q, Li Z J, Cheng H H, Li Z J, Liu X L, Song W N, Appels R, Zhao H X. Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.), affects seed size. Plant J, 2015, 83: 312‒325.

[15] Zhou M D, Peng H X, Wu L N, Li M Y, Guo L J, Chen H C, Wu B W, Liu X L, Zhao H X, Li W Q, Ma M. TaKLU plays as a time regulator of leaf growth via auxin signaling. Int J Mol Sci, 2022, 23: 4219.

[16] Liu Y N, He Z H, Appels R, Xia X C. Functional markers in wheat: current status and future prospects. Theor Appl Genet, 2012, 125: 1‒10.

[17] 潘广磊, 关媛, 党冬冬, 王慧, 于典司, 顾炜, 秦涛, 姜凌, 高文伟, 郑洪建. 甜、糯玉米高叶酸基因型的CAPS标记开发. 分子植物育种, 202119: 29702976.

Pan G L, Guan Y, Dang D D, Wang H, Yu D S, Gu W, Qin T,Jiang L, Gao W W, Zheng H J. Development of CAPS markers for high folate genotype in sweet and waxy maize. Mol Plant Breed202119: 29702976 (in Chinese with English abstract).

[18] Wang S S, Yan X F, Wang Y Y, Liu H M, Cui D Q, Chen F. Haplotypes of the TaGS5-A1 gene are associated with thousand-kernel weight in Chinese bread wheat. Front Plant Sci, 2016, 7: 783.

[19] Sharma J S, McCallum B D, Hiebert C W. Development of single nucleotide polymorphism‐based functional molecular markers from the Lr22a gene sequence in wheat (Triticum aestivum). Plant Breed, 2022, 141: 204‒211.

[20] 闫庆祥, 黄东益, 李开绵, 叶剑秋. 利用改良CTAB法提取木薯基因组DNA. 中国农学通报, 2010, 26(4): 3032.

Yan Q X, Huang D Y, Li K M, Ye J Q. Genomic DNA extraction in cassava by modified CTAB method. Chin Agric Sci Bull2010, 26(4): 3032 (in Chinese with English abstract).

[21] Chi Q, Guo L J, Ma M, Zhang L J, Mao H D, Wu B W, Liu X L, Ramirez-Gonzalez R H, Uauy C, Appels R, Zhao H X. Global transcriptome analysis uncovers the gene co-expression regulation network and key genes involved in grain development of wheat (Triticum aestivum L.). Funct Integr Genomics, 2019, 19: 853‒866.

[22] Lu J, Chang C, Zhang H P, Wang S X, Sun G L, Xiao S H, Ma C X. Identification of a novel allele of TaCKX6a02 associated with grain size, filling rate and weight of common wheat. PLoS One, 2015, 10: e0144765.

[23] Wang J Y, Wang R T, Mao X G, Zhang J L, Liu Y N, Xie Q, Yang X Y, Chang X P, Li C N, Zhang X Y, Jing R L. Ring finger ubiquitin E3 ligase gene TaSDIR1-4A contributes to determination of grain size in common wheat. J Exp Bot, 2020, 71: 5377‒5388.

[24] 王沙沙, 裴星旭, 黄超, 汪庆昌, 陈锋, 孙建国, 晁岳恩. 小麦TaGS2基因等位变异与粒重之间的关系分析. 植物遗传资源学报, 2022, 23: 14381445.

Wang S S, Pei X X, Huang C, Wang Q C, Chen F, Sun J G, Chao Y E. Analysis of the relationship between allelic variation of TaGS2 gene and grain weight in wheat. J Plant Genet Resourc, 2022, 23: 14381445 (in Chinese with English abstract).

[25] Zhou C L, Lin Q B, Ren Y L, Lan J, Miao R, Feng M, Wang X, Liu X, Zhang S Z, Pan T, Wang J C, Luo S, Qian J S, Luo W F, Mou C L, Nguyen T, Cheng Z J, Zhang X, Lei C L, Zhu S S, Guo X P, Wang J, Zhao Z C, Liu S J, Jiang L, Wan J M. A CYP78As-small grain4-coat protein complex Ⅱ pathway promotes grain size in rice. Plant Cell, 2023, 35: 4325‒4346.

[26] Wang J W, Schwab R, Czech B, Mica E, Weigel D. Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell, 2008, 20: 1231‒1243.

[27] Chakrabarti M, Zhang N, Sauvage C, Muños S, Blanca J, Cañizares J, Diez M J, Schneider R, Mazourek M, McClead J, Causse M, vander K E. A cytochrome P450 regulates a domestication trait in cultivated tomato. Proc Natl Acad Sci USA, 2013, 110: 17125‒17130.

[28] Monforte A J, Diaz A, Caño-Delgado A, Vander K E. The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. J Exp Bot, 2014, 65: 4625‒4637. 

[1] YU Hai-Long, WU Wen-Xue, PEI Xing-Xu, LIU Xiao-Yu, DENG Gen-Wang, LI Xi-Chen, ZHEN Shi-Cong, WANG Jun-Sen, ZHAO Yong-Tao, XU Hai-Xia, CHENG Xi-Yong, ZHAN Ke-Hui. Transcriptome sequencing and genome-wide association study of wheat stem traits [J]. Acta Agronomica Sinica, 2024, 50(9): 2187-2206.
[2] HUANG Lin-Yu, ZHANG Xiao-Yue, LI Hao, DENG Mei, KANG Hou-Yang, WEI Yu-Ming, WANG Ji-Rui, JIANG Yun-Feng, CHEN Guo-Yue. Mapping of QTL for adult plant stripe rust resistance genes in a Sichuan wheat landrace and the evaluation of their breeding effects [J]. Acta Agronomica Sinica, 2024, 50(9): 2167-2178.
[3] GAO Wei-Dong, HU Chen-Zhen, ZHANG Long, ZHANG Yan-Yan, ZHANG Pei-Pei, YANG De-Long, CHEN Tao. Cloning and functional analysis of ubiquitin-conjugating enzymes TaUBC16 gene in wheat [J]. Acta Agronomica Sinica, 2024, 50(8): 1971-1988.
[4] LIANG Jin-Yu, YIN Jia-De, HOU Hui-Zhi, XUE Yun-Gui, GUO Hong-Juan, WANG Shuo, ZHAO Qi-Zhi, ZHANG Xu-Cheng, XIE Jun-Hong. Effects of deep fertilization on ecological stoichiometric characteristics and photosynthetic carbon assimilation of flag leaves of spring wheat under drought conditions [J]. Acta Agronomica Sinica, 2024, 50(8): 2078-2090.
[5] CHEN Juan, YANG Ting-Ting, YAN Su-Hui, YONG Yu-Dong, ZHANG Shi-Ya, LI Wen-Yang. Effects of waterlogging at jointing stage on starch particle size distribution and pasting properties of soft wheat [J]. Acta Agronomica Sinica, 2024, 50(7): 1877-1884.
[6] FANG Yu-Hui, QI Xue-Li, LI Yan, ZHANG Yu, PENG Chao-Jun, HUA Xia, CHEN Yan-Yan, GUO Rui, HU Lin, XU Wei-Gang. Effects of high light stress on photosynthesis and physiological characteristics of wheat with maize C4-type ZmPEPC+ZmPPDK gene [J]. Acta Agronomica Sinica, 2024, 50(7): 1647-1657.
[7] BI Jun-Ge, ZENG Zhan-Kui, LI Qiong, HONG Zhuang-Zhuang, YAN Qun-Xiang, ZHAO Yue, WANG Chun-Ping. QTL mapping and KASP marker development of grain quality-relating traits in two wheat RIL populations [J]. Acta Agronomica Sinica, 2024, 50(7): 1669-1683.
[8] ZHANG Zhi-Yuan, ZHOU Jie-Guang, LIU Jia-Jun, WANG Su-Rong, WANG Tong-Zhu, ZHAO Cong-Hao, YOU Jia-Ning, DING Pu-Yang, TANG Hua-Ping, LIU Yan-Lin, JIANG Qian-Tao, CHEN Guo-Yue, WEI Yu-Ming, MA Jian. Identification and verification of low-tillering QTL based on a new model of genetic analysis in wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1373-1383.
[9] ZHU Ming-Kun, BAO Jun-Hao, PANG Jing-Lu, ZHOU Shi-Qi, FANG Zhong-Yan, ZHENG Wen, ZHANG Ya-Zhou, WU Dan-Dan. Generation and identification of a resistance to stripe rust perennial intergeneric hybrid F1 between Roegneria ciliaris and common wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1406-1420.
[10] QIAO Zhi-Xin, ZHANG Jie-Dao, WANG Yu, GUO Qi-Fang, LIU Yan-Jing, CHEN Rui, HU Wen-Hao, SUN Ai-Qing. Difference in germination characteristics of different winter wheat cultivars under drought stress [J]. Acta Agronomica Sinica, 2024, 50(6): 1568-1583.
[11] MA Yan-Ming, LOU Hong-Yao, WANG Wei, SUN Na, YAN Guo-Rong, ZHANG Sheng-Jun, LIU Jie, NI Zhong-Fu, XU Lin. Genetic difference and genome association analysis of grain quality traits in Xinjiang winter wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1394-1405.
[12] CHEN Jia-Ting, BAI Xin, GU Yu-Jie, ZHANG Xiao-Wen, GUO Hui-Juan, CHANG Li-Fang, CHEN Fang, ZHANG Shu-Wei, ZHANG Xiao-Jun, LI Xin, FENG Rui-Yun, CHANG Zhi-Jian, QIAO Lin-Yi. Applicability evaluation of screen methods to identify salt tolerance in wheat at germination and seedling stages [J]. Acta Agronomica Sinica, 2024, 50(5): 1193-1206.
[13] LU Ru-Hua, WANG Wen-Xuan, CAO Qiang, TIAN Yong-Chao, ZHU Yan, CAO Wei-Xing, LIU Xiao-Jun. Research on the effects of nitrogen fertilizer and rice straw return on wheat yield and N2O emission and recommended fertilization under rice-wheat rotation pattern [J]. Acta Agronomica Sinica, 2024, 50(5): 1300-1311.
[14] XU Nai-Yin, JIN Shi-Qiao, JIN Fang, LIU Li-Hua, XU Jian-Wen, LIU Feng-Ze, REN Xue-Zhen, SUN Quan, XU Xu, PANG Bin-Shuang. Genetic similarity and its detection accuracy analysis of wheat varieties based on SNP markers [J]. Acta Agronomica Sinica, 2024, 50(4): 887-896.
[15] HUANG Hong-Sheng, ZHANG Xin-Yue, JU Hui, HAN Xue. Spectral characteristics of winter wheat canopy and estimation of aboveground biomass under elevated atmospheric CO2 concentration [J]. Acta Agronomica Sinica, 2024, 50(4): 991-1003.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!