Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (10): 2458-2467.doi: 10.3724/SP.J.1006.2024.44017

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Overexpression of wild soybean salt-alkali tolerance gene GsGSTU13 increases salt-alkaline tolerance in rice seedlings

LI Wan-Hong(), HU Bing-Shuang, SUN Xiao-Li, CAI Xiao-Xi*(), SUN Ming-Zhe*()   

  1. College of Agriculture, Heilongjiang Bayi Agriculture University / Crop Stress Molecular Biology Laboratory, Daqing 163316, Heilongjiang, China
  • Received:2024-01-28 Accepted:2024-06-20 Online:2024-10-12 Published:2024-07-11
  • Contact: *E-mail: sunmingzhe@byau.edu.cn;E-mail: 18746616279@163.com
  • Supported by:
    National Natural Science Foundation of China(U20A2025);National Natural Science Foundation of China(31971826);Natural Science Foundation of Heilongjiang Province(YQ2023C035)

Abstract:

Glutathione S-transferases (GSTs) are a class of highly conserved enzymes that play crucial roles in plant responses to environmental stresses. Bioinformatic analysis has revealed that Glycine soja GsGSTU13, which positively regulates salt-alkaline tolerance, shares the highest sequence identity with the OsGSTU17 protein. To investigate the potential contribution of GsGSTU13 to rice salt-alkaline tolerance, we transformed GsGSTU13 into rice and obtained two homozygous transgenic lines with significantly elevated GST activity. Phenotypic assays showed that after treatment with 200 mmol L-1 NaHCO3, the accumulation of reactive oxygen species was significantly lower in GsGSTU13 transgenic lines compared to wild-type. Additionally, the survival rates, relative water contents, and the activities of superoxide dismutases, peroxidases, catalases, and GSTs were significantly higher in GsGSTU13 transgenic lines than in the wild-type. In summary, overexpression of GsGSTU13 in rice enhanced salt-alkaline tolerance by promoting ROS scavenging, which could facilitate the breeding of new rice cultivars with improved tolerance to salt-alkaline stress.

Key words: rice, wild soybean, salt-alkaline tolerance, glutathione S-transferases, GsGSTU13

Table 1

Primers used in the study"

引物名称
Primer name
序列
Sequence (5°-3°)
试验用途
Experimental purpose
pCAMBIA130035Su-GsGSTU13-F GGCTTAAUGGCTTCAAATCATGAAG 植物超量表达载体构建
Generation of plant expression construct
pCAMBIA130035Su-GsGSTU13-R GGTTTAAUCTACTTTTTAGCAGAAGCTTG
pCAMBIA35S-F ATAAGGAAGTTCATTTCATTTGGA 遗传转化抗性苗PCR检测
PCR identification of transgenic rice
GsGSTU13-PCR-R TCCTCCACTGCTTTCTCACG
GsGSTU13-RT-PCR-F TGCCTCGAGACCCTTATGAGA 遗传转化抗性苗RT-PCR检测
RT-PCR identification of transgenic rice
GsGSTU13-RT-PCR-R CCTCCTTGATCACAGGGTGATTG
OsGSTU17-qRT-F CTCCCAACTCCCAACTTCCC OsGSTU17基因表达Real-time PCR分析
Real-time PCR analysis of OsGSTU17 gene expression
OsGSTU17-qRT-R ACATGCCGAACACCTTCACT

Fig. 1

Phylogenetic analysis of GsGSTU13 and rice homologous GSTU proteins A: Phylogenetic tree of GsGSTU13 and homologous OsGSTU proteins (GsGSTU13 is marked by a red star, functionally reported OsGSTUs are marked by blue dots). B: Heatmap showing the similarity of GsGSTU13 and homologous OsGSTUs proteins."

Fig. 2

Multiple alignment of GsGSTU13 and homologous OsGSTU proteins"

Fig. 3

Generation of pCAMBIA130035Su-GsGSTU13 plant expression vector A: Representation of the pCAMBIA130035Su-GsGSTU13 construct; B: PCR product of the GsGSTU13 CDS region (M: DNA marker 2K); C: PCR identification of recombinant E. coli clones harboring the pCAMBIA130035Su-GsGSTU13 construct; M: DNA marker 2K; +: Positive plasmid control (pGEM-T-GSTU13); -: Negative H2O control; 1-4: GsGSTU13 colonies."

Fig. 4

Molecular identification of GsGSTU13 transgenic rice lines A: PCR identification of GsGSTU13 transgenic rice (M: DNA marker 2K Plus; +: positive plasmid control; -: negative H2O control; WT: wild type control; #1-#9: resistant seedlings transformed with GsGSTU13); B: RT-PCR identification of GsGSTU13 transgenic rice (WT: the wild type control; #1 and #2: GsGSTU13 transgenic lines; OsElf1-α is used as the reference gene). C: Detection of GST activity in GsGSTU13 transgenic lines; *: P < 0.05 by the Student’s t-test, n = 20. D: Relative expression of OsGSTU17 in GsGSTU13 transgenic lines. ns: non-significance, n = 3."

Fig. 5

Salt-alkaline tolerance of GsGSTU13 transgenic rice lines at the seedling stage A: Phenotype of WT and transgenic rice seedlings treated with NaHCO3; B: Survival rates of WT and transgenic rice seedlings; C: Relative water content of WT and transgenic rice seedlings. Significant differences were evaluated by the Student’s t-test. *: P < 0.05; **: P < 0.01, n = 20."

Fig. 6

ROS accumulation in the GsGSTU13 transgenic rice under salt-alkaline treatment A: NBT staining; B: DAB staining. Scale bars are 1 cm."

Fig. 7

Antioxidant enzyme activity of GsGSTU13 transgenic rice under salt-alkaline treatment A: Glutathione S-transferase (GST) activity; B: Superoxide dismutase (SOD) activity; B: Peroxidase (POD) activity; B: Catalase (CAT) activity. Significant differences were evaluated by the Student’s t-test. *: P < 0.05; **: P < 0.01, n = 20."

[1] 王洋, 张瑞, 刘永昊, 李荣凯, 葛建飞, 邓仕文, 张徐彬, 陈英龙, 韦还和, 戴其根. 水稻对盐胁迫的响应及耐盐机理研究进展. 中国水稻科学, 2022, 36: 105-117.
doi: 10.16819/j.1001-7216.2022.210609
Wang Y, Zhang R, Liu Y H, Li R K, Ge J F, Deng S W, Zhang X B, Chen Y L, Wei H H, Dai Q G. Research progress on the response and salt tolerance mechanism of rice to salt stress. Chin J Rice Sci, 2022, 36: 105-117 (in Chinese with English abstract).
[2] 邵玺文, 冉成, 金峰, 郭丽颖, 耿艳秋. 松嫩平原苏打盐碱地水稻栽培技术研究进展与展望. 吉林农业大学学报, 2018, 40: 379-382.
Shao X W, Ran C, Jin F, Guo L Y, Geng Y Q. Research progress and outlook on rice cultivation techniques in soda saline alkali land of Songnen Plain. Jilin Agric Sci, 2018, 40: 379-382 (in Chinese with English abstract).
[3] 祁栋灵, 郭桂珍, 李明哲, 曹桂兰, 张俊国, 周庆阳, 张三元, 徐锡哲, 韩龙植. 水稻耐盐碱性生理和遗传研究进展. 植物遗传资源学报, 2007, 8: 486-493.
Qi D G, Guo G Z, Li M Z, Cao G L, Zhang J G, Zhou Q Y, Zhang S Y, Xu X Z, Han L Z. Progress in physiological and genetic research on salt alkali tolerance in rice. J Plant Genet Resour, 2007, 8: 486-493 (in Chinese with English abstract).
[4] Cai X, Jia B, Sun M, Sun X. Insights into the regulation of wild soybean tolerance to salt-alkaline stress. Front Plant Sci, 2022, 13: 1002302.
[5] Nakka S, Godar A S, Thompson C R, Peterson D E, Jugulam M. Rapid detoxification via glutathione S-transferase (GST) conjugation confers a high level of atrazine resistance in Palmer amaranth (Amaranthus palmeri). Pest Manag Sci, 2017, 73: 2236-2243.
[6] Duncan V, Smith R, Allen E, Allen R. Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotechnol, 1997, 15: 988-991.
doi: 10.1038/nbt1097-988 pmid: 9335051
[7] Cao Q, Lyu W, Jiang H, Chen X, Wang X, Wang Y. Genome-wide identification of glutathione S-transferase gene family members in tea plant (Camellia sinensis) and their response to environmental stress. Int J Biol Macromol, 2022, 205: 749-760.
doi: 10.1016/j.ijbiomac.2022.03.109 pmid: 35331791
[8] Hernández Estévez I, Rodríguez Hernández M. Plant Glutathione S-transferases: an overview. Plant Gene, 2020, 23: 100233.
[9] Wang T, Zhang D, Chen L, Wang J, Zhang W-H. Genome-wide analysis of the glutathione S-transferase family in wild Medicago ruthenica and drought-tolerant breeding application of MruGSTU39 gene in cultivated alfalfa. Theor Appl Genet, 2022, 135: 853-864.
[10] Jing X Q, Zhou M R, Nie X M, Zhang L, Shi P T, Shalmani A, Miao H, Li W Q, Liu W T, Chen K M. OsGSTU6 contributes to cadmium stress tolerance in rice by involving in intracellular ROS homeostasis. J Plant Growth Regul, 2021, 40: 945-961.
[11] Moons A. Osgstu3 and osgtu4, encoding tau class glutathione S-transferases, are heavy metal- and hypoxic stress-induced and differentially salt stress-responsive in rice roots 1. FEBS Lett, 2003, 553: 427-432.
doi: 10.1016/s0014-5793(03)01077-9 pmid: 14572664
[12] Sharma R, Sahoo A, Devendran R, Jain M. Over-expression of a rice tau class glutathione S-transferase gene improves tolerance to salinity and oxidative stresses in Arabidopsis. PLoS One, 2014, 9: e92900.
[13] Yang Y, Li J, Li H, Ding Y, Wu W, Qin R, Ni J, Xu R, Wei P, Yang J. OsGSTU5 and OsGSTU37 encoding glutathione reductases are required for cadmium tolerance in rice. Int J Environ Sci Technol, 2023, 20: 10253-10260.
[14] Srivastava D, Verma G, Chauhan A S, Pande V, Chakrabarty D. Rice (Oryza sativa L.) tau class glutathione S-transferase (OsGSTU30) overexpression in Arabidopsis thaliana modulates a regulatory network leading to heavy metal and drought stress tolerance. Metallomics, 2019, 11: 375-389.
doi: 10.1039/c8mt00204e pmid: 30516767
[15] Li J, Meng L, Ren S, Jia C, Liu R, Jiang H, Chen J. OsGSTU17, a tau class glutathione S-transferase gene, positively regulates drought stress tolerance in Oryza sativa. Plants, 2023, 12:3166.
[16] Ge Y, Li Y, Zhu Y M, Bai X, Lv D K, Guo D, Ji W, Cai H. Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3treatment. BMC Plant Biol, 2010, 10: 153.
[17] Wang Z Y, Song F B, Cai H, Zhu Y M, Bai X, Ji W, Li Y, Hua Y. Over-expressing GsGST14 from Glycine soja enhances alkaline tolerance of transgenic Medicago sativa. Biol Plant, 2012, 56: 516-520.
[18] 王臻昱, 才华, 柏锡, 纪巍, 李勇, 魏正巍, 朱延明. 野生大豆GsGST19基因的克隆及其转基因苜蓿的耐盐碱性分析. 作物学报, 2012, 38: 971-979.
doi: 10.3724/SP.J.1006.2012.00971
Wang Z Y, Cai H, Bai X, Ji W, Li Y, Wei Z W, Zhu Y M. Isolation of GsGST19 from Glycine soja and analysis of saline- alkaline tolerance for transgenic Medicago sativa. Acta Agron Sin, 2012, 38: 971-979 (in Chinese with English abstract)
[19] Jia B, Sun M, Sun X, Li R, Wang Z, Wu J, Wei Z, Duanmu H, Xiao J, Zhu Y. Overexpression of GsGSTU13 and SCMRP in Medicago sativa confers increased salt-alkaline tolerance and methionine content. Physiol Planta, 2016, 156: 176-189.
[20] Jain M, Ghanashyam C, Bhattacharjee A. Comprehensive expression analysis suggests overlapping and specific roles of rice glutathione S-transferase genes during development and stress responses. BMC Genomics, 2010, 11: 73.
doi: 10.1186/1471-2164-11-73 pmid: 20109239
[21] Kaur N, Sharma I, Kirat K, Pati P K. Detection of reactive oxygen species in Oryza sativa L. (rice). Biol Protocol, 2016, 6: 2061.
[22] Mauch F, Dudler R. Differential induction of distinct glutathione- S-transferases of wheat by xenobiotics and by pathogen attack. Plant Physiol, 1993, 102: 1193-1201.
pmid: 8278547
[23] Heath R L, Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys, 1968, 125: 189-198.
doi: 10.1016/0003-9861(68)90654-1 pmid: 5655425
[24] 李合生. 植物生理生化实验原理和技术. 北京: 植物生理生化实验原理和技术, 2000. pp 167-169, 184-185.
Li H S. Principles and Techniques of Plant Physiological Biochemical Experimental. Beijing: Higher Education Press, 2000. pp 167-169, 184-185 (in Chinese).
[25] Zhao W, Zhou Q, Tian Z, Cui Y, Liang Y, Wang H. Apply biochar to ameliorate soda saline-alkali land, improve soil function and increase corn nutrient availability in the Songnen Plain. Sci Total Environ, 2020, 722: 137428.
[26] 刘淼, 梁正伟. 低氮高密增微肥对苏打盐碱地水稻产量和氮肥利用率的影响. 土壤与作物, 2021, 10(3): 245-255.
Liu M, Liang Z W. The effect of low nitrogen, high density, and increased micronutrient fertilizer on rice yield and nitrogen fertilizer utilization efficiency in soda saline alkali soil. Soil Crops, 2021, 10(3): 245-255 (in Chinese with English abstract).
[27] 任鹏飞, 尚丽霞, 蔡勤安, 于志晶, 马瑞. 植物耐碱性研究进展及其在大豆中的应用展望. 大豆科学, 2019, 38: 977-985.
Ren P F, Shang L X, Cai Q A, Yu Z J, Ma R. Research progress on plant alkali resistance and its application prospects in soybeans. Soybean Sci, 2019, 38: 977-985 (in Chinese with English abstract).
[28] Daliakopoulos I N, Tsanis I K, Koutroulis A, Kourgialas N N, Varouchakis A E, Karatzas G P, Ritsema C J. The threat of soil salinity: a European scale review. Sci Total Environ, 2016, 573: 727-739.
[29] 冯浩杰. 水稻种植条件下脱硫石膏改良碱土的研究. 山东农业大学硕士学位论文, 山东泰安, 2016.
Feng H J. A Study on Improving Alkaline Soil with Desulfurization Gypsum under Rice Planting Conditions. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2016 (in Chinese with English abstract).
[30] 马国辉, 郑殿峰, 母德伟, 王奉斌, 戴其根, 魏中伟, 冯乃杰, 王才林. 耐盐碱水稻研究进展与展望. 杂交水稻, 2024, 39(1): 1-10.
Ma G H, Zheng D F, Mu D W, Wang F B, Dai Q G, Wei Z W, Feng N J, Wang C L. Research progress and prospects of salt alkali tolerant rice. Hybrid Rice, 2024, 39(1): 1-10 (in Chinese with English abstract).
[31] Lan T, Yang Z L, Yang X, Liu Y J, Wang X R, Zeng Q Y. Extensive functional diversification of the populus glutathione S-transferase supergene family. Plant Cell, 2009, 21: 3749-3766.
[32] Soranzo N, Sari Gorla M, Mizzi L, De Toma G, Frova C. Organisation and structural evolution of the rice glutathione S-transferase gene family. Mol Genet, 2004, 271: 511-521.
[33] 张创娟. 植物谷胱甘肽转移酶及其响应非生物胁迫的研究. 兰州交通大学硕士学位论文, 甘肃兰州, 2023.
Zhang C J. A Study on Plant Glutathione Transferase and Its Response to Abiotic Stress. MS Thesis of Lanzhou Jiaotong University, Lanzhou, Gansu, China, 2023 (in Chinese with English abstract).
[34] Frova C. Glutathione transferases in the genomics era: new insights and perspectives. Biomol Eng, 2006, 23: 149-169.
pmid: 16839810
[35] Zhao F, Zhang H. Salt and paraquat stress tolerance results from co-expression of the Suaeda salsa glutathione S-transferase and catalase in transgenic rice. Plant Cell Tiss Org, 2006, 86: 349-358.
[26] Rahantaniaina M, Tuzet A, Mhamdi A, Noctor G. Missing links in understanding redox signaling via thiol/disulfide modulation: how is glutathione oxidized in plants? Front Plant Sci, 2013, 4: 477.
[37] Zhao F Y, Wang X Y, Zhao Y X, Zhang H. Transferring the Suaeda salsa glutathione-S-transferase and catalase genes enhances low temperature stress resistance in transgenic rice seedlings. Plant Cell Tiss Org, 2006, 32: 231-238.
[38] Yang G, Wang Y, Xia D, Gao C, Wang C, Yang C. Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida improves drought and salinity tolerance by enhancing the ability to scavenge reactive oxygen species. Plant Cell Tiss Org, 2014, 117: 99-112.
[39] Jiang Y, Yang B, Harris N S, Deyholos M K. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot, 2007, 58: 3591-3607.
[40] Huang C, Guo T, Zheng S C, Feng Q L, Liang J H, Li L. Increased cold tolerance in Arabidopsis thaliana transformed with Choristoneura fumiferana glutathione S-transferase gene. Biol Planta, 2009, 53: 183-187.
[41] Ji W, Zhu Y, Li Y, Yang L, Zhao X, Cai H, Bai X. Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol Lett, 2010, 32: 1173-1179.
[42] Dixon D P, Skipsey M, Edwards R. Roles for glutathione transferases in plant secondary metabolism. Phytochemistry, 2010, 71: 338-350.
doi: 10.1016/j.phytochem.2009.12.012 pmid: 20079507
[43] Meng H, Zhao J, Yang Y, Diao K, Zheng G, Li T, Dai X, Li J. PeGSTU58, a glutathione S-transferase from Populus euphratica, enhances salt and drought stress tolerance in transgenic Arabidopsis. Int J Mol Sci, 2023, 24: 9354.
[1] JIA Shu-Han, HE Can, CHEN Min, LIU Jia-Xin, HU Wei-Min, HU Jin, GUAN Ya-Jing. Study on the quality differences of seeds with different pre-harvest sprouting levels and the grading of pre-harvest sprouting in hybrid rice [J]. Acta Agronomica Sinica, 2024, 50(9): 2310-2322.
[2] HU Li-Qin, XIAO Zheng-Wu, FANG Sheng-Liang, CAO Fang-Bo, CHEN Jia-Na, HUANG Min. Effects of planting season on digestive characteristics of high amylose content rice [J]. Acta Agronomica Sinica, 2024, 50(9): 2347-2357.
[3] LIU Chen, WANG Kun-Kun, LIAO Shi-Peng, YANG Jia-Qun, CONG Ri-Huan, REN Tao, LI Xiao-Kun, LU Jian-Wei. Effects of nitrogen fertilizer application levels on yield and nitrogen absorption and utilization of oilseed rape under maize-oilseed rape and rice-oilseed rape rotation fields [J]. Acta Agronomica Sinica, 2024, 50(8): 2067-2077.
[4] SONG Zhi-Wen, ZHAO Lei, BI Jun-Guo, TANG Qing-Yun, WANG Guo-Dong, LI Yu-Xiang. Effects of nitrogen fertilization levels on matter accumulation and nutrient uptake in rice cultivar with different nitrogen efficiency under drip irrigation [J]. Acta Agronomica Sinica, 2024, 50(8): 2025-2038.
[5] SHAO Mei-Hong, ZHAO Ling-Ling, CHENG Chu, CHENG Si-Ming, ZHU Shuang-Bing, ZHAI Lai-Yuan, CHEN Kai, XU Jian-Long. Screening, evaluation, and utilization of low nitrogen tolerance for the selected introgression lines in rice with Huanghuazhan background [J]. Acta Agronomica Sinica, 2024, 50(8): 1907-1919.
[6] HE Dan-Dan, SHU Ya-Zhou, ZHOU Hai-Lian, WU Song-Guo, WEI Xiao-Shuang, YANG Ming-Chong, LI Bo, WU Zheng-Dan, HAN Shi-Jian, YANG Juan, WANG Ji-Bin, WANG Ling-Qiang. OsRPTA18 participated in the regulation of leaf inclination in rice [J]. Acta Agronomica Sinica, 2024, 50(8): 1934-1947.
[7] GUO Chun-Lin, LIN Man-Hong, CHEN Ting, CHEN Hong-Fei, LIN Wen-Fang, LIN Wen-Xiong. Evolution characteristics of rhizosphere microorganisms in response to ratoon rice senescence and underlying carry-over effect mechanism [J]. Acta Agronomica Sinica, 2024, 50(8): 2039-2052.
[8] FU Jing, MA Meng-Juan, ZHANG Qi-Fei, DUAN Ju-Qi, WANG Yue-Tao, WANG Fu-Hua, WANG Sheng-Xuan, BAI Tao, YIN Hai-Qing, WANG Ya. Effects of alternate wetting and drying irrigation and different nitrogen application levels on photosynthetic characteristics and nitrogen absorption and utilization of japonica rice [J]. Acta Agronomica Sinica, 2024, 50(7): 1787-1804.
[9] CHENG Shuang, XING Zhi-Peng, TIAN Chao, HU Qun, WEI Hai-Yan, ZHANG Hong-Cheng. Effects of an integrated dryland tillage and soaking pattern on the reducing substances in rice field and early growth of machine transplanted rice [J]. Acta Agronomica Sinica, 2024, 50(7): 1762-1775.
[10] PEI Fa-Jing, ZHANG Wen-Xuan, ZHANG Xiao, WANG Xin-Yu, PENG Shao-Bing, MI Jia-Ming. Developing new rice lines with ultrashort-duration, long-grain, and fragrance [J]. Acta Agronomica Sinica, 2024, 50(7): 1684-1698.
[11] TANG Qing-Yun, YANG Jing-Jing, ZHAO Lei, SONG Zhi-Wen, WANG Guo-Dong, LI Yu-Xiang. Effect of nitrogen application on morphological conformation and fractal characteristics of drip irrigated rice roots [J]. Acta Agronomica Sinica, 2024, 50(6): 1540-1553.
[12] ZHANG Xiao-Fang, ZHU Qi, HUA Yun-Yan, JIA Li-Hui-Ying, QIU Shi-You, CHEN Yu-Jie, MA Tao, DING Wo-Na. Screening and validation of OsCYP22 interacting proteins in rice [J]. Acta Agronomica Sinica, 2024, 50(6): 1628-1634.
[13] ZHU Zhong-Lin, WEN Yue, ZHOU Qi, WU Yan-Fei, DU Xue-Zhu, SHENG Feng. Mechanism of loding residence and drought tolerance of OsCNGC10 gene in rice [J]. Acta Agronomica Sinica, 2024, 50(5): 1351-1360.
[14] HU Ming-Ming, DING Feng, PENG Zhi-Yun, XIANG Kai-Hong, LI Yu, ZHANG Yu-Jie, YANG Zhi-Yuan, SUN Yong-Jian, MA Jun. Effects of straw returning to field combined with water and N management on rice yield formation and N uptake and utilization under diversified cropping patterns [J]. Acta Agronomica Sinica, 2024, 50(5): 1236-1252.
[15] GENG Xiao-Yu, ZHANG Xiang, LIU Yang, ZUO Bo-Yuan, ZHU Wang, MA Wei-Yi, WANG Lu-Lu, MENG Tian-Yao, GAO Ping-Lei, CHEN Ying-Long, XU Ke, DAI Qi-Gen, WEI Huan-He. Grain yield and its characteristics of japonica/indica hybrids rice in coastal saline-alkali lands [J]. Acta Agronomica Sinica, 2024, 50(5): 1253-1270.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!