Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (12): 3025-3034.doi: 10.3724/SP.J.1006.2024.41009

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development of functional markers of wheat grain size related gene TaCYP78A17

ZHANG Tian-Xing1,2(), LI Meng1,2, WU Lin-Nan2, ZHAO Hui-Xian2, HU Sheng-Wu1,*(), MA Meng2,*()   

  1. 1Collage of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
    2College of Life Science, Northwest A&F University, Yangling 712100, Shaanxi, China
  • Received:2024-02-05 Accepted:2024-08-15 Online:2024-12-12 Published:2024-09-02
  • Contact: *E-mail: swhu83251@nwafu.edu.cn; E-mail: mengma5@nwsuaf.edu.cn
  • Supported by:
    Key Research and Development Project of Shaanxi Province(2021NY-079);National Natural Science Foundation of China(32072059);National Natural Science Foundation of China(32072003)

Abstract:

Grain size is a crucial factor influencing wheat yield. To develop functional markers related to wheat grain size, we cloned a potential grain size-related gene, TaCYP78A17, and conducted systematic evolution, expression pattern, allelic variation, and functional marker development studies. The results revealed that TaCYP78A17 belongs to the wheat cytochrome P450 CYP78A family and is highly expressed in wheat spikes and grains. Six SNPs and two InDels were identified in the TaCYP78A17-Ap among thirty common wheat varieties. A functional marker, InDel-A17, was developed based on InDel 4 and InDel 8, classifying the thirty wheat varieties into three haplotypes: TaCYP78A17-Ap-HapI, TaCYP78A17-Ap-HapII, and TaCYP78A17-Ap-HapIII. This functional marker was validated in 323 wheat varieties, demonstrating its ability to effectively distinguish the three haplotypes. Phenotypic investigations indicated that wheat with the TaCYP78A17-Ap-HapI haplotype exhibited significantly higher thousand-grain weight and larger seed size compared to those with TaCYP78A17-Ap-HapII or TaCYP78A17-Ap-HapIII. These findings hold promise for the application of molecular marker-assisted selection in wheat breeding.

Key words: wheat, grain size, TaCYP78A17, functional marker

Table 1

Grain weight information of thirty wheat varieties"

大粒小麦品种名称
Variety names of large-grain wheat
百粒重
100-grain weight (g)
小粒小麦品种名称
Variety names of small-grain wheat
百粒重
100-grain weight (g)
西农981 Xinong 981 5.29 西农2000 Xinong 2000 4.03
陕512 Shaan 512 5.34 陕159 Shaan 159 4.36
陕优225-12 Shaanyou 225-12 5.51 US50 3.99
中优9507 Zhongyou 9507 5.73 早优504 Zaoyou 504 4.15
荔高6号Ligao 6 4.90 Suneca 3.86
郑麦9405 Zhengmai 9405 5.42 Bodallin 3.61
US34 4.92 Ciano 4.16
小偃6号Xiaoyan 6 4.84 紫麦 Zimai 4.14
闫麦8911 Yanmai 8911 4.79 高优503 Gaoyou 503 4.30
晋麦47 Jinmai 47 5.39 小偃81 Xiaoyan 81 4.20
长武134 Changwu 134 5.21 矮早781 Aizao 781 4.11
郑麦9023 Zhengmai 9023 5.39 京771 Jing 771 4.53
西农1043 Xinong 1043 6.35 US83 4.01
兰考大粒Lankaodali 4.96 小偃22 Xiaoyan 22 4.12
绵阳19 Mianyang 19 5.76 普冰143 Pubing 143 4.59

Table 2

Primers used for TaCYP78A17 amplification"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
引物用途
Function of primers
TaCYP78A17-Ap-F
TaCYP78A17-Ap-R
TGCTGATTCGTGTACAATGGGCTAGGATCTT
GCCGGAGCGAAGATTCACCG
TaCYP78A17-A启动子扩增
Amplification of TaCYP78A17-A promoter
TaCYP78A17-Bp-F
TaCYP78A17-Bp-R
TGCAGTAGCTGCCTTAGAGCATCTTCAACAG
GAGTCGCCTTGGATTCTTCGCTT
TaCYP78A17-B启动子扩增
Amplification of TaCYP78A17-B promoter
TaCYP78A17-Dp-F
TaCYP78A17-Dp-R
CTGGTGGGAAAGACGTAAATTAGTGCATAAGGA
AGACCGGAGCGAAGATTCACCGT
TaCYP78A17-D启动子扩增
Amplification of TaCYP78A17-D promoter
TaCYP78A17-A-F
TaCYP78A17-A-R
TCCAGAGCTGGTGGGTGCTTCCCCTG
TCGTGAAGCACGGGGTCACGTCACG
TaCYP78A17-A编码区扩增
Amplification of TaCYP78A17-A coding region
TaCYP78A17-B-F
TaCYP78A17-B-R
AGCACACACCCCACCAAAGTCCGG
AGCACGGGGTCACGGGCTACGAG
TaCYP78A17-B编码区扩增
Amplification of TaCYP78A17-B coding region
TaCYP78A17-D-F
TaCYP78A17-D-R
GTAGATCATATATGCGAGTGAGTTCCTAGG
CGTACACCATGTGGAACCTCACTG
TaCYP78A17-D编码区扩增
Amplification of TaCYP78A17-D coding region

Fig. 1

Amplification of TaCYP78A17-A/B/D coding regions and promoters TaCYP78A17-Ap, TaCYP78A17-Bp, TaCYP78A17-Dp: promoters of TaCYP78A17-A, TaCYP78A17-B and TaCYP78A17-D genes; TaCYP78A17-A, TaCYP78A17-B, TaCYP78A17-D: coding regions of TaCYP78A17-A, TaCYP78A17-B, and TaCYP78A17-D genes."

Fig. 2

Conserved domain and evolutionary analysis of TaCYP78A17 (a): TACYP78A17-A/B/D conserved domain analysis, yellow for hydrophobic region, blue for oxygen binding site, and red for heme binding site. (b): phylogenetic tree analysis of TaCYP78A17 (protein sequence derived from TaCYP78A17-A) and CYP78A family proteins in major plants."

Fig. 3

TaCYP78A17 gene expression pattern S: stem; L: leaf; FL: flag leaf; YS5: 5 mm young panicles; YS15: 15 mm young panicles; GR5: grain 5 days post-flowering; GR10: grain 10 days post-flowering; GR15: grain 15 days post-flowering; GR20: grain 20 days post-flowering."

Fig. 4

Analysis of nucleotide polymorphism and haplotypes in TaCYP78A17-Ap (a): schematic illustration of the structure and polymorphic sites of the TaCYP78A17-A promoter, 1-8 represent allelic variation sites (SNP/InDel). (b): analysis of haplotypes and allelic variations in TaCYP78A17-Ap."

Fig. 5

Development of InDel molecular marker for TaCYP78A17-Ap"

Table 3

Genotypes of thirty wheat accessions"

小麦品种信息
Wheat accessions
TaCYP78A17序列基因型
Genotypes of TaCYP78A17
小麦品种信息
Wheat accessions
TaCYP78A17序列基因型
Genotypes of TaCYP78A17
西农981 Xinong 981 TaCYP78A17-Ap-HapI 西农2000 Xinong 2000 TaCYP78A17-Ap-HapI
陕512 Shaan 512 TaCYP78A17-Ap-HapI 陕159 Shaan 159 TaCYP78A17-Ap-HapI
陕优225-12 Shaanyou 225-12 TaCYP78A17-Ap-HapI US50 TaCYP78A17-Ap-HapIII
中优9507 Zhongyou 9507 TaCYP78A17-Ap-HapIII 早优504 Zaoyou 504 TaCYP78A17-Ap-HapI
荔高6号Ligao 6 TaCYP78A17-Ap-HapII Suneca TaCYP78A17-Ap-HapII
郑麦9405 Zhengmai 9405 TaCYP78A17-Ap-HapIII Bodallin TaCYP78A17-Ap-HapII
US34 TaCYP78A17-Ap-HapII Ciano TaCYP78A17-Ap-HapII
小偃6号Xiaoyan 6 TaCYP78A17-Ap-HapI 紫麦 Zimai TaCYP78A17-Ap-HapI
闫麦8911 Yanmai 8911 TaCYP78A17-Ap-HapIII 高优503 Gaoyou 503 TaCYP78A17-Ap-HapIII
晋麦47 Jinmai 47 TaCYP78A17-Ap-HapI 小偃81 Xiaoyan 81 TaCYP78A17-Ap-HapIII
长武134 Changwu 134 TaCYP78A17-Ap-HapI 矮早781 Aizao 781 TaCYP78A17-Ap-HapII
郑麦9023 Zhengmai 9023 TaCYP78A17-Ap-HapII 京771 Jing 771 TaCYP78A17-Ap-HapIII
西农1043 Xinong 1043 TaCYP78A17-Ap-HapI US83 TaCYP78A17-Ap-HapIII
兰考大粒 Lankaodali TaCYP78A17-Ap-HapI 小偃22 Xiaoyan 22 TaCYP78A17-Ap-HapIII
绵阳19 Mianyang 19 TaCYP78A17-Ap-HapI 普冰143 Pubing 143 TaCYP78A17-Ap-HapIII

Fig. 6

Distribution of three haplotypes of TaCYP78A17-Ap in a natural wheat population and their effects on grain weight (a): proportions of population materials with three haplotypes (TaCYP78A17-Ap-HapI, TaCYP78A17-Ap-HapII, and TaCYP78A17-Ap-HapIII) of TaCYP78A17-Ap in 323 modern wheat cultivars; Miss: wheat samples for which the haplotype could not be identified. (b): statistical analysis of thousand grain weight (n = 10) for population materials with TaCYP78A17-Ap-HapI, TaCYP78A17-Ap-HapII and TaCYP78A17- Ap-HapIII haplotypes. (c): statistical analysis of grain length, width, and thickness (n = 60) for population materials with TaCYP78A17-Ap- HapI, TaCYP78A17-Ap-HapII and TaCYP78A17-Ap-HapIII haplotypes. Data are shown as mean ±SE; significance of differences was performed using t-test (*: P < 0.05, **: P < 0.01)."

[1] 赵广才, 常旭虹, 王德梅, 陶志强, 王艳杰, 杨玉双, 朱英杰. 小麦生产概况及其发展. 作物杂志, 2018, (4): 1-7.
Zhao G C, Chang X H, Wang D M, Tao Z Q, Wang Y J, Yang Y S, Zhu Y J. General situation and development of wheat production. Crops, 2018, (4): 1-7 (in Chinese with English abstract).
[2] Hanif M, Gao F M, Liu J D, Wen W E, Zhang Y J, Rasheed A, Xia X C, He Z H, Cao S H. TaTGW6-A1, an ortholog of rice TGW6, is associated with grain weight and yield in bread wheat. Mol Breed, 2015, 36: 1.
[3] Su Z Q, Hao C Y, Wang L F, Dong Y C, Zhang X Y. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2011, 122: 211-223.
[4] Zhang J N, Zhang Z H, Zhang R J, Yang C F, Zhang X B, Chang S Y, Chen Q, Rossi V, Zhao L, Xiao J, Xin M M, Du J K, Guo W L, Hu Z R, Liu J, Peng H R, Ni Z F, Sun Q X, Yao Y Y. Type I MADS-box transcription factor TaMADS-GS regulates grain size by stabilizing cytokinin signalling during endosperm cellularization in wheat. Plant Biotechnol J, 2024, 22: 200-215.
[5] Jia M L, Li Y N, Wang Z Y, Tao S, Sun G L, Kong X C, Wang K, Ye X G, Liu S S, Geng S F, Mao L, Li A L. TaIAA21 represses TaARF25-mediated expression of TaERFs required for grain size and weight development in wheat. Plant J, 2021, 108: 1754-1767.
[6] Liu Y Y, Chen J, Yin C B, Wang Z Y, Wu H, Shen K C, Zhang Z L, Kang L P, Xu S, Bi A Y, Zhao X B, Xu D X, He Z H, Zhang X Y, Hao C Y, Wu J H, Gong Y, Yu X C, Sun Z W, Ye B T, Liu D N, Zhang L L, Shen L P, Hao Y F, Ma Y Z, Lu F, Guo Z F. A high-resolution genotype-phenotype map identifies the TaSPL17 controlling grain number and size in wheat. Genome Biol, 2023, 24: 196.
[7] Niaz M, Zhang L R, Lv G G, Hu H T, Yang X, Cheng Y Z, Zheng Y T, Zhang B Y, Yan X N, Htun A, Zhao L, Sun C W, Zhang N, Ren Y, Chen F. Identification of TaGL1-B1 gene controlling grain length through regulation of jasmonic acid in common wheat. Plant Biotechnol J, 2023, 21: 979-989.
[8] Adamski N M, Anastasiou E, Eriksson S, O’Neill C M, Lenhard M. Local maternal control of seed size by KLUH/CYP78A5- dependent growth signaling. Proc Natl Acad Sci USA, 2009, 106: 20115-20120.
[9] Anastasiou E, Kenz S, Gerstung M, MacLean D, Timmer J, Fleck C, Lenhard M. Control of plant organ size by KLUH/CYP78A5- dependent intercellular signaling. Dev Cell, 2007, 13: 843-856.
pmid: 18061566
[10] Nagasawa N, Hibara K I, Heppard E P, Vander velden K A, Luck S, Beatty M, Nagato Y, Sakai H. GIANT EMBRYO encodes CYP78A13, required for proper size balance between embryo and endosperm in rice. Plant J, 2013, 75: 592-605.
[11] Guo L J, Ma M, Wu L N, Zhou M D, Li M Y, Wu B W, Li L, Liu X L, Jing R L, Chen W, Zhao H X. Modified expression of TaCYP78A5 enhances grain weight with yield potential by accumulating auxin in wheat (Triticum aestivum L.). Plant Biotechnol J, 2022, 20: 168-182.
[12] 马猛. 小麦穗部病毒诱导基因沉默体系的建立及籽粒大小相关基因TaCYP78A3TaCYP78A5的功能研究. 西北农林科技大学博士学位论文, 陕西杨凌, 2015.
Ma M. Establishment of Wheat Ear Virus-Induced Gene Silencing System and Function of Grain Size Related Genes TaCYP78A3 and TaCYP78A5. PhD Dissertation of Northwest A & F University, Yangling, Shaanxi, China, 2015 (in Chinese with English abstract).
[13] 李梦瑶. 小麦驯化和育种过程中TaCYP78As-A调控产量性状的多效性和机理研究. 西北农林科技大学硕士学位论文,陕西杨凌, 2022.
Li M Y. Study on Pleomorphy and Mechanism of TaCYP78As-A Regulating Yield Traits During Wheat Domestication and Breeding. MS Thesis of Northwest A& F University, Yangling, Shaanxi, China, 2022 (in Chinese with English abstract).
[14] Ma M, Wang Q, Li Z J, Cheng H H, Li Z J, Liu X L, Song W N, Appels R, Zhao H X. Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.), affects seed size. Plant J, 2015, 83: 312-325.
[15] Zhou M D, Peng H X, Wu L N, Li M Y, Guo L J, Chen H C, Wu B W, Liu X L, Zhao H X, Li W Q, Ma M. TaKLU plays as a time regulator of leaf growth via auxin signaling. Int J Mol Sci, 2022, 23: 4219.
[16] Liu Y N, He Z H, Appels R, Xia X C. Functional markers in wheat: current status and future prospects. Theor Appl Genet, 2012, 125: 1-10.
doi: 10.1007/s00122-012-1829-3 pmid: 22366867
[17] 潘广磊, 关媛, 党冬冬, 王慧, 于典司, 顾炜, 秦涛, 姜凌, 高文伟, 郑洪建. 甜、糯玉米高叶酸基因型的CAPS标记开发. 分子植物育种, 2021, 19: 2970-2976.
Pan G L, Guan Y, Dang D D, Wang H, Yu D S, Gu W, Qin T, Jiang L, Gao W W, Zheng H J. Development of CAPS markers for high folate genotype in sweet and waxy maize. Mol Plant Breed, 2021, 19: 2970-2976 (in Chinese with English abstract).
[18] Wang S S, Yan X F, Wang Y Y, Liu H M, Cui D Q, Chen F. Haplotypes of the TaGS5-A1 gene are associated with thousand-kernel weight in Chinese bread wheat. Front Plant Sci, 2016, 7: 783.
[19] Sharma J S, McCallum B D, Hiebert C W. Development of single nucleotide polymorphism-based functional molecular markers from the Lr22a gene sequence in wheat (Triticum aestivum). Plant Breed, 2022, 141: 204-211.
[20] 闫庆祥, 黄东益, 李开绵, 叶剑秋. 利用改良CTAB法提取木薯基因组DNA. 中国农学通报, 2010, 26(4): 30-32.
Yan Q X, Huang D Y, Li K M, Ye J Q. Genomic DNA extraction in cassava by modified CTAB method. Chin Agric Sci Bull, 2010, 26(4): 30-32 (in Chinese with English abstract).
doi: 10.11924/j.issn.1000-6850.2009-2476
[21] Chi Q, Guo L J, Ma M, Zhang L J, Mao H D, Wu B W, Liu X L, Ramirez-Gonzalez R H, Uauy C, Appels R, Zhao H X. Global transcriptome analysis uncovers the gene co-expression regulation network and key genes involved in grain development of wheat (Triticum aestivum L.). Funct Integr Genomics, 2019, 19: 853-866.
[22] Lu J, Chang C, Zhang H P, Wang S X, Sun G L, Xiao S H, Ma C X. Identification of a novel allele of TaCKX6a02 associated with grain size, filling rate and weight of common wheat. PLoS One, 2015, 10: e0144765.
[23] Wang J Y, Wang R T, Mao X G, Zhang J L, Liu Y N, Xie Q, Yang X Y, Chang X P, Li C N, Zhang X Y, Jing R L. RING finger ubiquitin E3 ligase gene TaSDIR1-4A contributes to determination of grain size in common wheat. J Exp Bot, 2020, 71: 5377-5388.
[24] 王沙沙, 裴星旭, 黄超, 汪庆昌, 陈锋, 孙建国, 晁岳恩. 小麦TaGS2基因等位变异与粒重之间的关系分析. 植物遗传资源学报, 2022, 23: 1438-1445.
doi: 10.13430/j.cnki.jpgr.20220128003
Wang S S, Pei X X, Huang C, Wang Q C, Chen F, Sun J G, Chao Y E. Analysis of the relationship between allelic variation of TaGS2 gene and grain weight in wheat. J Plant Genet Resourc, 2022, 23: 1438-1445 (in Chinese with English abstract).
[25] Zhou C L, Lin Q B, Ren Y L, Lan J, Miao R, Feng M, Wang X, Liu X, Zhang S Z, Pan T, Wang J C, Luo S, Qian J S, Luo W F, Mou C L, Nguyen T, Cheng Z J, Zhang X, Lei C L, Zhu S S, Guo X P, Wang J, Zhao Z C, Liu S J, Jiang L, Wan J M. A CYP78As-small grain4-coat protein complex II pathway promotes grain size in rice. Plant Cell, 2023, 35: 4325-4346.
[26] Wang J W, Schwab R, Czech B, Mica E, Weigel D. Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell, 2008, 20: 1231-1243.
[27] Chakrabarti M, Zhang N, Sauvage C, Muños S, Blanca J, Cañizares J, Diez M J, Schneider R, Mazourek M, McClead J, Causse M, van der Knaap E. A cytochrome P450 regulates a domestication trait in cultivated tomato. Proc Natl Acad Sci USA, 2013, 110: 17125-17130.
doi: 10.1073/pnas.1307313110 pmid: 24082112
[28] Monforte A J, Diaz A, Caño-Delgado A, van der Knaap E. The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. J Exp Bot, 2014, 65: 4625-4637.
doi: 10.1093/jxb/eru017 pmid: 24520021
[1] ZHANG Jun, HU Chuan, ZHOU Qi-Hui, REN Kai-Ming, DONG Shi-Yan, LIU Ao-Han, WU Jin-Zhi, HUANG Ming, LI You-Jun. Effects of nitrogen reduction and organic fertilizer substitution on dry matter accumulation, translocation, distribution, and yield of dryland winter wheat [J]. Acta Agronomica Sinica, 2025, 51(1): 207-220.
[2] LIU Xin-Yuan, CHENG Yu-Kun, WANG Li-Li, ZHAN Shuai-Shuai, MA Meng-Yao, GUO Ling, GENG Hong-Wei. Allelic variation and distribution of peroxidase activity genes TaPod-A1, TaPod-A3, and TaPod-D1 of wheat in Xinjiang [J]. Acta Agronomica Sinica, 2025, 51(1): 68-78.
[3] YU Hai-Long, WU Wen-Xue, PEI Xing-Xu, LIU Xiao-Yu, DENG Gen-Wang, LI Xi-Chen, ZHEN Shi-Cong, WANG Jun-Sen, ZHAO Yong-Tao, XU Hai-Xia, CHENG Xi-Yong, ZHAN Ke-Hui. Transcriptome sequencing and genome-wide association study of wheat stem traits [J]. Acta Agronomica Sinica, 2024, 50(9): 2187-2206.
[4] HUANG Lin-Yu, ZHANG Xiao-Yue, LI Hao, DENG Mei, KANG Hou-Yang, WEI Yu-Ming, WANG Ji-Rui, JIANG Yun-Feng, CHEN Guo-Yue. Mapping of QTL for adult plant stripe rust resistance genes in a Sichuan wheat landrace and the evaluation of their breeding effects [J]. Acta Agronomica Sinica, 2024, 50(9): 2167-2178.
[5] GAO Wei-Dong, HU Chen-Zhen, ZHANG Long, ZHANG Yan-Yan, ZHANG Pei-Pei, YANG De-Long, CHEN Tao. Cloning and functional analysis of ubiquitin-conjugating enzymes TaUBC16 gene in wheat [J]. Acta Agronomica Sinica, 2024, 50(8): 1971-1988.
[6] LIANG Jin-Yu, YIN Jia-De, HOU Hui-Zhi, XUE Yun-Gui, GUO Hong-Juan, WANG Shuo, ZHAO Qi-Zhi, ZHANG Xu-Cheng, XIE Jun-Hong. Effects of deep fertilization on ecological stoichiometric characteristics and photosynthetic carbon assimilation of flag leaves of spring wheat under drought conditions [J]. Acta Agronomica Sinica, 2024, 50(8): 2078-2090.
[7] CHEN Juan, YANG Ting-Ting, YAN Su-Hui, YONG Yu-Dong, ZHANG Shi-Ya, LI Wen-Yang. Effects of waterlogging at jointing stage on starch particle size distribution and pasting properties of soft wheat [J]. Acta Agronomica Sinica, 2024, 50(7): 1877-1884.
[8] FANG Yu-Hui, QI Xue-Li, LI Yan, ZHANG Yu, PENG Chao-Jun, HUA Xia, CHEN Yan-Yan, GUO Rui, HU Lin, XU Wei-Gang. Effects of high light stress on photosynthesis and physiological characteristics of wheat with maize C4-type ZmPEPC+ZmPPDK gene [J]. Acta Agronomica Sinica, 2024, 50(7): 1647-1657.
[9] BI Jun-Ge, ZENG Zhan-Kui, LI Qiong, HONG Zhuang-Zhuang, YAN Qun-Xiang, ZHAO Yue, WANG Chun-Ping. QTL mapping and KASP marker development of grain quality-relating traits in two wheat RIL populations [J]. Acta Agronomica Sinica, 2024, 50(7): 1669-1683.
[10] ZHANG Zhi-Yuan, ZHOU Jie-Guang, LIU Jia-Jun, WANG Su-Rong, WANG Tong-Zhu, ZHAO Cong-Hao, YOU Jia-Ning, DING Pu-Yang, TANG Hua-Ping, LIU Yan-Lin, JIANG Qian-Tao, CHEN Guo-Yue, WEI Yu-Ming, MA Jian. Identification and verification of low-tillering QTL based on a new model of genetic analysis in wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1373-1383.
[11] ZHU Ming-Kun, BAO Jun-Hao, PANG Jing-Lu, ZHOU Shi-Qi, FANG Zhong-Yan, ZHENG Wen, ZHANG Ya-Zhou, WU Dan-Dan. Generation and identification of a resistance to stripe rust perennial intergeneric hybrid F1 between Roegneria ciliaris and common wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1406-1420.
[12] QIAO Zhi-Xin, ZHANG Jie-Dao, WANG Yu, GUO Qi-Fang, LIU Yan-Jing, CHEN Rui, HU Wen-Hao, SUN Ai-Qing. Difference in germination characteristics of different winter wheat cultivars under drought stress [J]. Acta Agronomica Sinica, 2024, 50(6): 1568-1583.
[13] MA Yan-Ming, LOU Hong-Yao, WANG Wei, SUN Na, YAN Guo-Rong, ZHANG Sheng-Jun, LIU Jie, NI Zhong-Fu, XU Lin. Genetic difference and genome association analysis of grain quality traits in Xinjiang winter wheat [J]. Acta Agronomica Sinica, 2024, 50(6): 1394-1405.
[14] CHEN Jia-Ting, BAI Xin, GU Yu-Jie, ZHANG Xiao-Wen, GUO Hui-Juan, CHANG Li-Fang, CHEN Fang, ZHANG Shu-Wei, ZHANG Xiao-Jun, LI Xin, FENG Rui-Yun, CHANG Zhi-Jian, QIAO Lin-Yi. Applicability evaluation of screen methods to identify salt tolerance in wheat at germination and seedling stages [J]. Acta Agronomica Sinica, 2024, 50(5): 1193-1206.
[15] LU Ru-Hua, WANG Wen-Xuan, CAO Qiang, TIAN Yong-Chao, ZHU Yan, CAO Wei-Xing, LIU Xiao-Jun. Research on the effects of nitrogen fertilizer and rice straw return on wheat yield and N2O emission and recommended fertilization under rice-wheat rotation pattern [J]. Acta Agronomica Sinica, 2024, 50(5): 1300-1311.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[2] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[3] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[4] Wang Yiqun. Infection of Rhizobia to Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 32 -35 .
[5] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[6] CUI Xiu-Hui. Male Sterility Induced by Chemical Hybridizing Agent SQ-1 in Common Millet[J]. Acta Agron Sin, 2008, 34(01): 106 -110 .
[7] A JIA La-Tie;ZENG Long-Jun;XUE Da-Wei;HU Jiang;ZENG Da-Li;GAO Zhen-Yu;GUO Long-Biao;LI Shi-Gui;QIAN Qian
. QTL Analysis for Chlorophyll Content in Four Grain-Filling Stage in Rice[J]. Acta Agron Sin, 2008, 34(01): 61 -66 .
[8] YANG Wen-Xiong;YANG Fang-Ping;LIANG Dan;HE Zhong-Hu;SHANG Xun-Wu;XIA Xian-Chun. Molecular Characterization of Slow-Rusting Genes Lr34/Yr18 in Chinese Wheat Cultivars[J]. Acta Agron Sin, 2008, 34(07): 1109 -1113 .
[9] WANG Ying;WU Cun-Xiang;ZHANG Xue-Ming;WANG Yun-Peng;HAN Tian-Fu. Effects of Soybean Major Maturity Genes under Different Photoperiods[J]. Acta Agron Sin, 2008, 34(07): 1160 -1168 .
[10] WANG Guo-Li;GUO Zhen-Fei. Effects of Phosphorus Nutrient on the Photosynthetic Characteristics in Rice Cultivars with Different Cold-Sensitivity[J]. Acta Agron Sin, 2007, 33(08): 1385 -1389 .